請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23726
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃坤祥 | |
dc.contributor.author | Kai-Hsiang Chuang | en |
dc.contributor.author | 莊凱翔 | zh_TW |
dc.date.accessioned | 2021-06-08T05:07:46Z | - |
dc.date.copyright | 2011-06-01 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-05-19 | |
dc.identifier.citation | 1. G. A. Roberts and R. A. Cary, Tool Steels 4th ed., American Society for Metals, Beachwood, OH, 1980.
2. ASM Specialty Handbook: Stainless Steels, Edited by J. R. Davis, ASM International, Materials Park, OH, 1994. 3. ASM Specialty Handbook: Tool Materials, Edited by J. R. Davis, ASM International, Materials Park, OH, 1995. 4. 黃坤祥, 粉末冶金學, 中華民國粉末冶金協會, 第二版, 2003。 5. “Standard Specification for Tool Steel, Carbon”, ASTM Standard A686, 2004 edn, ASTM International, West Conshohocken, PA, USA. 6. “Standard Specification for Tool Steels Alloy”, ASTM Standard A681, 2008 edn, ASTM International, West Conshohocken, PA, USA. 7. “Standard Specification for Tool Steel High Speed”, ASTM Standard A600, 2004 edn, ASTM International, West Conshohocken, PA, USA. 8. D. Scott and J. Blackwel, “Effectof Some Manufacturing Variables on Performance of High-Speed Tool Steel Ball Bearings”, Wear, 1971, Vol. 18, No. 1, pp. 19-28. 9. K. Doi, K. Hanami, T. Teraoka, S. Terauchi, and T. Sugimoto, “Ultrasonic Fatigue Property of Metal Injection Molded Cold Work Tool Steel”, Journal of the Japan Society of Powder and Powder Metallurgy, 2003, Vol. 50, No. 11, pp. 992-995. 10. H. Wang, Q. Yan, F. Kuang, and C. Ge, “Effect fo Manufacturing Routes on Microstructure and Mechanical Properties of High Vanadium High Speed Steel”, Powder Metallurgy Technology, 2010, Vol. 28, No. 4, pp. 266-268. 11. W. T. Haswell and A. Kasak, U.S. Patent 4,249,945, 1981. 12. M. M. Oliveira, O. S. Ribeiro, and A. S. Wronski, “Processing of A High-Alloy High-Speed Steel via Water Atomization and Direct Sintering”, Powder Metallurgy International, 1993, Vol. 25, No. 5, pp. 215-218. 13. H. Nakamura and K. Kiyonaga, U.S. Patent 4,032,302, 1977. 14. K. K. Singh, R. S. Verma, T. D. Chatterjee, V. S. Dwivedi, and S. Jha, “Influence of Heat Treatment Variables on Mechanical Behaviour of High-C High-Cr (AISI D2) Grade of Cold Work Tool Steel”, Tool and Alloy Steels, 1997, Vol. 31, No. 2, pp. 17-21. 15. C. H. Surberg, P. Stratton, and K. Lingenhole, “The Effect of Some Heat Treatment Parameters on The Dimensional Stability of AISI D2”, Cryogenics, 2008, Vol. 48, No. 1-2, pp. 42-47. 16. D. Das, A. D. Dutta, and K. K. Ray, “Optimization of The Duration of Cryogenic Processing to Maximize Wear Resistance of AISI D2 Steel”, Cryogenics, 2009, Vol. 49, No. 5, pp. 176-184. 17. D. Das, A. K. Dutta, and K. K. Ray, “Influence of Varied Cryotreatment on The Wear Behavior of AISI D2 Steel”, Wear, 2009, Vol. 266, No. 1-2, pp. 297-309. 18. J. R. Yang, T. H. Yu, and C. H. Wang, “Martensitic Transformations in AISI 440C Stainless Steel”, Materials Science and Engineering A, 2006, Vol. 438-440, No. 1, pp. 276-280. 19. R. M. German, Powder Injection Molding, Metal Powder Industries Federation, Princeton, NJ, 1990. 20. R. M. German and A. Bose, Injection Molding of Meatls and Ceramics, Metal Powder Industries Federation, Princeton, NJ, 1997. 21. B. S. Zlatkov, E. Griesmayer, H. Loibl, O. S. Aleksic, H. Danninger, C. Gierl, and L. S. Lukic, “Recent Advances in PIM Technology I”, Science of Sintering, 2008, Vol. 40, No. 1, pp. 79-88. 22. R. M. German and S. K. Ferchalk, “Metal and Ceramic Injection Molding-Technical Status and Future Challenges”, Advances in Powder Metallurgy & Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 2005, Part 4, pp. 30-40. 23. R. E. Wiech, U.S. Patent 4,197,118, 1980. 24. R. D. Rivers, U.S. Patent 4,113,480, 1978. 25. K. P. Johnson, U.S. Patent 4,765,950, 1988. 26. D. F. Heaney, P. Suri, and R. M. German, “Defect-Free Sintering of Two Material Powder Injection Molded Components. Part I Experimental Investigations”, Journal of Materials Science, 2003, Vol. 38, No. 24, pp. 4869-4874. 27. P. Imgrund, A. Rota, F. Petzoldt, and A. Simchi, “Manufacturing of Multi-Functional Micro Parts by Two-Component Metal Injection Moulding”, The International Journal of Advanced Manufacturing Technology, 2007, Vol. 33, No. 1, pp. 176-186. 28. T. Li, Q. Li, J. Y. H. Fuh, P. C. Yu, and L. Lu, “Two-Material Powder Injection Molding of Functionally Graded WC-Co Components”, International Journal of Refractory Metals & Hard Materials, 2009, Vol. 27, No. 1, pp. 95-100. 29. T. Harikou, Y. Itoh, K. Satoh, and H. Miura, “Joining of Stainless Steels (SUS316L) and Hard Materials by Insert Injection Molding”, Journal of the Japan Society of Powder and Powder Metallurgy, 2004, Vol. 51, No. 1, pp. 31-36. 30. “Materials Standards for Meatl Injection Molded Parts”, MPIF Standard 35, 2007 edn, Metal Powder Industries Federation, Princeton, NJ. 31. R. M. German, “A Technical and Market Contrast and Comparison for Meatl Powder Injection Molding ”, Advances in Powder Metallurgy and Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 2008, Part 4, pp. 39-93. 32. A. Nylund, T. Tunberg, H. Bertilsson, E. Carlstrom, and I. Olefjord, “Injection-Molding of Gas and Water-Atmoized Stainless Steel Powders”, International Journal of Powder Metallurgy, 1995, Vol. 31, No. 4, pp. 365-373. 33. R. P. Koseski, P. Suri, N. B. Earhardt, R. M. German, and Y. S. Kwon, “Microstructural Evolution of Injection Molded Gas- and Water-Atomized 316L Stainless Steel Powder During Sintering”, Materials Science and Engineering A, 2005, Vol. 390, No. 1-2, pp. 171-177. 34. A. Molinari, F. Marchetti, I. Cristofolini, and A. Tiziani, “Auger Electron Spectroscopy Study of Martensitic Stainless Steel Sintered in Different Atmospheres”, Powder Metallurgy International, 1992, Vol. 24, No. 6, pp. 351-356. 35. M. Norell, L. Nyborg, and I. Olefjord, “Reactions During Atomization of Martensitic Stainless Steel”, Advances in Powder Metallurgy, Metal Powder Industries Federation, Princeton, NJ, 1992, Part 1, pp. 41-54. 36. H. Borgstrom and L. Nyborg, “Effect of Vacuum Annealing and Nitrogen Alloying on Gas Atomised M4 High Speed Steel Powder”, Powder Metallurgy, 2006, Vol. 49, No. 1, pp. 48-56. 37. H. Zhang, “Carbon Control in PIM Tool Steel”, Materials and Manufacturing Processes, 1997, Vol. 12, No. 4, pp. 673-679. 38. T. G. Luo, X. H. Qu, M. L. Qin, and M. L. Ouyang, “Dimension Precision of Metal Injection Molded Pure Tungsten”, International Journal of Refractory Metals & Hard Materials, 2009, Vol. 27, No. 3, pp. 615-620. 39. H. K. Lin and K. S. Hwang, “In Situ Dimensional Changes of Powder Injection-Molded Compacts During Solvent Debinding”, Acta Materialia, 1998, Vol. 46, No. 12, pp. 4303-4309. 40. S. C. Hu and K. S. Hwang, “Length Change and Deformation of Powder Injection-Molded Compacts During Solvent Debinding”, Metallurgical and Materials Transactions A, 2000, Vol. 31, No. 5, pp. 1473-1478. 41. S. C. Hu and K. S. Hwang, “Dilatometric Analysis of Thermal Debinding of Injection Moulded Iron Compacts”, Powder Metallurgy, 2000, Vol. 43, No. 3, pp. 239-244. 42. G. H. Shu and K. S. Hwang, “Effect of Heating Rate and Phase Transformation on The Dimensional Control of Ferrous PIM Compacts”, Materials Transactions, 2005, Vol. 46, No. 2, pp. 298-302. 43. J. S. Ebenhoch and D. C. Krueger, “Control of Shrinkage and Distortion in PIM Parts”, Advances in Powder Metallurgy and Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 1997, Part 18, pp. 201-208. 44. D. F. Heaney, R. Zauner, C. Binet, K. Cowan, and J. Piemme, “Variability of Powder Characteristics and Their Effect on Dimensional Variability of Powder Injection Moulded Components”, Powder Metallurgy, 2004, Vol. 47, No. 2, pp. 145-150. 45. G. J. Shu, K. S. Hwang, and Y. T. Pan, “Improvements in Sintered Density and Dimensional Stability of Powder Injection-Molded 316L Compacts by Adjusting The Alloying Compositions”, Acta Materialia, 2006, Vol. 54, No. 5, pp. 1335-1342. 46. R. M. German, “Supersolidus Liquid Phase Sintering. I. Process Review”, International Journal of Powder Metallurgy, 1990, Vol. 26, No. 1, pp. 23-34. 47. R. M. German, “Supersolidus Liquid Phase Sintering. II. Densification Theory”, International Journal of Powder Metallurgy, 1990, Vol. 26, No. 1, pp. 35-43. 48. A. Lal, R. G. Iacocca, and R. M. German, “Densification during The Supersolidus Liquid-Phase Sintering of Nickel-Based Prealloyed Powder Mixtures”, Metallurgical and Materials Transactions A, 1999, Vol. 30, No. 8, pp. 2201-2208. 49. R. M. German, “Supersolidus Liquid-Phase Sintering of Prealloyed Powders”, Metallurgical and Materials Transactions A, 1997, Vol. 28, No. 7, pp. 1553-1567. 50. R. Tandon and R. M. German, “Supersolidus-Transient Liquid Phase Sintering Using Superalloy Powders”, The International Journal of Powder Metallurgy, 1994, Vol. 30, No. 4, pp. 435-443. 51. R. M. German, “A Quantitative Theory for Supersolidus Liquid Phase Sintering”, Powder Metallurgy, 1991, Vol. 34, No. 2, pp. 101-107. 52. R. M. German, “Advances in High Alloy Sintering Using Supersolidus Liquids”, Advances in Powder Metallurgy and Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 1997, Part 14, pp. 3-18. 53. P. F. Murley and R. M. German, “Supersolidus Sintering of Coarse Powders and Its Application to Powder Injection Molding”, Advances in Powder Metallurgy, 1989, Part 1, pp. 103-120. 54. S. Takajo, M. Nitta, and M. Kawano, “Behavior of Liquid Phase Sintering of High Speed Steel Powder Compacts”, Journal of the Japan Society of Powder and Powder Metallurgy, 1986, Vol. 33, No. 8, pp. 398-401. 55. G. Hoyle, High Speed Steels, Butterworths, Boston, MA, 1988. 56. P. Muro, S. Gimenez, and I. Iturriza, “Sintering Behaviour and Fracture Toughness Characterization of D2 Matrix Tool Steel, Comparison with Wrought and PM D2”, Scripta Materialia, 2002, Vol. 46, No. 5, pp. 369-373. 57. R. M. German, Sintering Theory and Practice, John Wiley & Sons, Inc., New York, NY, 1996. 58. R. German, P. Suri, and S. Park, “Review: Liquid Phase Sintering”, Journal of Materials Science, 2009, Vol. 44, No. 1, pp. 1-39. 59. J. Liu, A. L. Cardamone, and R. M. German, “Estimation of Capillary Pressure in Liquid Phase Sintering”, Powder Metallurgy, 2001, Vol. 44, No. 4, pp. 317-324. 60. J. L. Chan, J. R. Alcock, and D. J. Stephenson, “Supersolidus Liquid Phase Sintering of Moulded Metal Components”, Journal of Materials Science, 1998, Vol. 33, No. 21, pp. 5131-5136. 61. A. Ziani and S. Pelletier, “Supersolidus Liquid-Phase Sintering Behavior of Degassed 6061 Al Powder”, International Journal of Powder Metallurgy, 1999, Vol. 35, No. 8, pp. 49-58. 62. J. Liu, A. Lal, and R. M. German, “Densification and Shape Retention in Supersolidus Liquid Phase Sintering”, Acta Materialia, 1999, Vol. 47, No. 18, pp. 4615-4626. 63. R. M. German, Powder Metallurgy and Particulate Materials Processing Metal Powder Industries Federation, Princeton, NJ, 2005. 64. J. Liu and H. A. Kuhn, “Supersolidus Liquid Phase Sintering of Blended Powders”, Advances in Powder Metallurgy and Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 2005, Part 5, pp. 64-73. 65. J. Liu and M. L. Ryneson, U.S. Patent 7,070,734, 2006. 66. J. Liu, A. Upadhyaya, and R. M. German, “Application of Percolation Theory in Predicting Shape Distortion During Liquid-Phase Sintering”, Metallurgical and Materials Transactions A, 1999, Vol. 30, No. 8, pp. 2209-2220. 67. J. L. Johnson, A. Upadhyaya, and R. M. German, “Microstructural Effects on Distortion and Solid-Liquid Segregation During Liquid Phase Sintering under Microgravity Conditions”, Metallurgical and Materials Transactions B, 1998, Vol. 29, No. 4, pp. 857-866. 68. P. Lu, X. Xu, W. Yi, and R. M. German, “Porosity Effect on Densification and Shape Distortion in Liquid Phase Sintering”, Materials Science and Engineering A, 2001, Vol. 318, No. 1-2, pp. 111-121. 69. N. S. Myers and R. M. German, “Supersolidus Liquid Phase Sintering of Injection Molded M2 Tool Steel”, International Journal of Powder Metallurgy, 1999, Vol. 35, No. 6, pp. 45-51. 70. I. Urrutibeaskoa, R. Palma, V. Martinez, and J. J. Urcola, “Metallographic Changes During Sintering of Grade M High Speed Steels in Industrial Atmosphere and Vacuum”, Powder Metallurgy, 1990, Vol. 33, No. 4, pp. 305-312. 71. C. S. Wright, A. S. Wronski, and I. Iturriza, “Development of Robust Processing Routes for Powder Metallurgy High Speed Steels”, Materials Science and Technology, 2000, Vol. 16, No. 9, pp. 945-957. 72. H. Kyogoku, S. Komatsu, and H. Nakayama, “Fabrication of Alloy Tool Steel by MIM and Its Mechanical Properties”, Journal of the Japan Society of Powder and Powder Metallurgy, 1999, Vol. 46, No. 8, pp. 853-857. 73. H. Nakayama, H. Kyogoku, and S. Komatsu, “Effect of Powder Characteristics on The Microstructures and Mechanical Properties of Sintered Alloy Tool Steel Compacts by Metal Injection Molding”, Journal of the Japan Society of Powder and Powder Metallurgy, 2000, Vol. 47, No. 12, pp. 1272-1276. 74. S. Hachiga and Y. Shiina, “Development of Sintered SKD11 Compacts with High Robust Performance by Metal Injection Molding”, Journal of the Japan Society of Powder and Powder Metallurgy, 2005, Vol. 52, No. 10, pp. 717-721. 75. C. S. Wright and B. Ogel, “Supersolidus Sintering of High Speed Steel. I. Sintering of Molybdenum Based Alloys”, Powder Metallurgy, 1993, Vol. 36, No. 3, pp. 213-219. 76. C. S. Wright, B. Ogel, F. Lemoisson, and Y. Bienvenu, “Supersolidus Sintering of High Speed Steels. II. Sintering of Tungsten Based Alloys”, Powder Metallurgy, 1995, Vol. 38, No. 3, pp. 221-229. 77. L. A. Dobrzanski, G. Matula, A. Varez, B. Levenfeld, and J. M. Torralba, “Fabrication Methods and Heat Treatment Conditions Effect on Tribological Properties of High Speed Steels”, Journal of Materials Processing Technology, 2004, Vol. 157-158, No. 1, pp. 324-330. 78. S. Weber, W. Theisen, F. Castro, and A. Pyzalla, “Influence of Gas Atmosphere and Hard Particle Addition on The Sintering Behavior of High Alloyed PM Cold Work Tool Steels”, Materials Science and Engineering A, 2009, Vol. 515, No. 1-2, pp. 175-182. 79. S. Weber and W. Theisen, “Optimised Sintering Route for Cold Work Tool Steels”, Powder Metallurgy, 2006, Vol. 49, No. 4, pp. 355-362. 80. A. Varez, B. Levenfeld, J. M. Torralba, G. Matula, and L. A. Dobrzanski, “Sintering in Different Atmospheres of T15 and M2 High Speed Steels Produced by A Modified Metal Injection Moulding Process”, Materials Science and Engineering A, 2004, Vol. 366, No. 2, pp. 318-324. 81. D. W. Hetzner, J. A. Laverick, and D. G. Hennessy, “Effect of Sintering Temperature on Carbide Distributions in M2 PM Tool Steel”, Advances in Powder Metallurgy, 1989, Vol. 2, No. 1, pp. 311-326. 82. G. Herranz, B. Levenfeld, and A. Varez, “Effect of Residual Carbon on The Microstructure Evolution during The Sintering of M2 HSS Parts Shaping by Metal Injection Moulding Process”, Materials Science Forum, 2007, Vol. 534-536, No. 1, pp. 353-356. 83. L. A. Dobrzariski, G. Matula, G. Herranz, A. Varez, B. Levenfeld, and J. M. Torralba, “Metal Injection Moulding of HS12-1-5-5 High-Speed Steel Using A PW-HDPE Based Binder”, Journal of Materials Processing Technology, 2006, Vol. 175, No. 1-3, pp. 173-178. 84. B. Levenfeld, A. Varez, and J. M. Torralba, “Effect of Residual Carbon on The Sintering Process of M2 High Speed Steel Parts Obtained by A Modified Metal Injection Molding Process”, Metallurgical and Materials Transactions A, 2002, Vol. 33A, No. 6, pp. 1843-1851A. 85. S. Gimenez, C. Zubizarreta, V. Trabadelo, and I. Iturriza, “Sintering Behaviour and Microstructure Development of T42 Powder Metallurgy High Speed Steel under Different Processing Conditions”, Materials Science and Engineering A, 2008, Vol. 480, No. 1-2, pp. 130-137. 86. Z. Y. Liu, N. H. Loh, K. A. Khor, and S. B. Tor, “Microstructure Evolution During Sintering of Injection Molded M2 High Speed Steel”, Materials Science and Engineering A, 2000, Vol. 293, No. 1-2, pp. 46-55. 87. S. Talacchia, J. I. San Martin, I. Urrutibeaskoa, S. Jauregi, R. Palma, V. Martinez, and J. J. Urcola, “Increasing Sintering Gate and Avoiding Grain Growth in High Speed Steels by Sintering in Nitrogen Rich Atmospheres”, Powder Metallurgy, 1993, Vol. 36, No. 4, pp. 275-280. 88. J. B. Correia and N. Shohoji, “Inhibition of Grain and Precipitate Growth of AISI M2 Type Tool Steel Powders By Low-Temperature Nitriding Using Flowing Ammonia Gas”, ISIJ International, 1996, Vol. 36, No. 3, pp. 363-365. 89. S. Gimenez and I. Iturriza, “Microstructural Characterisation of Powder Metallurgy M35MHV HSS as A Function of The Processing Route”, Journal of Materials Processing Technology, 2003, Vol. 143-144, No. 1, pp. 555-560. 90. L. A. Dobrzanski, G. Matula, A. Varez, B. Levenfeld, and J. M. Torralba, “Structure and Mechanical Properties of HSS HS6-5-2- and HS12-1-5-5-Type Steel Produced by Modified Powder Injection Moulding Process”, Journal of Materials Processing Technology, 2004, Vol. 157-158, No. 1, pp. 658-668. 91. I. Urrutibeaskoa and J. J. Urcola, “Sintering Behaviour of Grade M Water Atomized High Speed Steel Powders Under Vacuum and Nitrogen Rich Atmosphere”, Powder Metallurgy, 1993, Vol. 36, No. 1, pp. 47-54. 92. I. Aguirre, S. Gimenez, S. Talacchia, T. Gomez-Acebo, and I. Iturriza, “Effect of Nitrogen on Supersolidus Sintering of Modified M35M High Speed Steel”, Powder Metallurgy, 1999, Vol. 42, No. 4, pp. 353-357. 93. S. Jauregi, F. Fernandez, R. H. Palma, V. Martinez, and J. J. Urcola, “Influence of Atmosphere on Sintering of T15 and M2 Steel Powders”, Metallurgical Transactions A, 1992, Vol. 23A, No. 2, pp. 389-400. 94. S. Ohstuka and J. Takekawa, “Metal Injection Molding of High Speed Steel Powder with a Slight Amount of B Addition”, Journal of the Japan Society of Powder and Powder Metallurgy, 2003, Vol. 50, No. 7, pp. 561-565. 95. W. Khraisat, L. Nyborg, and P. Sotkovszki, “Effect of Silicon, Vanadium and Nickel on Microstructure of Liquid Phase Sintered M3/2 Grade High Speed Steel”, Powder Metallurgy, 2005, Vol. 48, No. 1, pp. 33-38. 96. H. Miura, H. Morikawa, Y. Kawakami, and A. Ishibashi, “Development of Self-Lubricating Wear-Resistant Materials Through MIM Process”, Journal of the Japan Society of Powder and Powder Metallurgy, 1998, Vol. 45, No. 5, pp. 436-441. 97. J. M. Torralba, L. E. G. Cambronero, J. M. Ruiz-Prieto, and M. M. d. Neves, “Sinterability Study of PM M2 and T15 High Speed Steels Reinforced With Tungsten and Titanium Carbides”, Powder Metallurgy, 1993, Vol. 36, No. 1, pp. 55-66. 98. H. Zhang, D. F. Heaney, and R. M. German, “Effect of Carbide Addition on Sintering of M2 Tool Steel”, Advances in Powder Metallurgy and Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 2001, Part 4, pp. 166-179. 99. J. A. Jimenez, M. Carsi, G. Frommeyer, and O. A. Ruano, “Microstructural and Mechanical Characterisation of Composite Materials Consisting of M3/2 High Speed Steel Reinforced with Niobium Carbides”, Powder Metallurgy, 2005, Vol. 48, No. 4, pp. 371-376. 100. S. Huth, N. Krasokha, and W. Theisen, “Development of Wear and Corrosion Resistant Cold-Work Tool Steels Produced by Diffusion Alloying”, Wear, 2009, Vol. 267, No. 1-4, pp. 449-457. 101. J. D. Bolton and A. J. Gant, “Microstructural Development and Sintering Kinetics in Ceramic Reinforced High Speed Steel Metal Matrix Composites”, Powder Metallurgy, 1997, Vol. 40, No. 2, pp. 143-150. 102. G. Herranz, G. Rodriguez, and R. Alonso, “Influence of Chromium and Vanadium Carbides Reinforcement on the Sintering Process of M2 HSS Processing by MIM”, Proceeding PM2010 World Congress, European Powder Metallurgy Association, 2010, Part 4, pp. 363-367. 103. P. K. Kar and G. S. Upadhyaya, “Refractory Compound Enriched T42 High-Speed Steels by Liquid Phase Sintering”, Materials and Design, 1994, Vol. 15, No. 2, pp. 99-103. 104. S. Huth and W. Theisen, “Diffusion Alloying - A New Manufacturing Method for PM Tool Steels”, Powder Metallurgy, 2009, Vol. 52, No. 2, pp. 90-93. 105. C. S. Wright, “Role of Molybdenum in Promoting Densification During Vacuum Sintering of T1 Grade High Speed Steel Powders”, Powder Metall, 1989, Vol. 32, No. 2, pp. 114-117. 106. C. S. Wright, M. Youseffi, A. S. Wronski, I. Ansara, M. Durand-Charre, J. Mascarenhas, M. M. Oliveira, F. Lemoisson, and Y. Bienvenu, “Supersolidus Liquid Phase Sintering of High Speed Steels. III. Computer Aided Design of Sinterable Alloys”, Powder Metallurgy, 1999, Vol. 42, No. 2, pp. 131-146. 107. H. Miura, S. Yasunaga, N. Ogasawara, S. Ando, and T. Honda, “Metal Injection Molding Process of Martensitic Stainless Steels”, Journal of the Japan Society of Powder and Powder Metallurgy, 1994, Vol. 41, No. 9, pp. 1071-1074. 108. M. Bloemacher, E. Langer, M. Schwarz, D. Weinand, and H. Wohlfromm, “Powder Injection Molding of Martensitic Stainless Steels”, Advances in Powder Metallurgy and Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 1998, Part 5, pp. 131-141. 109. H. Wohlfromm, M. Blomacher, D. Weinand, P. J. Uggowitzer, and M. O. Speidel, “Novel Stainless Steels for Metal Injection Moulding”, Proceeding of Powder Metallurgy World Congress & Exhibition, EPMA, Bellstone, Shrewsburgy, 1998, Part 3, pp. 3-8. 110. M. A. Newell, H. A. Davies, P. F. Messer, and D. J. Greensmith, “Metal Injection Moulding of Scissors Using Hardenable Stainless Steel Powders”, Powder Metallurgy, 2005, Vol. 48, No. 3, pp. 227-230. 111. A. Farid, “Sintering Behavior of Elemental Powders With FeB Addition in The Composition of Martensitic Stainless Steel”, Journal of Materials Engineering and Performance, 2007, Vol. 16, No. 6, pp. 726-729. 112. M. Kamada and Y. Tokunaga, “Effects of Carbon Content on Sintering Behavior and Tensile Properties in P/M Martensitic Stainless Steels”, Journal of the Japan Society of Powder and Powder Metallurgy, 1991, Vol. 38, No. 4, pp. 535-539. 113. C. Toennes, P. Ernst, G. Meyer, and R. M. German, “Full Density Sintering by Boron Addition in A Martensitic Stainless Steel”, Advances in Powder Metallurgy, Metal Powder Industries Federation, Princeton, NJ, 1992, Part 3, pp. 371-381. 114. C. Y. Son, T. S. Yoon, and S. Lee, “Correlation of Microstructure with Hardness, Wear Resistance, and Corrosion Resistance of Powder-Injection-Molded Specimens of Fe-Alloy Powders”, Metallurgical and Materials Transactions A, 2009, Vol. 40, No. 5, pp. 1110-1117. 115. Y. Soda and M. Aihara, U.S. Patent, 7,211,125, 2007. 116. B. Sundman, B. Jansson, and J. O. Andersson, “The Thermo-Calc Databank System”, Calphad, 1985, Vol. 9, No. 2, pp. 153-190. 117. X. Wu, J. Xing, H. Fu, and X. Zhi, “Effect of Titanium on The Morphology of Primary M7C3 Carbides in Hypereutectic High Chromium White Cast Iron”, Materials Science and Engineering: A, 2007, Vol. 457, No. 1-2, pp. 180-185. 118. K. Fukaura, H. Sunada, Y. Yokoyama, K. Teramotor, D. Yokoi, and N. Tsujii, “Improvement of Strength and Toughness of SKD11 Type Cold Work Tool Steel”, Journal of the Iron and Steel Institute of Japan, 1998, Vol. 84, No. 3, pp. 230-235. 119. K. Fukaura, Y. Yokoyama, D. Yokoi, N. Tsujii, and K. Ono, “Fatigue of Cold-Work Tool Steels: Effect of Heat Treatment and Carbide Morphology on Fatigue Crack Formation, Life, and Fracture Surface Observations”, Metallurgical and Materials Transactions A, 2004, Vol. 35, No. 4, pp. 1289-1300. 120. Atlas of Time-Temperature Diagrams for Irons and Steels, Edited by George F. Vander Voort, ASM International, Materials Park, OH, 1991. 121. N. A. Gorokhova, V. I. Sarrak, and S. O. Suvorova, “Solubility of Titanium and Niobium Carbides in High-Chromium Ferrite”, Metal Science and Heat Treatment, 1986, Vol. 28, No. 4, pp. 276-279. 122. V. Lakshmanan and J. Kirkaldy, “Solubility Product for Niobium Carbide in Austenite”, Metallurgical and Materials Transactions A, 1984, Vol. 15, No. 3, pp. 541-544. 123. K. Hayashi, Y. Fuke, and H. Suzuki, “Effect of Addition Carbides on the Grain Size of WC-Co Alloy”, Journal of the Japan Society of Powder and Powder Metallurgy, 1972, Vol. 19, No. 2, pp. 67-71. 124. K. H. Chuang and K. S. Hwang, “Preservation of Geometrical Integrity of Supersolidus-Liquid-Phase-Sintered SKD11 Tool Steels Prepared with Powder Injection Molding”, Metallurgical and Materials Transactions A, Vol. No. pp. 1-11. 125. J. Golczewski and H. F. Fischmeister, “Calculation of Phase Equilibrium for AISI M2 High Speed Steel”, Steel Research, 1992, Vol. 63, No. 8, pp. 354-360. 126. A. J. Leonard and W. M. Rainforth, “Wear Behaviour of Tool Steels with Added (WTi)C Particles”, Wear, 2003, Vol. 255, No. 1, pp. 517-526. 127. A. Upadhyaya and R. M. German, “Shape Distortion in Liquid-Phase-Sintered Tungsten Heavy Alloys”, Metallurgical and Materials Transactions A, 1998, Vol. 29A, No. 10, pp. 2631-2638. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23726 | - |
dc.description.abstract | 粉末射出成形具有製造形狀複雜且難以加工的工具鋼合金之優勢,由於工具鋼材料之燒結技術仍未成熟,目前對440C麻田散鐵不銹鋼與SKD11、M2工具鋼的燒結僅有10~20°C的燒結溫度區間(燒結窗),過低或過高的燒結溫度將使工件密度過低或變形,主要原因是這三者的超固相線液相燒結區(L+gamma+carbide)的溫度區間過窄,工件常因溫度的些微變化產生大量的液相而導致變形,所以工業界必須使用一溫度均勻的特製燒結爐才可提升良率,故本研究嘗試添加碳化物與合金元素來改善其燒結窗,並輔以熱力學計算軟體Thermo-Calc來瞭解與預測其燒結行為,希望能改善燒結窗過窄之問題並從中尋找熱力學參數與燒結組織之關聯性。實驗結果顯示Ti或Nb可生成TiC及NbC等難固溶於基地之碳化物,或直接加入TiC、NbC,均可擴寬(L+gamma+carbide)之區域,如此可提升原始材料的燒結窗至30~60°C之寬度,並可細化晶粒組織與改善其機械強度,最後由相圖及熱力學數據與實際燒結的實驗結果作比較,我們發現Thermo-Calc可成功地預測添加碳化物與合金元素對超固相線燒結材料如SKD11、M2及440C燒結窗範圍之影響,並成功設計出適合燒結製程之新穎工具鋼材料。 | zh_TW |
dc.description.abstract | The typical sintering window of supersolidus liquid phase sintered 440C stainless steels and SKD11 and M2 tool steels is less than 10~20 K. To enlarge the sintering window of these materials and obtain parts with good dimensional control, carbides and elements were added and the results were compared to those predicted from the phase diagrams calculated using Thermo-Calc software. Both calculated and experimental results indicate that the addition of titanium and niobium and their carbides broaden the liquid+gamma+carbide region. As a result, the amount of liquid present during sintering becomes less sensitive to the temperature variations. The TiC and NbC provided or formed due to the reaction between carbon and Ti and Nb during sintering are quite stable and help reduce the grain growth. With enlarged liquid+gamma+carbide region and fine grains, the sintering window for retaining the part shape is broadened to 30~60 K and hence the problems of dimensional control of 440C, SKD11, and M2 are alleviated. These results demonstrate that it is possible to predict the effect of the addition of various alloying elements and carbides on the geometry preservation of the high alloyed steels and find new modified alloy compositions that have a wide sintering window during supersolidus liquid phase sintering | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:07:46Z (GMT). No. of bitstreams: 1 ntu-100-D94527013-1.pdf: 28774159 bytes, checksum: a39c24205850a369195a3e5fda1655ce (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 致謝 i
摘要 iii Abstract iv 第一章 簡介 1 第二章 文獻回顧 5 2.1 前言 5 2.2 工具鋼 5 2.2.1 工具鋼的種類與性質 5 2.2.1.1 碳工具鋼(Carbon Tool Steels) 6 2.2.1.2 冷作工具鋼(Cold Work Tool Steels) 6 2.2.1.3 熱作工具鋼(Hot Work Tool Steels) 7 2.2.1.4 高速鋼(High Speed Steels) 7 2.2.2 傳統粉末工具鋼 13 2.2.3 工具鋼的熱處理 17 2.3 麻田散鐵不銹鋼 21 2.3.1 麻田散鐵不銹鋼的種類 21 2.3.2 麻田散鐵不銹鋼的熱處理 22 2.4 金屬粉末射出成形 22 2.4.1 特性與優勢 24 2.4.2 材料的選擇 26 2.4.3 粉末特性的影響 27 2.4.4 尺寸穩定性的控制 29 2.5 超固相線液相燒結 32 2.5.1 液相燒結(Liquid Phase Sintering, LPS)的機制 32 2.5.2 超固相線液相燒結的機制 37 2.5.3 控制尺寸穩定性的因素 38 2.5.3.1 相圖的影響 38 2.5.3.2 液相量 39 2.5.3.3 初始粉末的組織 40 2.5.3.4 加熱與降溫速率 41 2.5.3.5 配位數與孔隙率的影響(Coordination and Connectivity) 41 2.6 粉末工具鋼的燒結 43 2.6.1 粉末種類的影響 43 2.6.2 合金元素的影響 44 2.6.3 添加碳化物的影響 45 2.7 粉末麻田散鐵不銹鋼 47 2.7.1 合金元素的影響 49 2.8 研究目的 52 第三章 實驗步驟 54 3.1 實驗目的 54 3.2 粉末特性與外觀 54 3.3 Thermo-Calc熱力學計算軟體 67 3.4 先驅實驗–以粉末壓錠方式模擬MIM製程 68 3.5 MIM製程 68 3.5.1 混煉 68 3.5.2 射出成形 68 3.5.3 脫脂 70 3.5.4 燒結 70 3.6 燒結體性質的量測 72 3.6.1 燒結密度與燒結窗 72 3.6.2 硬度 72 3.6.3 金相組織 73 3.6.4 機械拉伸強度測試 73 3.6.5 變形量(Sagging Distance) 73 3.6.6 X-ray 繞射分析 74 3.6.7 肥粒鐵含量測定儀 74 3.7 實驗儀器 76 第四章 實驗結果: SKD11工具鋼之燒結 78 4.1 SKD11相圖的計算 78 4.1.1 C的影響 80 4.1.2 Si、Mn、Ni、Cu、Cr的影響 81 4.1.3 P、S的影響 81 4.1.4 Mo、W、V的影響 81 4.1.5 Ti、Nb的影響 82 4.2 SKD11的燒結 87 4.2.1 燒結密度與硬度 87 4.2.2 變形量與晶粒尺寸 87 4.2.3 顯微組織 88 4.3 SKD11添加0.25 wt%石墨的燒結 91 4.3.1 燒結密度與硬度 91 4.3.2 變形量與晶粒尺寸 91 4.3.3 顯微組織 92 4.4 SKD11添加TiC碳化物的影響 96 4.4.1 TiC的影響 96 4.4.2 顯微組織 96 4.5 SKD11的機械性質 99 4.5.1 燒結溫度的影響 99 4.5.2 軟化退火處理 102 4.5.3 熱處理的影響 106 4.6 SKD11+0.7 wt%Ti-prealloyed預合金之性質 111 4.6.1 粉末之性質 111 4.6.2 燒結窗與顯微組織 114 4.6.2 熱處理後之機械性質 118 4.7 討論 122 4.7.1 燒結溫度對SKD11+0.25C殘留沃斯田鐵含量之影響 122 4.7.2 結構軟化指數與相圖的預測 126 第五章 實驗結果: 440C麻田散鐵不銹鋼之燒結 135 5.1 440C相圖的計算 135 5.2 440C+0.25C的燒結密度、硬度與顯微組織 141 5.3 添加WTiC後的影響 144 5.3.1 燒結密度與硬度 144 5.3.2 顯微組織 144 5.4 Ti、Nb預合金粉末的燒結 148 5.5 添加WTiC對440C+1.5 wt%Nb-prealloyed的影響 150 5.5.1 燒結密度與硬度 150 5.5.2 顯微組織 150 5.6 討論 154 第六章 實驗結果: M2高速鋼之燒結 155 6.1 M2相圖的計算 155 6.2 M2添加WTiC的燒結 161 6.2.1 燒結密度與硬度 161 6.2.2 顯微組織的觀察 163 6.2.3 拉伸強度 165 6.2.4 熱處理後機械性質的變化 166 6.3 討論 168 第七章 綜合討論 171 7.1 粉末氧含量與碳含量之關係 171 7.2 合金元素與碳化物影響工具鋼SLPS之規律性 174 7.3 燒結窗上限與結構軟化指數之關係 179 7.4 散佈強化與晶粒尺寸之關係 180 第八章 結論 192 未來工作 195 參考文獻 196 作者簡介 208 | |
dc.language.iso | zh-TW | |
dc.title | 粉末射出成形工具鋼之超固相線液相燒結研究 | zh_TW |
dc.title | The Study of Supersolidus Liquid Phase Sintering on PIM Tool Steels | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林招松,陳繁雄,陳貞光,陸永忠,鄭憲清 | |
dc.subject.keyword | 粉末射出成形,SKD11,M2,440C,超固相線液相燒結,熱力學模擬計算,相圖, | zh_TW |
dc.subject.keyword | powder injection molding,440C,SKD11,M2,supersolidus liquid phase sintering,thermodynamic calculation,phase diagram, | en |
dc.relation.page | 209 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-05-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 28.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。