Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2382
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝志豪(Chih-hao Hsieh)
dc.contributor.authorChi-Yu Wengen
dc.contributor.author翁其羽zh_TW
dc.date.accessioned2021-05-13T06:39:38Z-
dc.date.available2017-08-11
dc.date.available2021-05-13T06:39:38Z-
dc.date.copyright2017-08-11
dc.date.issued2017
dc.date.submitted2017-08-08
dc.identifier.citationAbe M, Izaki J, Miguchi H, et al (2002) The effects of Sasa and canopy gap formation on tree regeneration in an old beech forest. J Veg Sci 13:565–574. doi: 10.1111/j.1654-1103.2002.tb02083.x
Albrecht MA, McCarthy BC (2009) Seedling establishment shapes the distribution of shade-adapted forest herbs across a topographical moisture gradient. J Ecol 97:1037–1049. doi: 10.1111/j.1365-2745.2009.01527.x
Alvarez-Buylla ER, Martínez-Ramos M (1990) Seed bank versus seed rain in the regeneration of a tropical pioneer tree. Oecologia 84:314–325.
Antos JA, Guest HJ, Parish R (2005) The tree seedling bank in an ancient montane forest: stress tolerators in a productive habitat. J Ecol 93:536–543. doi: 10.1111/j.1365-2745.2005.00968.x
Asquith NM, Wright SJ, Clauss MJ (1997) Does mammal community composition control recruitment in neotropical forests ? Evidence from Panama. Ecology 78:941–946. doi: doi:10.1890/0012-9658(1997)078[0941:DMCCCR]2.0.CO;2
Bachelot B, Uríarte M, Thompson J, et al (2016a) The advantage of the extremes: tree seedlings at intermediate abundance in a tropical forest have the highest richness of above-ground enemies and suffer the most damage. J Ecol 104:90–103. doi: 10.1111/1365-2745.12488
Bachelot B, Uríarte M, Thompson J, Zimmerman JK (2016b) The advantage of the extremes: tree seedlings at intermediate abundance in a tropical forest have the highest richness of above-ground enemies and suffer the most damage. J Ecol 104:90–103. doi: 10.1111/1365-2745.12488
Bagchi R, Gallery RE, Gripenberg S, et al (2014) Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506:85–8. doi: 10.1038/nature12911
Bai X, Queenborough SA, Wang X, et al (2012) Effects of local biotic neighbors and habitat heterogeneity on tree and shrub seedling survival in an old-growth temperate forest. Oecologia 170:755–765. doi: 10.1007/s00442-012-2348-2
Balcomb SR, Chapman CA (2003) Bridging the gap: influence of seed deposition on seedling recruitment in a primate-tree interaction. Ecol Monogr 73:625–642.
Baraloto C, Forget P-M (2007) Seed size, seedling morphology, and response to deep shade and damage in neotropical rain forest trees. Am J Bot 94:901–911. doi: 10.3732/ajb.94.6.901
Baraloto C, Goldberg DE (2004) Microhabitat associations and seedling bank dynamics in a neotropical forest. Oecologia 141:701–712. doi: 10.1007/s00442-004-1691-3
Barbier S, Gosselin F, Balandier P (2008) Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests. For Ecol Manage 254:1–15. doi: 10.1016/j.foreco.2007.09.038
Beatty SW (1984) Influence of microtopography and canopy species on spatial patterns of forest understory plants. Ecology 65:1406–1419.
Beckage B, Clark JS, Clinton BD, Haines BL (2000) A long-term study of tree seedling recruitment in southern Appalachian forests: the effects of canopy gaps and shrub understories. Can J For Res 30:1617–1631. doi: 10.1139/cjfr-30-10-1617
Bivand R, Hauke J, Kossowski T (2013) Computing the Jacobian in Gaussian spatial autoregressive models: an illustrated comparison of available methods. Geogr Anal 45:150–179.
Bivand R, Piras G (2015) Comparing Implementations of Estimation Methods for Spatial Econometrics.
Blanchet G, Legendre P, Borcard D (2008) Forward selection of spatial explanatory variables. Ecology 89:2623–2632. doi: 10.1890/07-0986.1
Bonal R, Muñoz A, Díaz M (2007) Satiation of predispersal seed predators: The importance of considering both plant and seed levels. Evol Ecol 21:367–380. doi: 10.1007/s10682-006-9107-y
Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York
Borcard D, Legendre P (1994) Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei). Environ Ecol Stat 1:37–61.
Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Modell 153:51–68. doi: 10.1016/S0304-3800(01)00501-4
Brokaw N, Busing R (2000) Niche versus chance and tree diversity in forest gaps. Trends Ecol Evol 15:183–188.
Brooker RW, Maestre FT, Callaway RM, et al (2008) Facilitation in plant communities: The past, the present, and the future. J Ecol 96:18–34. doi: 10.1111/j.1365-2745.2007.01295.x
Brown C, Burslem DFRP, Illian JB, et al (2013) Multispecies coexistence of trees in tropical forests: spatial signals of topographic niche differentiation increase with environmental heterogeneity. Proc R Soc B Biol Sci. doi: 10.1098/rspb.2013.0502
Buckley HL, Case BS, Ellison AM (2016) Using codispersion analysis to characterize spatial patterns in species co-occurrences. Ecology 96:32–39.
Caccia FD, Chaneton EJ, Kitzberger T (2009) Direct and indirect effects of understorey bamboo shape tree regeneration niches in a mixed temperate forest. Oecologia 161:771–80. doi: 10.1007/s00442-009-1412-z
Caquet B, Montpied P, Dreyer E, et al (2010) Response to canopy opening does not act as a filter to Fagus sylvatica and Acer sp. advance regeneration in a mixed temperate forest. Ann For Sci 67:105–105. doi: 10.1051/forest/2009086
Chapman CA (1995) Primate seed dispersersal: coevolution and conservation implications. Evol Anthropol 4:74–82.
Charney N, Record S (2012) vegetarian: Jost Diversity Measures for Community Data.
Chávez V, Macdonald SE (2010) The influence of canopy patch mosaics on understory plant community composition in boreal mixedwood forest. For Ecol Manage 259:1067–1075. doi: 10.1016/j.foreco.2009.12.013
Chou F, Lin W, Chen Y, Tsai J (2011) Seed fate of Castanopsis indica (Fagaceae) in a subtropical evergreen broadleaved forest. Bot Stud 52:321–326.
Chuine I (2010) Why does phenology drive species distribution? Philos Trans R Soc Lond B Biol Sci 365:3149–3160. doi: 10.1098/rstb.2010.0142
Clark CJ, Poulsen JR, Bolker BM, et al (2005) Comparative seed shadows of bird-, monkey-, and wind-dispersed trees. Ecology 86:2684–2694. doi: doi:10.1890/04-1325
Clark JS, Beckage B, Camill P, et al (1999) Interpreting recruitment limitation in forests. Am J Bot 86:1–16.
Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: A seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6:3–73.
Collins SL, Good RE (1987) The seedling regeneration niche: Habitat structure of tree seedlings in an oak-pine forest. Oikos 48:89–98. doi: 10.2307/3565692
Comita LS, Condit R, Hubbell SP (2007) Developmental changes in habitat associations of tropical trees. J Ecol 95:482–492. doi: 10.1111/j.1365-2745.2007.01229.x
Comita LS, Queenborough SA, Murphy SJ, et al (2014) Testing predictions of the Janzen-Connell hypothesis: A meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J Ecol 102:845–856. doi: 10.1111/1365-2745.12232
Connell JH, Green PT (2000) Seedling dynamics over thirty-two years in a tropical rain forest tree. Ecology 81:568–584.
Cressie NAC (1993) Statistics for spatial data, 2nd edn. John Wiley & Sons, New York
Crozier CR, Boerner REJ (1984) Correlations of understory herb distribution patterns with microhabitats under different tree species in a mixed mesophytic forest. Oecologia 62:337–343.
Curran LM, Webb CO (2011) Experimental Tests of the Spatiotemporal Scale of Seed Predation in Mast-Fruiting Dipterocarpaceae. Ecol Monogr 70:129–148.
Dalling JW, Hubbell SP (2002) Seed size, growth rate and gap microsite conditions as determinants of recruitment success for pioneer species. J Ecol 90:557–568. doi: doi:10.1046/j.1365-2745.2002.00695.x
De Cáceres M, Legendre P, Caceres M De, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574.
De Steven D (1994) Tropical tree seedling dynamics: recruitment patterns and their population consequences for three canopy species in Panama. J Trop Ecol 10:369–383.
Dearing MD, Mangione AM, Karasov WH (2000) Diet breadth of mammalian herbivores: nutrient versus detoxification constraints. Oecologia 123:397–405. doi: 10.1007/s004420051027
Dray S (2016) packfor: Forward Selection with permutation (Canoco p.46).
Dray S, Legendre P, Peresneto P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Modell 196:483–493. doi: 10.1016/j.ecolmodel.2006.02.015
Dray S, Pélissier R, Couteron P, et al (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monogr 82:257–275. doi: 10.1890/11-1183.1
Dyer LA, Letourneau DK, Chavarria GV, Amoretti DS (2010) Herbivores on a dominant understory shrub increase local plant diversity in rain forest communities. Ecology 91:3707–18. doi: 10.1890/08-1634.1
Emborg J (1998) Understorey light conditions and regeneration with respect to the structural dynamics of a near-natural temperate deciduous forest in Denmark. For Ecol Manage 106:83–95. doi: 10.1016/S0378-1127(97)00299-5
García D, Obeso JR, Martínez I (2005) Spatial concordance between seed rain and seedling establishment in bird-dispersed trees: Does scale matter? J. Ecol. 93:693–704.
García D, Zamora R, Amico GC (2011) The spatial scale of plant-animal interactions: effects of resource availability and habitat structure. Ecol Monogr 81:103–121.
Gazol A, Ibáñez R (2010) Scale-specific determinants of a mixed beech and oak seedling–sapling bank under different environmental and biotic conditions. Plant Ecol 211:37–48. doi: 10.1007/s11258-010-9770-5
George LO, Bazzaz FA (1999) The fern understory as an ecological filter: growth and survival of canopy-tree seedlings. Ecology 80:846–856. doi: 10.1890/0012-9658(1999)080[0846:TFUAAE]2.0.CO;2
Gilliam FS (2007) The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience 57:845–858. doi: 10.1641/B571007
Gómez-aparicio L, Valladares F, Zamora R, Quero JL (2005) Response of tree seedlings to the abiotic heterogeneity generated by nurse shrubs: an experimental approach at different scales. Ecography (Cop) 28:757–768.
Gonza EJ, Mejía-Domínguez NR, Meave JA, et al (2011) Individual canopy-tree species effects on their immediate understory microsite and sapling community dynamics. Biotropica 43:572–581.
Green PT, Harms KE, Connell JH (2014) Nonrandom, diversifying processes are disproportionately strong in the smallest size classes of a tropical forest. Pnas 111:18649–18654. doi: 10.1073/pnas.1321892112
Griscom BW, Ashton PMS (2003) Bamboo control of forest succession: Guadua sarcocarpa in Southeastern Peru. For Ecol Manage 175:445–454. doi: http://dx.doi.org/10.1016/S0378-1127(02)00214-1
Grubb PJ (1977) The maintenance of species‐richness in plant communities: the importance of the regeneration niche. Biol Rev 52:107–145.
Gutierrez AG, Barbosa O, Christie D a., et al (2008) Regeneration patterns and persistence of the fog-dependent Fray Jorge forest in semiarid Chile during the past two centuries. Glob Chang Biol 14:161–176. doi: 10.1111/j.1365-2486.2007.01482.x
Harms KE, Wright SJ, Calderón O, et al (2000) Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404:493–5. doi: 10.1038/35006630
Helene CM-L, Wright SJ, Calderón O, et al (2008) Interspecific variation in primary seed dispersal in a tropical forest. J Ecol 96:653–667. doi: 10.1111/j.1365-2745.2008.01399.x
Hidding B, Tremblay JP, Côté SD (2012) Survival and growth of balsam fir seedlings and saplings under multiple controlled ungulate densities. For Ecol Manage 276:96–103. doi: 10.1016/j.foreco.2012.03.023
Hildebrandt A, Al Aufi M, Amerjeed M, et al (2007) Ecohydrology of a seasonal cloud forest in Dhofar: 1. Field experiment. Water Resour Res. doi: 10.1029/2006WR005261
Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432. doi: 10.2307/1934352
Holt RD (1977) Predation, Apparent Competition, and the Sctructure of Prey Communities. Theor. Popul. Biol. 229:197–229.
Hubbell SP (1979) Tree dispersion, abundance, and diversity in a tropical dry forest. Science (80- ) 203:1299–1309. doi: 10.1126/science.203.4387.1299
Hubbell SP, Foster RB, O’Brien ST, et al (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science (80- ) 283:554–557. doi: 10.1126/science.283.5401.554
Hulme PE (1996) Herbivory, plant regeneration, and species coexistence. Br Ecol Soc 84:609–615.
Hulme PE (1998) Post-dispersal seed predation: consequences for plant demography and evolution. Perspect Plant Ecol Evol Syst 1:32–46. doi: 10.1078/1433-8319-00050
Hwang MH, Chian YY (2007) Monitoring larger mammals in the Nanzihshian logging road area, Yushan National Park, Taiwan. Taiwan J For Sci 22:135–148.
Jansen PA, Bongers F, Hemerik L (2004) Seed mass and mast seeding enhance dispersal by a neotropical scatter-hoarding rodent. Ecol Monogr 74:569–589. doi: 10.1890/03-4042
Jansen PA, Hirsch BT, Emsens W-J, et al (2012) Thieving rodents as substitute dispersers of megafaunal seeds. Proc Natl Acad Sci U S A 109:12610–5. doi: 10.1073/pnas.1205184109
Jombart T, Dray S, Dufour AB (2009) Finding essential scales of spatial variation in ecological data: A multivariate approach. Ecography (Cop) 32:161–168. doi: 10.1111/j.1600-0587.2008.05567.x
Jost L (2007) Partitioning diversity into independnet alpha andf beta components. Ecology 88:2427–2439. doi: 10.1890/06-1736.1
Kanagaraj R, Wiegand T, Comita LS, Huth A (2011) Tropical tree species assemblages in topographical habitats change in time and with life stage. J Ecol 99:1441–1452. doi: 10.1111/j.1365-2745.2011.01878.x
Karami A, Sefidi K, Feghhi J, Mohadjer MRM (2012) Spatial distribution of regeneration patches in old growth oriental beech forests in northern Iran. For Stud 57:5–15. doi: 10.2478/v10132-012-0006-4
Kobe RK, Vriesendorp CF (2011) Conspecific density dependence in seedlings varies with species shade tolerance in a wet tropical forest. Ecol Lett 14:503–10. doi: 10.1111/j.1461-0248.2011.01612.x
Kolb A, Ehrlen J, Eriksson O, et al (2007) Ecological and evolutionary consequences of spatial and temporal variation in pre-dispersal seed predation. Perspect Plant Ecol Evol Syst 9:79–100. doi: 10.1016/j.ppees.2007.09.001
Legendre P, Borcard D, Blanchet FG, Dray S (2012) PCNM: MEM spatial eigenfunction and principal coordinate analyses.
Legendre P, Borcard D, Peres-neto PR (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol Monogr 75:435–450.
Legendre P, Legendre L (2012) Numerical Ecology, 2nd edn. Elsevier, Amsterdam
Legendre P, Mi X, Ren H, et al (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663–74. doi: 10.1890/07-1880.1
Levey DJ, Silva WR, Galletti M (2002) Seed dispersal and frugivory: ecology, evolution, and conservation. CABI
Li C-FF, Chytrý M, Zelený D, et al (2013) Classification of Taiwan forest vegetation. Appl Veg Sci 16:698–719. doi: 10.1111/avsc.12025
Lischke H, Löffler TJ (2006) Intra-specific density dependence is required to maintain species diversity in spatio-temporal forest simulations with reproduction. Ecol Modell 198:341–361. doi: 10.1016/j.ecolmodel.2006.05.005
Macdonald SE, Fenniak TE (2007) Understory plant communities of boreal mixedwood forests in western Canada: Natural patterns and response to variable-retention harvesting. For Ecol Manage 242:34–48. doi: 10.1016/j.foreco.2007.01.029
Maltez-Mouro S, Garcia L V, Marañón T, Freitas H (2007) Recruitment patterns in a Mediterranean oak forest: A case study showing the importance of the spatial component. For Sci 53:645–652.
Masaki T, Hata S, Ide Y (2015) Heterogeneity in soil water and light environments and dispersal limitation: What facilitates tree species coexistence in a temperate forest? Plant Biol 17:449–458. doi: 10.1111/plb.12253
Mejía-Domínguez NR, Meave JA, Díaz-Ávalos C, González EJ (2011) Individual canopy-tree species effects on their immediate understory microsite and sapling community dynamics. Biotropica 43:572–581. doi: 10.1111/j.1744-7429.2010.00739.x
Metz MR (2012) Does habitat specialization by seedlings contribute to the high diversity of a lowland rain forest? J Ecol 100:969–979. doi: 10.1111/j.1365-2745.2012.01972.x
Montoya D, Zavala MA, Rodríguez MA, Purves DW (2008) Animal versus wind dispersal and the robustness of tree species to deforestation. Science (80- ) 320:1502–4. doi: 10.1126/science.1158404
Muscarella R, Uriarte M, Forero-Montaña J, et al (2013) Life-history trade-offs during the seed-to-seedling transition in a subtropical wet forest community. J Ecol 101:171–182.
Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol 15:278–285.
Norden N, Chave JJJ, Caubère A, et al (2007) Is temporal variation of seedling communities determined by environment or by seed arrival? A test in a neotropical forest. J Ecol 95:507–516. doi: 10.1111/j.1365-2745.2007.01221.x
Norden N, Chazdon RL, Chao A, et al (2009) Resilience of tropical rain forests: tree community reassembly in secondary forests. Ecol Lett 12:385–94. doi: 10.1111/j.1461-0248.2009.01292.x
Norghauer JM, Newbery DM (2014) Herbivores differentially limit the seedling growth and sapling recruitment of two dominant rain forest trees. Oecologia 174:459–469. doi: 10.1007/s00442-013-2769-6
Oksanen J, Blanchet FG, Friendly M, et al (2016) vegan: Community ecology package.
Paine CET, Beck H, Terborgh J (2016) How mammalian predation contributes to tropical tree community structure. Ecology 97:3326–3336. doi: 10.1002/ecy.1586
Paine CET, Harms KE (2009) Quantifying the effects of seed arrival and environmental conditions on tropical seedling community structure. Oecologia 160:139–150. doi: 10.1007/s00442-008-1269-6
Pérez-Ramos IM, Marañón T (2012) Community‐level seedling dynamics in Mediterranean forests: uncoupling between the canopy and the seedling layers. J Veg Sci 23:526–540.
Pinto SM, Macdougall AS (2010) Dispersal limitation and environmental structure interact to restrict the occupation of optimal habitat. Am Nat 175:675–86. doi: 10.1086/652467
Ponce-Reyes R, Reynoso-Rosales V-H, Watson JEM, et al (2012) Vulnerability of cloud forest reserves in Mexico to climate change. Nat Clim Chang 2:448–452.
Poorter L (2007) Are species adapted to their regeneration niche, adult niche, or both? Am Nat 169:433–442. doi: 10.1086/512045
Puerta-Piñero C, Muller-Landau HC, Calderón O, Wright SJ (2013) Seed arrival in tropical forest tree fall gaps. Ecology 94:1552–1562. doi: 10.1890/12-1012.1
Pulliam HR (2000) On the relationship between niche and distribution. Ecol Lett 3:349–361. doi: 10.1046/j.1461-0248.2000.00143.x
Punchi-manage R, Getzin S, Wiegand T, et al (2013) Effects of topography on structuring local species assemblages in a Sri Lankan mixed dipterocarp forest. J Ecol 101:149–160. doi: 10.1111/1365-2745.12017
Queenborough SA, Burslem DFRP, Garwood NC, Valencia R (2007) Neighborhood and community interactions determine the spatial pattern of tropical tree seedling survival. Ecology 88:2248–58.
Ramírez-Bamonde ES, Sánchez-Velásquez LR, Andrade-Torres A, Sa LR (2005) Seedling survival and growth of three species of mountain cloud forest in Mexico, under different canopy treatments. New For 30:95–101. doi: 10.1007/s11056-004-5397-5
Rathcke B, Lacey EP (1985) Phenological patterns of terrestrial plants. Annu Rev Ecol Syst 16:179–214. doi: 10.1146/annurev.es.16.110185.001143
Ribeiro Jr PJ, Diggle PJ (2016) geoR: Analysis of Geostatistical Data.
Robledo-arnuncio JJ, Klein EK, Muller-Landau HC, et al (2014) Space, time and complexity in plant dispersal ecology. Mov Ecol 2:1–17. doi: 10.1186/s40462-014-0016-3
Rother DC, Pizo MA, Siqueira T, et al (2015) Community-wide spatial and temporal discordances of seed-seedling shadows in a tropical rainforest. PLoS One 10:1–12. doi: 10.1371/journal.pone.0123346
Royo A a, Carson WP (2006) On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession. Can J For Res 36:1345–1362. doi: 10.1139/X06-025
Royo AA, Carson WP (2008) Direct and indirect effects of a dense understory on tree seedling recruitment in temperate forests: habitat-mediated predation versus competition. Can J For Res 38:1634–1645.
Royo AA, Carson WP (2005) The herb community of a tropical forest in central Panamá: dynamics and impact of mammalian herbivores. Oecologia 145:66–75. doi: 10.1007/s00442-005-0079-3
Royo AA, Collins R, Adams MB, et al (2010) Pervasive interactions between ungulate browsers and disturbance regimes promote temperate forest herbaceous diversity. Ecology 91:93–105. doi: 10.1890/08-1680.1
Rukhin AL, Vallejos R (2008) Codispersion coefficients for spatial and temporal series. Stat Probab Lett 78:1290–1300. doi: 10.1016/j.spl.2007.11.017
Sakai S (2001) Phenological diversity in tropical forests. Popul Ecol 43:77–86. doi: 10.1007/PL00012018
Seufert V, Linden B, Fischer F, et al (2010) Revealing secondary seed removers: results from camera trapping. Afr J Ecol 48:914–922. doi: 10.1111/j.1365-2028.2009.01192.x
Smit C, Vandenberghe C (2007) Nurse plants, tree saplings and grazing pressure: changes in facilitation along a biotic environmental gradient. Oecologia 152:265–273. doi: 10.1007/S00442-006-0650-6
Sun I-FF, Chen Y-Y yun, Hubbell SP, et al (2007) Seed predation during general flowering events of varying magnitude in a Malaysian rain forest. J Ecol 95:818–827. doi: 10.1111/j.1365-2745.2007.01235.x
Swamy V, Terborgh J, Dexter KG, et al (2011) Are all seeds equal? Spatially explicit comparisons of seed fall and sapling recruitment in a tropical forest. Ecol Lett 14:195–201. doi: 10.1111/j.1461-0248.2010.01571.x
Usinowicz J, Wright SJ, Ives AR, Doak DF (2012) Coexistence in tropical forests through asynchronous variation in annual seed production. Ecology 93:2073–2084. doi: 10.1890/11-1935.1
Vallejos R, Osorio F, Mancilla D (2015) The codispersion map: a graphical tool to visualize the association between two spatial variables. Stat Neerl 69:298–314. doi: 10.1111/stan.12060
van Schaik CP, Terborgh JW, Wright SJ (1993) The phenology of tropical forests: Adaptive significance and consequences for primary consumers. Annu Rev Ecol Syst 24:353–377. doi: doi:10.1146/annurev.es.24.110193.002033
Vander Wall SB, Beck MJ (2012) A comparisons of frugivory and scatter-hoarding seed-dispersal syndromes. Bot Rev 78:10–31. doi: 10.1007/s12229-011-9093-9
Vander Wall SB, Kuhn KM, Beck MJ, et al (2005) Seed removal, seed predation, and secondary dispersal. Ecology 86:801–806. doi: doi:10.1890/04-0847
Vockenhuber EA, Scherber C, Langenbruch C, et al (2011) Tree diversity and environmental context predict herb species richness and cover in Germany’s largest connected deciduous forest. Perspect Plant Ecol Evol Syst 13:111–119. doi: http://dx.doi.org/10.1016/j.ppees.2011.02.004
Wagner HH (2013) Rethinking the linear regression model for spatial ecological data. Ecology 94:2381–2391. doi: 10.1017/CBO9781107415324.004
Wang BC, Smith TB (2002) Closing the seed dispersal loop. Trends Ecol Evol 17:379–386.
Weng C-Y, Hsieh C, Su M (2017a) Recruitment dynamics mediated by ungulate herbivory can affect species coexistence for tree seedling assemblages. Taiwania 62:283–293. doi: 10.6165/tai.2017.62.283
Weng C-Y, Yang K-C, Hsieh C-F, et al (2017b) Local neighborhood communities in the understory play a critical role by affecting regeneration niches and subsequent community assembly in a montane cloud forest. Ecol Res. doi: 10.1007/s11284-017-1475-y
Wenny DG (2000) Seed dispersal, seed predation, and seedling recruitment of a neotropical montane tree. Ecol Monogr 70:331–351.
Wenny DG (2001) Advantages of seed dispersal : A re-evaluation of directed dispersal. Nat Hist 51–74.
Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14. doi: 10.1007/s004420100809
Wright SJ, Calderón O (1995) Phylogenetic patterns among tropical flowering phenologies. J Ecol 83:937.
Wright SJ, Calderón O, Hernandéz A, et al (2016) Interspecifc associations in seed arrival and seedling recruitment in a Neotropical forest. Ecology 97:2780–2790. doi: 10.1002/ecy.1519
Wright SJ, Carrasco C, Calderón O, Paton S (1999) The El Nino Southern Oscillation, Variable Fruit Production, and Famine in a Tropical Forest. Ecology 80:1632–1647.
Wright SJ, Muller-Landau HC, Calderón O, Hernandéz A (2005) Annual and spatial variation in seedfall and seedling recruitment in a neotropical forest. Ecology 86:848–860.
Yang K-C, Lin J-K, Hsieh C-F, et al (2008) Vegetation pattern and woody species composition of a broad-leaved forest at the upstream basin of Nantzuhsienhsi in mid-southern Taiwan. Taiwania 53:325–337. doi: 10.6165/tai.2008.53(4).325
Yumoto T, Noma N, Maruhashi T (1998) Cheek-pouch dispersal of seeds by Japanese monkeys (Macaca fuscata yakui) on Yakushima Island, Japan. Primates 39:325–338. doi: 10.1007/BF02573081
Zimmerman JK, Wright SJ, Calderón O, et al (2007) Flowering and fruiting phenologies of seasonal and aseasonal neotropical forests: the role of annual changes in irradiance. J Trop Ecol 23:231. doi: 10.1017/S0266467406003890
Zuidema PA, Yamada T, During HJ, et al (2010) Recruitment subsidies support tree subpopulations in non-preferred tropical forest habitats. J Ecol 98:636–644. doi: 10.1111/j.1365-2745.2010.01638.x
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2382-
dc.description.abstract在樹木更新之長期過程中,樹木種子傳播和樹苗動態影響了森林群落構建,因此對於維持森林物種共存至為重要。但由於被掠食與傳播限制,種子轉換至樹苗存在落差,擴大了樹種補充更新在時空上的變異。其中,種子不一定能到達適合樹苗生存的生育地,造就樹苗分布與環境因子的微弱相關。再者,樹苗和成樹組成間也欠缺一致性,這些落差模糊了樹苗階段的更新棲位在森林群落構建中所扮演的功能。
為解決此問題,首須了解樹苗群聚如何對應微環境中的局部異質性。本研究提出地被植物因同時與樹苗和微環境互動,可做為樹苗棲地的空間指標。以2009年在楠溪森林動態樣區(23°27'40.7' N, 120°54'22.2' E,地處台灣山地雲霧森林)所調查的樹苗與地被植物進行分析,結果顯示地被植物對於解釋樹苗群聚的空間變異貢獻度較大,且能用於區分空間上的更新區塊。不同的更新區塊間,較高草本地被植物對樹苗豐度、歧異度以及和成樹組成關聯帶來不同程度的鄰伴效應。
接續三年(2010-2013)的樹苗動態監測也證實了高草鄰伴可帶來對樹苗的庇護效應,並和樹苗物種特性(如耐蔭性、萌發高度)共同作用,抵抗有蹄類動物植食。這促使了在樹苗建立初期,因有蹄類動物植食之死亡率有高度種間異質性。誠然有蹄類動物植食造成樹苗高死亡率,但並未破壞樹苗物種共存。植食致死率之種間異質性,以及在突增的補充更新之後而來的密度依變致死,都抑制了優勢樹苗豐度。我藉由動態模型,也發現更新補充擾動(亦即加入了時間異質性),可使樹苗稀少種避開優勢種樹苗引發的外顯競爭。
以小苗樣點附近的種子網進行五年的種子雨收集(2008–2009, 2010–2012),研究更新補充動態中的時間異質性與其對種子轉換至樹苗間的影響。多數優勢樹種每年週期性地繁殖,也相關於氣候上的季節性,但產出的種子和樹苗補充不論在時空或豐度上都產生不一致。分析各物種在各樣點年間種子-樹苗轉換和各生物與非生物因子的關聯,其具影響力之因子(如傳播前種子損失率、傳播限制、土壤種子庫補充等)在不同種子傳播方式的物種間影響各異。這些研究顯示了在與動物族群與鄰伴植物間的生物交互作用下,如何在樹種種子與樹苗所存在的動態本質間扮演連結的角色,其重要性可提升在森林群落構建中的物種共存。
zh_TW
dc.description.abstractSeed dispersal and seedling dynamics are crucial for tree species in their long-term regeneration processes by affecting community assembly of a forest. However, the discordance in seed-to-seedling transition, which is due to loss by predation and dispersal limitation, constitutes a great spatiotemporal variation in recruitment of tree species. Seeds are not guaranteed to be able to disperse to the microhabitats favorable to seedling establishment or survival; this results in weak association between seedling distributions and environmental factors. Moreover, the uncoupling between seedling and adult tree assemblages further obscures our understanding of the role of ecological niches specific to the seedling stage (regeneration niches) in forest community assembly.
To address the discrepancies at the seedling stage, detecting local heterogeneity in microenvironments, to which seedling assemblages respond, is a prerequisite. I propose that understory plants, which may interact with microenvironments and seedlings at local scale, can be a better spatial descriptor for regeneration habitats. To test this, a demographic survey for tree seedlings and understory plant assemblages was conducted in 2009 in the Nanhsi forest dynamics plot (23° 27'40.7' N, 120° 54'22.2' E), a montane cloud forest of Taiwan. I find that the understory plant spatial structure contributes most in explaining spatial variations of the seedling assemblages and facilitates the identification of patches of different regeneration habitats. Among these regeneration patches, the neighboring effects from tall herbs play an important role in affecting seedling density, diversity, and its coupling with conspecific adult trees.
A consecutive seedling dynamics survey for three years (2010–2013) provides further supporting evidences for the neighboring effects from tall herbs. The nurse-plant effect by tall herbs can co-operate with seedling species traits (shade-tolerance, and seedling initial height) against ungulate herbivory, resulting in uneven species-specific mortality at an early stage of seedling establishment. Ungulate herbivory greatly caused seedling mortality here; however, it was not really detrimental to seedling species coexistence. The uneven species-specific mortality by herbivory and density-dependent mortality after bursts of recruitments suppress the abundant seedling species. Furthermore, by dynamic modelling, I also find that fluctuating recruitment, which increases temporal heterogeneity in recruitment dynamics, may prevent rare species from apparent competition from the abundant species.
The temporal heterogeneity in recruitment dynamics and the consequence of seed-to-seedling transition are studied using seed rains that had been collected in seed traps nearby the seedling sites for five years (2008–2009, 2010–2012). Most of the abundant tree species reproduced annually and periodically, correlating to the climatic seasonality. But the seed arrival uncoupled with recruitments in space, and in time, as well as in the level of species abundance. By analyzing the specific seed-to-seedling transition across years in each site associated with various biotic and abiotic factors, I find that the influential factors (such as the pre-dispersal loss of seeds, dispersal limitation, seed-bank buffering, etc.) had different impacts among tree species with different seed dispersers. My studies highlight the importance of bio-interactions with animals and neighboring plants that can interplay with the dynamic nature of seeds and seedlings from the dispersal, recruitment, to establishment stage, and thereby facilitate species coexistence in the forest community.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:39:38Z (GMT). No. of bitstreams: 1
ntu-106-D99b44005-1.pdf: 21231799 bytes, checksum: b1e9f6192a5425530af41546956963c2 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents摘要 iii
ABSTRACT iv
Index vi
Chapter 1. Overviews of the spatiotemporal dynamics of seed rain and seedling in a montane cloud forest 1
Chapter 2. Local neighborhood communities in the understory play a critical role by affecting regeneration niches and subsequent community assembly in a montane cloud forest 7
Chapter 3. Recruitment dynamics mediated by ungulate herbivory can affect species coexistence for tree seedling assemblages 44
Chapter 4. Recruitments in the regeneration habitats depend on bio-interactions between animal dispersal and spatiotemporal dynamics of seed rain 81
Chapter 5. Conclusion 113
References 115
dc.language.isoen
dc.subject更新補充動態zh_TW
dc.subject山地雲霧森林zh_TW
dc.subject傳播模式zh_TW
dc.subject有蹄類動物植食zh_TW
dc.subject樹苗建立zh_TW
dc.subjectungulate herbivoryen
dc.subjectseedling establishmenten
dc.subjectrecruitment dynamicsen
dc.subjectmontane cloud foresten
dc.subjectDispersal syndromeen
dc.title臺灣山地雲霧森林種子雨與樹苗之時空動態zh_TW
dc.titleSpatiotemporal Dynamics of Seed Rain and Seedling in a Montane Cloud Forest, Taiwanen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.oralexamcommittee謝長富(Chang-Fu Hsieh),蘇夢淮(Mong-Huai Su),孫義方(I-Fang Sun),宋國彰(Guo-Zhang Song)
dc.subject.keyword傳播模式,山地雲霧森林,更新補充動態,樹苗建立,有蹄類動物植食,zh_TW
dc.subject.keywordDispersal syndrome,montane cloud forest,recruitment dynamics,seedling establishment,ungulate herbivory,en
dc.relation.page125
dc.identifier.doi10.6342/NTU201702640
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-08-08
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf20.73 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved