請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23762完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林新智 | |
| dc.contributor.author | Yu-Ting Peng | en |
| dc.contributor.author | 彭鈺婷 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:09:47Z | - |
| dc.date.copyright | 2011-07-29 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-20 | |
| dc.identifier.citation | 【1】 T. Shiming, L. Jinhai and Y. Shiwei, “Two-way shape memory effect of an Fe-Mn-Si alloy” , Sctipta Metallurgica et Materialia, 25, (1991), p.1119
【2】 H. Otsuka, K. Nakajima and T. Maruyama, “Superelastic Behavior of Fe-Mn-Si-Cr Shape Memory Alloy CoilMater”, Trans. JIM, 41, (2000), p.547 【3】 C.L. Li, D.J. Cheng and Z.H. Jin, “Influence of deformation temperature on shape memory effect of Fe-Mn-Si-Ni-Cr alloys”, Mater. Sci. Eng.A, 325, (2002), p.375 【4】 L.C. Chang and T.A. Read, “Plastic deformation and diffusionless phase changes in metals The gold-cadmium beta phase.”, Trans. AIME., 191, (1951), p.47 【5】 K. Otsuka and K. Shimizu, “pseudoelasticity and shape memory effects in alloys” Int.met.Rev., 31, (1986), p. 93 【6】 C.M. Wayman, “Some applications of shape-memory alloys”, JOM, 32, (1980), p.129. 【7】 A. Sato, E. Chishima, K. Soma and T. Mori, “Shape memory effect in γ→ε transformation in Fe-30Mn-1Si alloy since ceystals”, Acta Met., 30, (1982) p.1177 【8】 T. Tadaki, K. Otsuka and K. Shimizu, “Shape memory alloys”, Ann. Rev. Mater. Sci., 18, (1988), p.25 【9】 H. Warlimont and L. Delaey, Prog., “Thermoelasticity pseudoelasticity and the memory effects associated with martensitic transformations”, journal of materials science, 9, (1974), p.1545 【10】 J.Ortin and A. Planes, “Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations.”, Acta Met., 36, (1988), p.1873 【11】 H.C.Tong and C.M. Wayman, “Characteristic temperature and other properties of thermoelastic martensites”, Acta Met., 22, (1974), p.887 【12】 R.J. Salzbrenner and M.Cohen, “On the thermodynamics of thermoelastic martensitic transformations”, Acta Met., 27, (1979), p.739 【13】 S. Miyazaki, Y. Ohmi, K. Otsuka and Y. Suzuki, Journal de Physique, colloque C4, supplement au no12, Tome, 43, Decembre, (1982), C4-225 【14】 C.M. Wayman, Proc. Int. Conf. On Solid to Solid Phase Transformation, TMS-AIME, Pittsburgh, Pa. (USA), (1981), p.1119 【15】 G.B.Olson and Cohen, “Thermoelastic behavior in martensitic transformation”, Script Met., 9, (1975), p.1247 【16】 T. Saburi, S. Nenno and C.M. Wayman, “Shape Memory Mechanisms in Alloys”, ICOMAT, 79, (1979), p.619 【17】 M. Nishida and T. Honma, “All-round shape memory effect in Ni-rich TiNi alloys generated by constrained aging ”, Script Met., 18, (1984), p. 1293 【18】 徐祖耀等人, “形狀記憶材料”, 上海交通大學出版社, (2000), ch4. 【19】 T. Maki, Ed. K. Otsuka and C.M. Wayman, in Shape Memory materials, Cambridge University Press., (1998), chapter 5 【20】 Brook G.B., Iles R.F. and Brooks P.L., in Shape Memory Effects in Al-loys, Ed. J. Perkins, Plenum Press, New York, (1975), p.477 【21】 Y. Tomota, W. Nakagawara, K. Tsuzaki and T. Maki, “Reversion of stress-induced εmatensite and two-way shape memory in Fe-24Mn and Fe-24Mn-6Si alloys”, Scr. Metall. Et Materialia, 26, (1992), p.1571 【22】 A.P. Midownik, “The Effect of Irradiation on the Phase Stability of the Sigma Phase (in the W-Re and Fe-Cr-Mo Systems)”, Calphad, 1, (1977), p. 281 【23】 M. Murakami, H. Otsuka, H.G. Suzuki and S. Matsuda., “Complete Shape Memory Effect in Polycrystalline Fe-Mn-Si Alloys”, In: Proc. of ICOMAT, (1986), p. 985 【24】 K. TAKEZAWA and S. SATO, Proceedings of the 1st JIM International Symposium, Supplement to Trans. JIM, 17, (1976), p.239 【25】 H. Otsuka, M. Murakami and S. Matsuda, Proceedings of International Advanced Materials Conference Tokyo, Japan, (1988), H 2.18 【26】 T.A. Schroeder, C.M. Wayman, “Pseudoelastic effects in Cu-Zn single crystals”, Acta Metall., 27, (1977), p.405 【27】 林世廷, Ti50Ni50及Ti49.3Ni50.7鈦鎳形狀記憶合金變態及機械性能之研究,台灣大學材料科學與工程學研究所,(2010),碩士 【28】 H. Natio, J. Sato, K. Funami, Y. Matsuzaki and T. Ikeda, “Analytical study on training effect of pseudoelastic transformation of shape memory alloys in cyclic loading”, Journal of Intelligent Material System And Structure, 12, (2001), p.295 【29】 T Sawaguchi, T Kikuchi and S Kajiwara, “The pseudoelastic behavior of Fe–Mn–Si-based shape memory alloys containing Nb and C”, Smart Mater. Struct., 14, (2005), p.317 【30】 C.H. Yang, H.C. Lin, K.M. Lin and H.K. Tsai, “Effect of thermo-mechanical treatment on a Fe-30Mn-6Si shape memory alloy”, Mater. Sci. Eng. A, 497, (2008), p.445 【31】 H. Otsuka, H. Yamada, T. Maruyama, H. Tanhashi, S. Matuda and M. Murakami, “Effects of Alloying Additions on Fe-Mn-Si Shape Memory Alloys”, ISIJ Inter, 30, (1990), p.674 【32】 H. Inagaki, “Shape Memory Effect of Fe-14% Mn-6% Si-9% Cr-6% Ni Alloy Polycrystals”, Z. Metallkd., 83, (1992), p 90 【33】 萬見峰,陳世普和徐祖耀,金屬學報36卷, (2000). 【34】 A.A.H. Hamers and C.M. Wayman, “Shape memory behavior in Fe-Mn-Co alloys”, Scripta Metall., 25, (1991), p.2723 【35】 K. Ullakko, P.T. Jakovenko and V.G. Gavriljuk, “High-strength shape memory sreels alloyed with nitrogen”, Scr. Mater., 35, (1996), p. 473 【36】 羅邦捷,Fe-Mn-Si-Cr-RE形狀記憶合金之研究,台灣大學材料科學與工程研究所,(2007),碩士. 【37】 王姿蘋,添加微量合金元素對鐵錳矽基形狀記憶合金之影響, 逢甲大學材料科學與工程學系, (2010),博士. 【38】 D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, CRC Press, Taylor & Francis Group, Finland, (2004) 【39】 C.H. Yang, H.C. Lin, K.M. Lin, and K.M. Lin, “Improvement of shape memory effect in Fe-Mn-Si alloy by slight tantalum addition”, Materials Science and Engineering A, 518, (2009), p.139 【40】 N. Stanford, D.P. Dunne, B.J. Monaghan, “Austenite stability in Fe–Mn–Si-based shape memory alloys”, Journal of Alloys and Compounds, 430, (2007), p.107 【41】 V.G. Gavriljuk, V.V. Bliznuk, B.D. Shanina and S.P. Kolesnik, “Effect of silicon on atomic distribution and shape memory in Fe–Mn base alloys”, Materials Science and Engineering A , 406, (2005), p.1 【42】 Y.H. Wen, L.R. Xiong, N. Li and W. Zhang, “Remarkable improvement of shape memory effect in an Fe-Mn-Si-Cr-Ni-C alloy throught controlling precipitation direction of Cr23C6”, Materials Science and Engineering A, 474, (2008), p.60 【43】 楊政修, 增近鈦鎳形狀記憶合金抗沖蝕特性之研究,逢甲大學材料科學與工程研究所,(2002),碩士 【44】 Standard Test Methods for Tension Testing of Metallic Materials, Designation:E 8M-01. 【45】 楊政修, 鐵錳矽基形狀記憶合金熱機處理與合金元素添加之效應, 逢甲大學材料科學與工程研究所,(2009), 博士. 【46】 W.F. Smith, Principles of Materials Science and Engineering, New York McGraw-Hill, (1996), 3rd ed. 870. 【47】 X. Huang, Y. Lei, B.Huang, S. Chen and T.Y. Hsu, “Effect of rare-earth addition on the shape memory behavior of a Fe-Mn-Si-Cr alloy”, Mater. Lett., 57, (2003), p.2787 【48】 R.A. Shakoor and F. Ahmad Khalid, “Comparison of shape memory behavior and properties of iron-based shape memory alloys containing samarium addition”, Materials Science and Engineering A, 457, (2007), p.169 【49】 Lei Zhang, Chaoying Xie and Jiansheng Wu, “Martensitic transformation and shape memory effect of Ti-49 at. %Ni alloys”, Materials Science and Engineering A, 438-440, (2006), p.905 【50】 J.H. Yang, C.M. Wayman, “Development of Fe-based shape memory alloys associated with face-centered cubic-hexagonal closed-packed materensitic transformation: part II1,microstructures”, Metall Trans., 23A, (1992), p.1445 【51】 C. Zhao, “Relationshios between original microstructure and shape memory effect in an Fe-14Mn-5Si-9Cr-5Ni alloy”, Mater. Res. Bull., 33, (1998), p.1433 【52】 L. J. Rong, D. H. Ping, Y. Y. Li and C. X., “Improvement of shape memory effect in Fe-Mn-Si alloy by Cr and Ni addition”, Shi. Scripta Metallurgica et Materialia, 32, (1995), p.1905 【53】 R.A. Shakoor and F.A. Khalid, “Thermoechanical behavior of Fe-Mn-Si-Cr-Ni shape memory alloys modified with samarium”, Materials Science and Engineering A, 499, (2009) , p.411 【54】 H.C. Lin, C.S. Lin, K.M. Lin, and Y.C. Chuang, “An investigation of grain-boundary phase in Fe–30Mn–6Si–5Cr shape memory alloy”, Journal of Alloys and Compounds, 319, (2001), p.283 【55】 N. Bergeon, G. Guenin and C. Esnouf, “Microstructural analysis of the stress-induced o martensite in a Fe–Mn–Si–Cr–Ni shape memory alloy Part II: Transformation reversibility”, Mater. Sci. Eng. A, 242, (1998), p.87 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23762 | - |
| dc.description.abstract | 本研究利用真空電弧熔煉爐配製 Fe-30Mn-6Si、Fe-30Mn-6Si-0.1Ta、Fe-28Mn-6Si-5Cr 和Mn-6Si-5Cr-0.1Ta形狀記憶合金,經由不同條件之熱機訓練與反覆拉伸循環的製程,使其獲得較佳之雙向記憶效應與擬彈性的特性
實驗結果顯示添加Cr或Ta於合金當中除了有明顯之固溶強化以外還可降低M_s點,表示於常溫時 γ 母相的含量較多。經由適當之熱機訓練次數(四次),可使ε麻田散體的orientation朝同一方向且不會導入過多的差排於合金當中,則可獲得最佳之雙向記憶效應。在熱處理溫度為600℃∼700℃時,在晶界和晶粒內發現有χ相的析出,晶格常數大約為0.89nm,其有析出強化之效果,因此可提升單向甚至是雙向記憶效應。 添加Ta於合金中,有效的強化母材可使M_d溫度上升。於拉伸應變量0.5%時,適當之拉伸循環次數(六次),不會造成殘留麻田散體的量太多,即可獲得最大之回復應變量。若是於過多的拉伸應變量(1%)或是太小的拉伸應變量(0.3%),無法有效導入差排或是容易超過其可回復的應變量,此都會使擬彈性性質下降。另外經由時效處理之後因為會下降母材強度,其性質會較冷加工後的合金來的差,但相較於固溶處理後的合金,由於有析出強化的效果,還是會提升擬彈性特性。於TEM之下觀察可發現,固溶之後的合金的疊差容易交錯在一起,可是經由冷加工後的合金,會使疊差幾乎都朝同一方向,使得相變態與逆變態不會受到阻礙,且有大量差排互相糾結纏繞於合金中,使得塑性變形之機制不易發生,進而提升擬彈性的性質。 | zh_TW |
| dc.description.abstract | The Fe-30Mn-6Si, Fe-30Mn-6Si-5Cr, Fe-28Mn-6Si-5Cr and Fe-28Mn-6Si-5Cr-0.1Ta shape memory alloys are prepared by vacuum arc remelting (VAR) technique. The two-way shape memory effect and pseudoelasyicity behavior of these alloys with various thermo-mechanical training and stress-strain (σ-ε) cycling were investigated.
Experimental results show that adding slight Ta and Cr elements produce solid-solution strength and reduce the M_s temperature. The optimum training cycle (the fourth cycle) increases the degree of the same orientation of ε martensite and do not induce excess dislocation to alloys, thus enhancing the extent of the two-way SME. The χ precipitations with a lattice parameter of about 0.89 nm in the austenite matrix and grain boundary form during annealing at temperatures ranging from 600℃ to 700℃. The precipitation behavior will improve the alloy’s one-way and two-way shape memory effect. The results indicate that adding slight Ta element for strengthening matrix is effective for increasing the M_d temperature. The moderate tensile cycling (the sixth cycle) does not produce excess amounts of residual martensite, thus reaches a maximum recovery strain. The more (1%) or the less (0.3%) strain exceed the amount of recovery strain or could not significantly induce dislocation, respectively. And then it reduces pseudoelasticity. Besides, the aged specimens are lower pseudoelasticity than cold-rolled one due to the strength of matrix decreases. The aged specimen has a better pseudoelasticity than solution-treated one because of precipitate hardening. TEM observations show that the stacking faults of solution-treated specimen cross each other. On the contrary, the stacking faults of cold-rolled specimen are same orientation, and the slip deformation does not occur due to the accumulation of dislocation during cold rolling. All results indicate the specimen by cold rolling can improve pseudoelasticity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:09:47Z (GMT). No. of bitstreams: 1 ntu-100-R98527054-1.pdf: 7438219 bytes, checksum: d5fa2cdbf3291fd44544ce1bb41379e2 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 總目錄 V 表目錄 VIII 圖目錄 IX 第一章 前言 1 第二章 理論基礎與文獻回顧 3 2.1 形狀記憶合金概述 3 2.1.1熱彈性與非熱彈性麻田散體變態 3 2.1.2形狀記憶效應 6 2.2鐵基形狀記憶合金之發展與原理 9 2.3雙向記憶效應 15 2.4擬彈性效應 17 2.5提升鐵基記憶合金的形狀回復率之方法 21 2.5.1熱機處理(thermo-mechanical treatment) 21 2.5.2熱機訓練 22 2.5.2添加合金元素 23 2.5.4析出效應 25 第三章 實驗方法與設備 29 3.1合金熔煉與試片製備 29 3.2冷熱軋延 31 3.2.1熱軋延 31 3.2.2冷軋延 32 3.3 EPMA分析 32 3.4 X-ray繞射分析 32 3.5拉伸試驗 32 3.6硬度測試 34 3.7 DSC量測分析 34 3.8形狀回復率量測 34 3.9掃描式電子顯微鏡(SEM)觀察顯微組織 35 3.10穿透式電子顯微鏡(TEM)觀察顯微組織 36 第四章 結果與討論 37 4.1基本性質檢測 37 4.2 Two way 47 4.2.1 XRD 47 4.2.2 雙向記憶效應 49 4.2.3 DSC相變態溫度量測 55 4.2.4 SEM 56 4.2.5 TEM 61 4.3 Pseudoelasticity (PE) 66 4.3.1 Md溫度 66 4.3.2 PE 68 4.3.3 合金Fe-Mn-Si-Cr-Ta於不同條件下之擬彈性性質比較 71 4.3.3.1不同程度之冷加工量 71 4.3.3.2不同的拉伸應變量 76 4.3.3.3不同的時效處理 80 4.3.4 XRD與SEM顯微結構 82 4.3.5 TEM 86 第五章結論 89 參考文獻 91 | |
| dc.language.iso | zh-TW | |
| dc.title | Fe-Mn-Si基形狀記憶合金雙向記憶與擬彈性之研究 | zh_TW |
| dc.title | A Study on the Two-way Shape Memory Effect and Pseudoelasticity of Fe-Mn-Si-Based Shape Memory Alloys | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳錫侃,林昆明 | |
| dc.subject.keyword | 鐵基形狀記憶合金,熱機訓練,雙向記憶效應,擬彈性, | zh_TW |
| dc.subject.keyword | Fe-based shape memory alloys,thermo-mechanical training,two-way shape memory effect,pseudoelasticity, | en |
| dc.relation.page | 96 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-07-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 7.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
