請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23637
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳俊維(Chun-Wei Chen) | |
dc.contributor.author | Wei-Jung Lai | en |
dc.contributor.author | 賴韋仲 | zh_TW |
dc.date.accessioned | 2021-06-08T05:06:36Z | - |
dc.date.copyright | 2011-07-07 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-04 | |
dc.identifier.citation | Chap1
[1] O. Ambacher, J. Smart, J. Shealy, N. Weimann, K. Chu, M. Murphy, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures, J. Appl. Phys. 85, 3222 (1999). [2] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche and K. H. Ploog, Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes, Nature 406, 865 (2000). [3] S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, III-nitrides: Growth, characterization, and properties, J. Appl. Phys. 87, 965 (2000). [4] S. Strite and H. Morkoc, GaN, AlN, and InN: A review, J. Vac. Sci. Technol. B 10, 1237 (1992). [5] S. N. Mohammad and H. Morkoc, Progress and prospects of group-III nitride semiconductors, Prog. Quantum Electron. 20, 361 (1996). [6] O. Ambacher, Growth and applications of Group III-nitrides, J. Phys. D 31, 2653 (1998). [7] G. F. Brown, J. W. Ager III, W. Walukiewicz and J. Wu, Finite element simulations of compositionally graded InGaN solar cells, Sol. Energy Mater. Sol. Cells 94, 478 (2010). [8] S. K. O’Leary, B. E. Foutz, M. S. Shur, U. V. Bhapkar and L. F. Eastman, Electron transport in wurtzite indium nitride, J. Appl. Phys. 83, 826 (1998). [9] V. W. L. Chin, T. L. Tansley, and T. Osotchan, Electron mobilities in gallium, indium, and aluminum nitrides, J. Appl. Phys. 75, 7365 (1994). [10] E. Bellotti, B. K. Doshi, K. F. Brennan, J. D. Albrecht, and P. P. Ruden, Ensemble Monte Carlo study of electron transport in wurtzite InN, J. Appl. Phys. 85, 916 (1999). [11] B. E. Foutz, S. K. O’Leary, M. S. Shur, and L. F. Eastman, Transient electron transport in wurtzite GaN, InN, and AlN, J. Appl. Phys. 85, 7727 (1999). [12] S. K. O’Leary, B. E. Foutz, M. S. Shur and L. F. Eastman, Steady-state and transient electron transport within bulk wurtzite indium nitride: An updated semiclassical three-valley Monte Carlo simulation analysis, Appl. Phys. Lett. 87, 222103 (2005). [13] K. T. Tsen, C. Poweleit, D. K. Ferry, H. Lu, and W. J. Schaff, Observation of large electron drift velocities in InN by ultrafast Raman spectroscopy, Appl. Phys. Lett. 86, 222103 (2005). [14] P. Carrier and S. H. Wei, Theoretical study of the band-gap anomaly of InN, J. Appl. Phys. 97, 033707 (2005). [15] T. L. Tansley, C. P. Foley, Electron mobility in indium nitride, Electron. Lett. 20, 1066 (1984). [16] T. L. Tansley, C. P. Foley, Optical band gap of indium nitride, J. Appl. Phys. 59, 3241 (1986). [17] T. Inushima, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, M. Motokawa, S. Ohoya, Physical properties of InN with the band gap energy of 1.1 eV, J. Cryst. Growth 227, 481 (2001). [18] V. Yu Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, J. Graul, Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap, Phys. Status Solidi (b) 229, r1 (2002). [19] Y. Nanishi, Y. Saito, T. Yamaguchi, RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys, Jpn. J. Appl. Phys. 42, 2549 (2003). [20] V. Yu Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, A. J. Aderhold, J. Graul, E.E. Haller, Band Gap of InN and In-Rich InxGa1—xN alloys (0.36 < x < 1), Phys. Status Solidi (b) 230, R4 (2002). [21] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, Y. Nanishi, Unusual properties of the fundamental band gap of InN, Appl. Phys. Lett. 80, 3967 (2002). [22] M. Higashiwaki, T. Matsui, Estimation of band-gap energy of intrinsic InN from photoluminescence properties of undoped and Si-doped InN films grown by plasma-assisted molecular-beam epitaxy, J. Cryst. Growth 269, 162 (2004). [23] K. S. A. Butcher, M. Wintrebert-Fouquet, P. P.-T. Chen, K. E. Prince, H. Timmers, S. K. Shrestha, T. V. Shubina, S. V. Ivanov, R. Wuhrer, M. R. Phillips, B. Monemar, Non-stoichiometry and nonhomogeneity in InN, Phys. Status Solidi (c) 2, 2263 (2005). [24] J. Wu and W. Walukiewicz, Band gaps of InN and group III nitride alloys, Superlattices Microstruct. 34, 63 (2003). [25] K. Sugita, H. Takatsuka, A. Hashimoto, A. Yamamoto, Photoluminescence and optical absorption edge for MOVPE-grown InN, Phys. Status Solidi (b) 240, 421 (2003). [26] W. Walukiewicz, S. X. Li, J. Wu, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Optical properties and electronic structure of InN and In-rich group III-nitride alloys, J. Cryst. Growth 269, 119 (2004); J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz and R. Jakiela, Effects of electron concentration on the optical absorption edge of InN, Appl. Phys. Lett. 84, 2805 (2004). [27] D. C. Look, H. Lu, W. J. Schaff, J. Jasinski, Z. Liliental-Weber, Donor and acceptor concentrations in degenerate InN, Appl. Phys. Lett. 80, 258 (2002). [29] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Effects of the narrow band gap on the properties of InN, Phys. Rev. B 66, 201403 (2002). [30] I. Mahboob, T. D. Veal, C. F. McConville, H. Lu and W. J. Scaff, Intrinsic electron accumulation at clean InN surfaces, Phys. Rev. Lett. 92, 036804 (2004). [31] P. D. C. King, T. D. Veal, C. F. McConville, F. Fuchs, J. Furthmuller, F. Bechstedt, Y. Nanishi, H. Lu and W. J. Schaff, Universality of electron accumulation at wurtzite c- and a-plane and zinc-blende InN surfaces, Appl. Phys. Lett. 91, 092101 (2007). [32] P. D. C. King, T. D. Veal, P. H. Jefferson, S. A. Hatfield, L. F. J. Piper and C. F. McConville, Determination of the branch-point energy of InN: Chemical trends in common-cation and common-anion semiconductors, Phys. Rev. B 77, 045316 (2008). [33] C. L. Wu, H. M. Lee, C. T. Kuo, C. H. Chen and S. Gwo, Absence of Fermi-level pinning at cleaved nonpolar InN surfaces, Phys. Rev. Lett. 101, 106803 (2008). [34] Ph. Ebert, S. Schaafhausen, A. Lenz, A. Sabitova, L. Ivanova, M. Dähne, Y. L. Hong, S. Gwo, and H. Eisele, Direct measurement of the band gap and Fermi level position at InN(11-20), Appl. Phys. Lett. 98, 062103 (2011). [35]L. R. Bailey, T. D. Veal, C. E. Kendrick, S. M. Durbin and C. F. McConville, Sulfur passivation of InN surface electron accumulation, Appl. Phys. Lett. 95, 192111 (2009). [36] Y. H. Chang, Y. S. Lu, Y. L. Hong, C. T. Kuo, S. Gwo and J. A. Yeh, Effects of (NH4)2Sx treatment on indium nitride surfaces, J. Appl. Phys. 107, 043710 (2009). [37] O. Ambacher, M. S. Brandt, R. Dimitrov, T. Metzger, M. Stutzmann, R. A. Fischer, A. Miehr, A. Bergmajer and G. Dollinger, Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition, J. Vac. Sci. Technol. B 14, 3532 (1996). [38] J. B. McChesney, P. M. Bridenbaugh and P. B. O’Connor, Thermal stability of indium nitride at elevated temperatures and nitrogen pressures, Mater. Res. Bull. 5, 783 (1970). [39] Akio Yamamoto, Hiroshi Miwa, Yosuke Shibata and Akihiro Hashimoto, The most possible donor in InN grown by metalorganic vapor-phase epitaxy, Thin Solid Films 494, 74 (2006). [40] M. Drago, P. Vogt and W. Richter, MOVPE growth of InN with ammonia on sapphire, Phys. Status Solidi (a) 203, 116 (2006). [41] Sandra Ruffenach, Matthieu Moret, Olivier Briot and Bernard Gil, Recent advances in the MOVPE growth of indium nitride, Phys. Status Solidi (a) 207, 9 (2010). [42] S. Ruffenach, M. Moret, O. Briot and B. Gil, Ammonia: A source of hydrogen dopant for InN layers grown by metal organic vapor phase epitaxy, Appl. Phys. Lett. 95, 042102 (2009). [43] Matthieu Moret, Sandra Ruffenach, Olivier Briot and Bernard Gil, MOVPE growth and characterization of indium nitride on C-, A-, M-, and R-plane sapphire, Phys. Status Solidi (a) 207, 24 (2010). [44] H. Sakaki, Scattering suppression and high-mobility effect of size-quantized electrons in ultrafine semiconductor wire structures, Jpn. J. Appl. Phys. 19, L735 (1980). [45] M. Diarra, Y. M. Niquet, C. Delerue and G. Allan, Ionization energies of donor and acceptor impurities in semiconductor nanowires: importance of dielectric confinement, Phys. Rev. B 75, 045301 (2007). [46] Y. M. Niquet and D. Camacho, Quantum dots and tunnel barriers in InAs/InP nanowire heterostructures: Electronic and optical properties, Phys. Rev. B 77, 115316 (2008). [47] C. H. Liang, L. C. Chen, J. S. Hwang, K. H. Chen, Y. T. Hung and Y. F. Chen, Selective-area growth of indium nitride nanowires on gold-patterned Si(100) substrates, Appl. Phys. Lett. 81, 22 (2002). [48] Z. H. Lan, W. M. Wang, C. L. Sun, S. C. Shi, C. W. Hsu, T. T. Chen, K. H. Chen, C. C. Chen, Y. F. Chen, L. C. Chen, Growth mechanism, structure and IR photoluminescence studies of indium nitride nanorods, J. Cryst. Growth 269, 87 (2004). [49] Ming-Shien Hu, Wei-Ming Wang, Tzung T. Chen, Lu-Sheng Hong, Chun-Wei Chen, Chia-Chun Chen, Yang-Fang Chen, Kuei-Hsien Chen and Li-Chyong Chen, Sharp Infrared Emission from Single-Crystalline Indium Nitride Nanobelts Prepared Using Guided-Stream Thermal Chemical Vapor Deposition, Adv. Funct. Mater. 16, 537 (2006). [50] M. C. Johnson, C. J. Lee, E. D. Bourret-Courchesne, S. L. Konsek, S. Aloni, W. Q. Han, and A. Zettl, Growth and morphology of 0.80 eV photoemitting indium nitride nanowires, Appl. Phys. Lett. 85, 5670 (2004). [51] Guosheng Cheng, Eric Stern, Daniel Turner-Evans, and Mark A. Reed, Electronic properties of InN nanowires, Appl. Phys. Lett. 87, 253103 (2005). [52] Sreeram Vaddiraju, Aditya Mohite, Alan Chin, M. Meyyappan, Gamini Sumanasekera, Bruce W. Alphenaar and Mahendra K. Sunkara, Mechanisms of 1D Crystal Growth in Reactive Vapor Transport: Indium Nitride Nanowires, Nano Lett. 5, 1625 (2005). [53] Maoqi He and S. Noor Mohammad, Novelty and versatility of self-catalytic nanowire growth: A case study with InN nanowires, J. Vac. Sci. Technol. B 25, 940 (2007). Chap2 [1] V. Y. Davydov, V. V. Emtsev, I. N. Goncharuk, A. N. Smirnov, V. D. Petrikov, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, M. B. Smirnov, and T. Inushima, Experimental and theoretical studies of phonons in hexagonal InN, Appl. Phys. Lett. 75, 3297 (1999). [2] T. Inushima, M. Higashiwaki, and T. Matsui, Optical properties of Si-doped InN grown on sapphire (0001), Phys. Rev. B 68, 235204 (2003). [3] E. Kurimoto, M. Hangyo, H. Harima, M. Yoshimoto, T. Yamaguchi, T. Araki, and Y. Nanishi, Spectroscopic observation of oxidation process in InN, Appl. Phys. Lett. 84, 212 (2004). [4] Y. M. Chang, C. T. Chuang, C. T. Chia, K. T. Tsen, H. Lu, and W. J. Schaff, Coherent longitudinal optical phonon and plasmon coupling in the near-surface region of InN, Appl. Phys. Lett. 85, 5224 (2004). [5] J. S. Thakur, D. Haddad, V. M. Naik, R. Naik, G. W. Auner, H. Lu, and W. J. Schaff, A1(LO) phonon structure in degenerate InN semiconductor films, Phys. Rev. B 71, 115203 (2005). [6] F. Demangeot, C. Pinquier, J. Frandon, M. Gaio, O. Briot, B. Maleyre, S. Ruffenach and B. Gil, Raman scattering by the longitudinal optical phonon in InN: Wave-vector nonconserving mechanisms, Phys. Rev. B 71, 104305 (2005). [7] Y. M. Chang, H. W. Chu, C. H. Shen, H. Y. Chen, and S. Gwo, Determination of the electron effective mass of wurtzite InN by coherent upper-branch A1(LO) phonon-plasmon coupling mode, Appl. Phys. Lett. 90, 072111 (2007). [8] J. W. Pomeroy, M. Kuball, C. H. Swartz, T. H. Myers, H. Lu, and W. J. Schaff, Evidence for phonon-plasmon interaction in InN by Raman spectroscopy, Phys. Rev. B 75, 035205 (2007). [9] A. Kasic, M. Schubert, Y. Saito, Y. Nanishi, and G. Wagner, Effective electron mass and phonon modes in n-type hexagonal InN, Phys. Rev. B 65, 115206 (2002). [10] S. Lazić, E. Gallardo, J. M. Calleja, F. Agulló-Rueda, J. Grandal, M. A. Sánchez-García, E. Calleja, E. Luna, and A. Trampert, Phonon-plasmon coupling in electron surface accumulation layers in InN nanocolumns, Phys. Rev. B 76, 205319 (2007). [11] R. Cuscó, .E Alarcón-Lladó, J Ibáñez, T. Yamaguchi, Y. Nanishi and Luis Artús, Raman scattering study of background electron density in InN: a hydrodynamical approach to the LO-phonon–Plasmon coupled modes, J. Phys.: Condens. Matter 21, 415801 (2009). [12] Ramon Cuscó, Jordi Ibáñez, Esther Alarcón-Lladó, and Luis Artús, Tomohiro Yamaguchi and Yasushi Nanishi, Raman scattering study of the long-wavelength longitudinal-optical-phonon–plasmon coupled modes in high-mobility InN layers, Phys. Rev. B 79, 155210 (2009). [13] Ramon Cuscó, Jordi Ibáñez, Esther Alarcón-Lladó, Luis Artús, Tomohiro Yamaguchi and Yasushi Nanishi, Photoexcited carriers and surface recombination velocity in InN epilayers: A Raman scattering study, Phys. Rev. B 80, 155204 (2009). [14] R. Cuscó, N. Domènech-Amador, L. Artús, T. Gotschke, K. Jeganathan, T. Stoica and R. Calarco, Probing the electron density in undoped, Si-doped, and Mg-doped InN nanowires by means of Raman scattering, Appl. Phys. Lett. 97, 221906 (2010). [15] J. S. Thakur, Y. V. Danylyuk, D. Haddad, V. M. Naik, R. Naik and G. W. Auner, Influence of defects on the absorption edge of InN thin films: The band gap value, Phys. Rev. B 76, 035309 (2007). [16] Junqiao Wu, When group-III nitrides go infrared: New properties and perspectives, J. Appl. Phys. 106, 011101 (2009). [17] Ceyhun Bulutay, Cem Murat Turgut and N. A. Zakhleniuk, Carrier-induced refractive index change and optical absorption in wurtzite InN and GaN: Fullband approach, Phys. Rev. B 81, 155206 (2010). [18] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu and W. J. Schaff, Temperature dependence of the fundamental band gap of InN, J. Appl. Phys. 94, 4457 (2003). [19] S. P. Fu, Y. F. Chen and K. Tan, Recombination mechanism of photoluminescence in InN epilayers, Solid State Comm. 137, 203 (2006). [20] J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz and R. Jakiela, Effects of electron concentration on the optical absorption edge of InN, Appl. Phys. Lett. 84, 2805 (2004). Chap3 [1] M. A. Herman, W. Richter and H. Sitter, Epitaxy: Physical Principles and Technical Implementation, (Springer-Verlag Berlin, Heidelberg 2004). [2] R. S. Wagner and W. C. Ellis, Vapor‐liquid‐solid mechanism of single crystal growth, Appl. Phys. Lett. 4, 89 (1964). [3] B. A. Wacaser, K. A. Dick, J. Johansson, M. T. Borgstrom, K. Deppert and L. Samuelson, Preferential interface nucleation: an expansion of the VLS growth mechanism for nanowires, Adv. Mater. 20, 1 (2008). [4] H. Z. Zhang, D. P. Yu, Y. Ding, Z. G. Bai, Q. L. Hang and S. Q. Feng, Dependence of the silicon nanowire diameter on ambient pressure, Appl. Phys. Lett. 73, 3396 (1998). [5] Toma Stoica, Ralph J. Meijers, Raffaella Calarco, Thomas Richter, Eli Sutter, and Hans Lüth, Photoluminescence and Intrinsic Properties of MBE-Grown InN Nanowires, Nano Lett. 6, 1541 (2006). [6] B. Maleyre, S. Ruffenach, O. Briot, B. Gil and A. Van der Lee, Growth of InN layers by MOVPE using different substrates, Superlattices Microstruct. 36, 517 (2004). [7] Y. Inoue, A. Tajima, A. Ishida and H. Mimura, Morphology control of GaN nanowires by vapor-liquid-solid growth, Phys. Stat. Sol. (c) 5, 3001 (2008). [8] S. K. Lee, H. J. Choi, P. Pauzauskie, P. Yang, N. K. Cho, H. D. Park, E. K. Suh, K. Y. Lim and H. J. Lee, Gallium nitride nanowires with a metal initiated metal-organic chemical vapor deposition (MOCVD) approach, Phys. Stat. Sol. (b) 241, 2775 (2004). [9] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport, Adv. Mater. 13, 113 (2001). [10] S. Sharma and M. K. Sunkara, Direct Synthesis of Gallium Oxide Tubes, Nanowires and Nanopaintbrushes, J. Am. Chem. Soc. 124, 12288 (2002). [11] S. Chakrabarti and S. Chaudhuri, Microstructural and photoluminescent characterization of one-dimensional ZnO nanostructures prepared by catalyst-assisted vapour–liquid–solid technique, Mater. Chem. Phys. 87, 196 (2004). [12] S. Z. Deng, Z. B. Li, W. L. Wang, N. S. Xu, Jun Zhou, X. G. Zheng, H. T. Xu, Jun Chen and J. C. She, Field emission study of SiC nanowires/nanorods directly grown on SiC ceramic substrate, Appl. Phys. Lett. 89, 023118 (2006). [13] C. K. Chao, H. S. Chang, T. M. Hsu, C. N. Hsiao, C. C. Kei, S. Y. Kuo and J. I. Chyi, Optical properties of indium nitride nanorods prepared by chemical-beam epitaxy, Nanotechnology 17, 3930 (2006). [14] T. Yamaguchi, Y. Saito, K. Kano, T. Araki, N. Teraguchi, A. Suzuki and Y. Nanishi, Study of epitaxial relationship in InN growth on sapphire (0001) by RF-MBE, Phys. Stat. Sol. (b) 228, 17 (2001). [15] A. Yamamoto, M. Tsujino, M. Ohkubo and A. Hashimoto, Nitridation effect on substrate surface on the metalorganic chemical vapor deposition growth of InN on Si and α-Al2O3 substrates, J. Cryst. Growth 137, 415 (1994). [16] A. Yamamoto, H. Miwa, Y. Shibata, and A. Hashimoto, NH3/TMI molar ratio dependence of electrical and optical properties for atmospheric-pressure MOVPE InN, Phys. Stat. Sol. (c) 3, 1527 (2006). [17] A. Yamamoto, M. Adachi and A. Hashimoto, Enhanced two-dimensional growth of MOVPE InN films on sapphire (0 0 0 1) substrates, J. Cryst. Growth 230, 351 (2001). [18] S. Keller, I. Ben-yaacov, S. P. Denvers and U. K. Mishra, Proceedings of the International Workshop on Nitride Semiconductors (IWN 2000), Nagoya, Japan, September 24–27, 2000, IPAP conference series 1, p. 233. [19] M. Borgstrom, K. Deppert, L. Samuelson and W. Seifert, Size- and shape-controlled GaAs nano-whiskers grown by MOVPE: a growth study, J. Cryst. Growth 260, 18 (2004). [20] P. Paiano, P. Prete, N. Loverginea and A. M. Mancini, Size and shape control of GaAs nanowires grown by metalorganic vapor phase epitaxy using tertiarybutylarsine, J. Appl. Phys. 100, 094305 (2006). Chap4 [1] Pai-Chun Wei, Surojit Chattopadhyay, Min-De Yang, Shih-Chang Tong, Ji-Lin Shen, Chien-Yao Lu, Han-Chang Shih, Li-Chyong Chen and Kuei-Hsien Chen, Room-temperature negative photoconductivity in degenerate InN thin films with a supergap excitation, Phys. Rev. B 81, 045306 (2010). [2] C. M. Penchina, J. S. Moore, and N. Holonyak, Energy Levels and Negative Photoconductivity in Cobalt-Doped Silicon, Phys. Rev. 143, 634 (1966). [3] M. R. Reyes, K. Kim and D. L. Carroll, High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends, Appl. Phys. Lett. 87, 083506 (2005). [4] V. D. Mihailetchi, H. X. Xie, B. de Boer, L. J .A. Koster, P. W. M. Blom, Charge Transport and Photocurrent Generation in Poly(3-hexylthiophene): Methanofullerene Bulk-Heterojunction Solar Cells, Adv. Funct. Mater. 16, 699 (2006). [5] S.A. McDonald, G. Konstantatos, S. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, E.H. Sargent, Solution-processed PbS quantum dot infrared photodetectors and photovoltaics, Nat. Mater. 4, 138 (2005). [6] K.T. Yong, Y. Sahoo, K.R. Choudhury, M.T. Swihart, J.R. Minter, P.N. Prasad, Control of the Morphology and Size of PbS Nanowires Using Gold Nanoparticles, Chem. Mater. 18, 5965 (2006). [7] X.M. Jiang, R.D. Schaller, S.B. Lee, J.M. Pietryga, V. Klimov, A.A. Zakhidov, PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron, J. Mater. Res. 22, 2204 (2007). [8] P. W. M. Blom, M. J. M. de Jong and J. J. M. Vleggaar, Electron and hole transport in poly(p-phenylene vinylene) devices, Appl. Phys. Lett. 68, 3308 (1996). [9] Z. Chiguvare, J. Parisi, and V. Dyakonova, Current limiting mechanisms in indium-tin-oxide/poly3-hexylthiophene/aluminum thin film devices, J. Appl. Phys. 94, 2440 (2003). Chap5 [1] T. Holstein, Ann. Phys. 8, 325 (1959); T. Holstein, Studies of polaron motion: Part II. The “small” polaron, Ann. Phys. 8, 343 (1959). [2] M. P. Sarachik, P. Dai, Variable-Range Hopping in Si : B: A Temperature-Independent Prefactor in Three Dimensions, Phys. Stat. Sol. (b) 230, 205 (2002). [3] I. D. Parker, Carrier tunneling and device characteristics in polymer light-emitting diodes, J. Appl. Phys. 75, 1656 (1994). [4] D. Braun and A. J. Heeger, Visible light emission from semiconducting polymer diodes, Appl. Phys. Lett. 58, 1982 (1991). [5] R. H. Fowler and L. Nordheim, Proc. Phys. Soc. London, Sect. A 119, 173 (1928). [6] M. A. Lampert and P. Mark, Current injection in solids (Wiley, New York, 1970). [7] B. Oregan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353, 737 (1991). [8] A. C. Arango, L. R. Johnson, V. N. Bliznyuk, Z. Schlesinger, S. A. Carter and H. H. Horhold, Efficient Titanium Oxide/Conjugated Polymer Photovoltaics for Solar Energy Conversion, Adv. Mater. 12, 1689 (2000). [9] Kevin M. Noone, Elisabeth Strein, Nicholas C. Anderson, Pei-Tzu Wu, Samson A. Jenekhe and David S. Ginger, Broadband Absorbing Bulk Heterojunction Photovoltaics Using Low-Bandgap Solution-Processed Quantum Dots, Nano Lett. 10, 2635 (2010). [10] Shenqiang Ren, Ni Zhao, Samuel C. Crawford, Michael Tambe, Vladimir Bulović and Silvija Gradečak, Heterojunction Photovoltaics Using GaAs Nanowires and Conjugated Polymers, Nano Lett. 11, 408 (2011). [11] M. R. Reyes, K. Kim and D. L. Carroll, High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends, Appl. Phys. Lett. 87, 083506 (2005). [12] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito and Y. Nanishi, Unusual properties of the fundamental band gap of InN, Appl. Phys. Lett. 80, 3967 (2002). [13] Wei-Jung Lai, Shao-Sian Li, Chih-Cheng Lin, Chun-Chiang Kuo, Chun-Wei Chen, Kuei-Hsien Chen and Li-Chyong Chen, Near infrared photodetector based on polymer and indium nitride nanorod organic/inorganic hybrids, Scripta Materialia 63, 653 (2010). [14] C. L. Hsiao, T. W. Liu, C. T. Wu, H. C. Hsu, G. M. Hsu, L. C. Chen, W. Y. Shiao, C. C. Yang, A. Gallstrom, P. Holtz, C. C. Chen and K. H. Chen, High-phase-purity zinc-blende InN on r-plane sapphire substrate with controlled nitridation pretreatment, Appl. Phys. Lett. 92, 111914 (2008). [15] S. Braun, W. R. Salaneck and M. Fahlman, Energy-Level Alignment at Organic/Metal and Organic/Organic Interfaces, Adv. Mater. 21, 1450 (2009). [16] E. J. Lous, P. W. M. Blom, L. W. Molenkamp and D. M. de Leeuw, Schottky contacts on a highly doped organic semiconductor, Phys. Rev. B 51,17251 (1995). [17] P. Stallinga, Electrical Characterization of Organic Electronic Materials and Devices, John Wiley & Sons, Ltd. (2009). [18] T. Förster, Discussions of the Faraday Society 27, 7 (1959). [19] J. C. de Mello, H. F. Wittmann and R. H. Friend, An improved experimental determination of external photoluminescence quantum efficiency, Adv. Mater. 9, 230 (1997). [20] Y. Shimizu, T. Kobayashi, T. Nagase and H. Naito, Optical properties of air-stable semiconducting copolymer based on polythiophene, Appl. Phys. Lett. 91, 141909 (2007). [21] K. E. Ziemelis, A. T. Hussain, D. D. C. Bradley, R. H. Friend, J. Ruhe and G. Wegner, Optical spectroscopy of field-induced charge in poly(3-hexyl thienylene) metal-insulator-semiconductor structures: Evidence for polarons, Phys. Rev. Lett. 66, 2231 (1991). [22] P. D. C. King, T. D. Veal, P. H. Jefferson, S. A. Hatfield, L. F. J. Piper, C. F. McConville, F. Fuchs, J. Furthmüller, F. Bechstedt, Hai Lu and W. J. Schaff, Determination of the branch-point energy of InN: Chemical trends in common-cation and common-anion semiconductors, Phys. Rev. B 77, 045316 (2008). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23637 | - |
dc.description.abstract | 本論文目的,主要係探討利用低維度氮化銦材料與導電高分子以形成異質接面,並以此接面作為近紅外線偵測器的應用與電荷分離之機制研究。其中,低維度氮化銦材料包括一維奈米材料與薄膜材料,亦將界定出這些不同奈米結構的成長視窗,並參考文獻探討可能之成長機制。
本論文利用有機金屬化學氣相沉積方法來合成氮化銦奈米結構,並使用氣相-液相-固相成長機制來闡釋其形成的原因,而其中包含了液態合金催化劑擴散以及表面擴散兩種成長機制。此外,在金屬-氮化銦與導電高分子-氮化銦接面進行光電流與光反應量測,由光反應的靈敏來探討其元件的缺失;同時,使用靜態與動態螢光光譜來解析在異質接面發生的電荷分離現象,並更進一步利用電容-電壓量測來模擬出導電高分子的位能分佈,以找出電荷分離的機制。 因液態合金催化劑之擴散機制,使合金催化劑的大小決定了奈米線半徑大小;相對地,奈米柱呈現半徑逐漸縮小的現象,而這可以歸因於表面擴散的成長機制所導致。藉由與薄膜材料的活化能比對,可以發現一維奈米材料與薄膜材料均係呈現平面式成長,並且,對照奈米線與奈米柱的成長速率,本論文發現奈米柱需要較長時間來進行奈米結構初始成長。 由光電流產生在金屬-氮化銦接面研究可知,表面氧化層會抑制光電流產生;此外,光電流在導電高分子-氮化銦接面可以因此而增大,然而,於低偏壓下,由於熱游離電子使得此異質接面無法形成明顯的驅動電壓。本論文亦發現,由於氮化銦表面具有表面電荷累積,使得表面具有很強的內建電場,故造成導電高分子位能重新分佈導致電荷分離。 本論文認為,如何有效地降低氮化銦的載子濃度,並藉由表面修飾方法以控制表面位能彎曲程度,將會是未來影響氮化銦元件發展的關鍵。 | zh_TW |
dc.description.abstract | The aim of this thesis is to form the heterojunction based on low-dimensional indium nitride and conducting polymer. A number of studies have been done to investigate the near infrared photodetector and the mechanism of charge separation using this hetero-junction. This thesis, by reference to the relevant literature, defines the growth windows of different nanostructures, including one-dimensional nanostructures and thin films. Possible growth mechanisms are also considered thoroughly.
In this thesis, the low-dimensional indium nitride is synthesized by using metal-organic chemical vapor deposition and vapor-liquid-solid growth mechanism, including liquid alloy and surface diffusion. The photocurrent and photoresponse measurement are performed in the junctions of metal/indium nitride, and conducting polymer/indium nitride. The potential application of the devices is evaluated by measuring the photoresponse sensitivity. Meanwhile, this thesis analyzes the phenomenon of charge separation by using static and dynamic photoluminescence spectroscopy. Potential distribution in conducting polymer is then modeled according to capacitance-voltage measurement. Because of liquid alloy diffusion, the diameter of nanowire is determined by alloy droplet. By contrast, the phenomenon of nanorod tapering can be attributed to surface diffusion. According to activation energy, the one-dimensional nanostructures follow planar growth, which is the same as the case for thin films. Also, the initial growth time of nanorod is longer than that of nanowire in accordance with growth rate. Thus, photocurrent will be suppressed by surface oxide layer based on the studies of photocurrent generation in metal/indium nitride. In addition, due to the junction between conducting polymer and indium nitride, photocurrent will be enhanced. However, in lower bias condition, the current-voltage curve does not show apparent built-in potential because of thermionic emission mechanism. Because the surface accumulation layer exists in indium nitride which results in strong built-in electrical field, it induces potential rearrangement in conducting polymer for charge separation. To conclude, this thesis argues that, to decrease the carrier concentration of indium nitride and control the magnitude of surface band bending would be indispensable for development of InN-based devices in future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:06:36Z (GMT). No. of bitstreams: 1 ntu-100-F92527032-1.pdf: 5641810 bytes, checksum: 43df831e24eac2931b4d639497e81bc1 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 1 Introduction 1
1-1 Motivation 2 1-1-1 III-nitrides semiconductors 2 1-1-2 Indium nitride (InN) 3 1-2 Physical properties of InN 8 1-2-1 Burstein-Moss effect 11 1-2-2 Downward surface band bending 17 1-3 Overview of MOCVD grown InN thin films 20 1-4 Overview of CVD grown InN nanowires 23 1-5 Abbreviation 27 References 28 2 Principles of optical measurements in InN 37 2-1 Optical properties of InN 38 2-1-1 Raman scattering 38 2-1-2 Optical absorption 41 2-2 Optical characterization tools 45 2-2-1 Micro-Raman Spectroscopy 45 2-2-2 Macro photoluminescence (PL) spectroscopy 48 2-2-3 Absorption spectroscopy 51 References 53 3 Crystal growth and design of low-dimensional InN by MOCVD 57 3-1 The principle of MOCVD 58 3-2 InN 1D nanostructure growth mediated by gold catalyst 61 3-2-1 Silicon substrate 63 3-2-2 Indium Tin Oxide substrate 80 3-2-3 Gallium nitride (GaN) substrate 86 3-3 InN thin films growth 88 References 92 4 Photocurrent generation in InN and related heterojunction with P3HT 95 4-1 Device physics of photodetectors 96 4-2 MSM structure of InN NWs 98 4-3 InN NRs and poly(3-hexylthiophene) heterojunction 101 References 108 5 The exploration of charge separation in P3HT/InN bilayer structure 111 5-1 Electrical characterizations of polymer electronic devices 112 5-2 Surface induced charge separation in the interface 116 References 129 Conclusion 133 | |
dc.language.iso | en | |
dc.title | 低維度氮化銦:成長視窗及導電高分子異質接面 | zh_TW |
dc.title | Low-Dimensional Indium Nitride:
Growth Window and Heterojunction with Conducting Polymer | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳貴賢(Kuei-Hsien Chen),林麗瓊(Li-Chyong Chen),吳季珍(Jih-Jen Wu),陳瑞山(Reui-San Chen) | |
dc.subject.keyword | 氮化銦,導電高分子,異質接面,光偵測器,奈米線, | zh_TW |
dc.subject.keyword | indium nitride,P3HT,heterojunction,photodetector,nanowire, | en |
dc.relation.page | 135 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-07-04 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 5.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。