Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2338
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑩英(Yng-Ing Lee)
dc.contributor.authorYi-Lin Tsaien
dc.contributor.author蔡宜霖zh_TW
dc.date.accessioned2021-05-13T06:39:16Z-
dc.date.available2017-08-25
dc.date.available2021-05-13T06:39:16Z-
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-15
dc.identifier.citation[1] Charles Fefferman. Conformal invariants. Astérisque, (Numéro Hors Série):95–116. The mathematical heritage of Élie Cartan (Lyon, 1984).
[2] John G. Ratcliffe. Foundations of hyperbolic manifolds, volume 149 of Graduate Texts in Mathematics. Springer, New York, 2 edition.
[3] C. Robin Graham. Volume and area renormalizations for conformally compact einstein metrics. Rend. Circ. Mat. Palermo (2) Suppl., (63):31–42.
[4] C. Robin Graham. Conformally invariant powers of the laplacian. i. existence. J.London Math. Soc.(2),46(3):557–565.
[5] C. Robin Graham. Scattering matrix in conformal geometry. Invent. Math., 152(1):89–118.
[6] Charles Fefferman. q-curvature and poincaré metrics. Math. Res. Lett., 9(2-3):139–151.
[7] Rafe Mazzeo. The hodge cohomology of a conformally compact metric. J. Differ-ential Geom., 28(2):309–339.
[8] C. Robin Graham. Einstein metrics with prescribed conformal infinity on the ball.Adv. Math., 87(2):186–225.
[9] Jacques Lafontaine. Conformal geometry from the riemannian viewpoint. pages65–92.
[10] Fritz John. Partial differential equations, volume 1 of Applied Mathematical Sciences. Springer-Verlag, New York, 4 edition.
[11] Vijay Balasubramanian. A stress tensor for anti-de sitter gravity. Comm. Math. Phys.,208(2):413–428.
[12] A Gover and Andrew Waldron. Renormalized volume. arXiv preprint arXiv:1603.07367, 2016.
[13] S. J. Patterson. The divisor of Selberg’s zeta function for Kleinian groups, volume 106. Appendix A by Charles Epstein.
[14] Sean Curry and A Gover. An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity. arXiv preprint arXiv:1412.7559,2014.
[15] Stephen M. Paneitz. A quartic conformally covariant differential operator for arbitrary pseudo-riemannian manifolds (summary). SIGMA Symmetry Integrability Geom. Methods Appl., 4:Paper 036, 3.
[16] Thomas P. Branson. Explicit functional determinants in four dimensions. Proc.Amer. Math. Soc., 113(3):669–682.
[17] N. H. Kuiper. On conformally-flat spaces in the large. Ann. of Math. (2), 50:916–924.
[18] Richard B. Melrose. Geometric scattering theory. Stanford Lectures. Cambridge University Press, Cambridge.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2338-
dc.description.abstract在這篇文章裡,我探討了保角緊緻流形的重要結果及其關聯性。這些主題包含了重整化體積,GJMS算子,Q曲率和基礎的散射理論。這篇文章的主旨是從不同的歷史發展出發來看保角緊緻流形的研究,並探討這些不同的歷史發展交匯時的結果。zh_TW
dc.description.abstractIn this paper, I survey several important results for conformally compact manifolds and relate these different objects together. These topics includes renormalized volume, GJMS operators, Q-curvature, and basic scattering theory. The main goal of this paper is to survey conformally compact manifolds from different historical developments and discuss how these developments are related.en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:39:16Z (GMT). No. of bitstreams: 1
ntu-106-R03221034-1.pdf: 434690 bytes, checksum: 9e3a2424603a15b607f40d8841eb93a5 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents1 Introduction ...............................1
2 Basic properties ...........................4
3 Renormalized volume ........................7
4 GJMS operators and scattering theory ......12
4.1 GJMS operators ..........................12
4.2 Scattering theory .......................18
5 Application ...............................22
Bibliography ................................26
dc.language.isoen
dc.subject保角緊緻流形zh_TW
dc.subjectconformally compact manifoldsen
dc.title保角緊緻流形之相關探討zh_TW
dc.titleA survey on conformally compact manifoldsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡忠潤(Chung-Jun Tsai),崔茂培(Mao-Pei Tsui),鄭日新(Jih-Hsin Cheng)
dc.subject.keyword保角緊緻流形,zh_TW
dc.subject.keywordconformally compact manifolds,en
dc.relation.page27
dc.identifier.doi10.6342/NTU201703321
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-08-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf424.5 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved