請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23246完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李源弘(Yuan-Haun Lee) | |
| dc.contributor.author | Jyun-Jie Wang | en |
| dc.contributor.author | 王俊傑 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:49:34Z | - |
| dc.date.copyright | 2009-07-31 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-28 | |
| dc.identifier.citation | 1. 莊佳霖. 牙科綴補用複合樹脂之研製與分析. 國立台灣大學碩士論文 81年6月:5-6.
2. Peyton FA, Craig RG. Restorative Dental Material. Saint Louis: The CV Mosby Compony 1971. 3. Craig RG. Restorative dental materials. Toronto, the C V Mosby Company 1989;8th edn. Toronto. 4. Marshall SJ, Marshall GW. Dental amalgam: The Materials. Adv Dent Res 1992;6:94-99. 5. Reese JA, Valega TM. Restorative Dental Materials An Overview. London: Quintessencs Publishing Company Ltd 1985. 6. Park JB. Biomaterials Science and Engineering. New York: Plenum Press 1984. 7. O'BRIEN WJ. Dental Materials: Properties and Selection. Chicago: Quintessencs Publishing Co, Inc 1989. 8. Sirnth CD, Williams DF. Biocompatibility of Dental Materials, Vol. IS. Boca Raton: CRC Press, Inc 1982. 9. Phillips RW, 高資彬, 翁秀和, 譯. 牙科材料學. 臺北: 合記出版社 1990;第五版. 10. Steenbock P. Improvements in and relating to the manufacture of a material designed for the production of cement. UK Patent Nos 1954:15176-15181. 11. Reynolds I. A review of direct orthodontic bonding. Br Dent J 1975;2:171. 12. Knibbs PJ. Glass ionomer: 10 years of clinical use. J Oral Rehabil 1988;15:103. 13. Powis DR, Folleras T, Merson SA, Wilson AD. Improved adhesion ofglass ionomer cement to dentin and enamel. J Dent Res 1982;61:1416-1422. 14. Swift EJ. An update on glass ionomer cements. Quintessence Int 1988;19:125-130. 15. Mizrahi E. Glass ionomer cements in orthodontics: an update. Am J Orthod Dentofac Orthop 1988;93:505-507. 16. Maijer R, Smith DC. A comparison between zinc phosphate and glass ionomer cement in orthodontics. Am J Orthod Dentofac Orthop 1988;93:273-279. 17. White LW. Glass ionomer cement. J Clin Orthod 1986;20:387-391. 18. Norris DS, McInnes-Ledoux P, Schwaninger B, Weinberg R. Retention of orthodontic bands with new fluoride-releasing cements. Am J Orthod 1986;89:206-211. 19. Greener EH, Harcourt JK, Lautenschlager EP. Materials Science in Dentistry. Baltimore: The Williams & Wilkins Co 1973. 20. Antonucci J, McKinney J, Stansbury J. Resin modified glass ionomer dental cement. US Patent Application 1988;160:856. 21. Bala O, Uctasli M, Can H, Turkoz E, Can M. Flouride release from various restorative materials. J Nihon Univ Sch Dent 1997;39:123-127. 22. Shaw AJ, Carrick T, McCabe JF. Fluoride release from glass-ionomer and compomer restorative materials: 6-month data. J Dent 1998;26:355-359. 23. Wilson AD. Developments in glass-ionomer cements. Int J Prosthodont 1989;2:438-446. 24. Musa A, Pearson GJ, Gelbier M. In vitro investigation of fluoride ion release from four resin-modified glass polyalkenoate cements. Biomaterials 1996;17:1019-1023. 25. McLean JW, Nicholson JW, Wilson AD. Proposed nomenclature for glass-ionomer dental cements and related materials. Quintessence Int 1994;25:587-589. 26. Meyer JM, Cattani-Lorente MA, Dupuis V. Compomers: between glass-ionomer cements and composites. Biomaterials 1998;19:529-539. 27. 郭敏光. 含氟無填料Bis-GMA樹脂之氟離子釋出能力. Chinese Dental Juornal(中 華 牙 誌 ) 1997;16(4):227-241. 28. Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, et al. J Mater Res 1993;8:1179-1184. 29. Yano K. J Polymer Sci: Part A212493 1993. 30. Kojima Y, Fukumori K, Usuki A, Okada A, Kurauchi T. J Mater Sci Lett 1993;12:889. 31. Usuki A, Mizutani T, Fukushima Y, Fujimoto M, Kamigaito O. US Patent 4 889 885 1989. 32. Crivello J. Applications of phototinitiated cationic polymerization in coatings. Journal of Coatings Technology 1991;63(793):35-38. 33. Mornoi Y, Asanuma R, Kohno A, K.Yanagisawa. R Measurement of Galvanic Current and Electrical Potential in Extracted Human Teeth. JDent Res 1986;65:1441-1444. 34. Lutz F, Phillips RW. A classification and evaluation of composite resin systems. J Pros Dent 1983;50:480-488. 35. 廖建勛. 納米高分子複合材料. 工業材料 86年5 月;108(125). 36. 羅佑旭. 奈米科技專刊 91年:14-20. 37. Grim RE. Clay Mineralogy 2nd ed. McGraw-Hill (New York) 1968. 38. Grim RE. Applied Clay Mineralogy. McGRAW-HILL BOOK COMPANY, INC, New York Toronto, London 1962. 39. 田中一範. 你與我的觸媒學. 科普210, 裳華房 2000. 40. 胡瑞林. 黏性土微結構定量模型及其工程地質特微研究. 地質出版社,北京 1990. 41. David R, Lide. CRC handbook of chemistry and physics: Polymer properties. National Institute Standards and Technology, Stanford 2004. 42. Breen C, Waston R. Polycation-exchanged clays as sorbents for organic pollutants: Influence of layer charge on pollutant sorption capacity. Journal of Colloid and Interface Science 1998;208:422-429. 43. Okamoto M, Morita S, Taguchi H, Kim YH, Kotaka T, Tateyama H. Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay/polystyrene nanocomposites via in situ intercalative polymerization. Polymer 2000;41:3887-3890. 44. Delozier DM, Orwoll RA, Cahoon JF, Ladislaw JS, Smith JG, Connell JW. Polyimide nanocomposites prepared from high-temperature reduced charge organoclays. Polymer 2003;44:2231-2241. 45. Wu TM, Wu JY. Structural analysis of polyamide/clay nanocomposites. Journal of Macromolecular Science-Physics 2002;41:17-31. 46. Peter C, LeBaron. Polymer-layered silicate nanocomposites: an overview. Applied Clay Science 1999;15:11-29. 47. Ghosh AK, Kydd RA. Fluorine-Promoted Catalysts. Catal Rev Sci Eng 1985;27(4):539-589. 1. 莊佳霖. 牙科綴補用複合樹脂之研製與分析. 國立台灣大學碩士論文 81年6月:5-6. 2. Peyton FA, Craig RG. Restorative Dental Material. Saint Louis: The CV Mosby Compony 1971. 3. Craig RG. Restorative dental materials. Toronto, the C V Mosby Company 1989;8th edn. Toronto. 4. Marshall SJ, Marshall GW. Dental amalgam: The Materials. Adv Dent Res 1992;6:94-99. 5. Reese JA, Valega TM. Restorative Dental Materials An Overview. London: Quintessencs Publishing Company Ltd 1985. 6. Park JB. Biomaterials Science and Engineering. New York: Plenum Press 1984. 7. O'BRIEN WJ. Dental Materials: Properties and Selection. Chicago: Quintessencs Publishing Co, Inc 1989. 8. Sirnth CD, Williams DF. Biocompatibility of Dental Materials, Vol. IS. Boca Raton: CRC Press, Inc 1982. 9. Phillips RW, 高資彬, 翁秀和, 譯. 牙科材料學. 臺北: 合記出版社 1990;第五版. 10. Steenbock P. Improvements in and relating to the manufacture of a material designed for the production of cement. UK Patent Nos 1954:15176-15181. 11. Reynolds I. A review of direct orthodontic bonding. Br Dent J 1975;2:171. 12. Knibbs PJ. Glass ionomer: 10 years of clinical use. J Oral Rehabil 1988;15:103. 13. Powis DR, Folleras T, Merson SA, Wilson AD. Improved adhesion ofglass ionomer cement to dentin and enamel. J Dent Res 1982;61:1416-1422. 14. Swift EJ. An update on glass ionomer cements. Quintessence Int 1988;19:125-130. 15. Mizrahi E. Glass ionomer cements in orthodontics: an update. Am J Orthod Dentofac Orthop 1988;93:505-507. 16. Maijer R, Smith DC. A comparison between zinc phosphate and glass ionomer cement in orthodontics. Am J Orthod Dentofac Orthop 1988;93:273-279. 17. White LW. Glass ionomer cement. J Clin Orthod 1986;20:387-391. 18. Norris DS, McInnes-Ledoux P, Schwaninger B, Weinberg R. Retention of orthodontic bands with new fluoride-releasing cements. Am J Orthod 1986;89:206-211. 19. Greener EH, Harcourt JK, Lautenschlager EP. Materials Science in Dentistry. Baltimore: The Williams & Wilkins Co 1973. 20. Antonucci J, McKinney J, Stansbury J. Resin modified glass ionomer dental cement. US Patent Application 1988;160:856. 21. Bala O, Uctasli M, Can H, Turkoz E, Can M. Flouride release from various restorative materials. J Nihon Univ Sch Dent 1997;39:123-127. 22. Shaw AJ, Carrick T, McCabe JF. Fluoride release from glass-ionomer and compomer restorative materials: 6-month data. J Dent 1998;26:355-359. 23. Wilson AD. Developments in glass-ionomer cements. Int J Prosthodont 1989;2:438-446. 24. Musa A, Pearson GJ, Gelbier M. In vitro investigation of fluoride ion release from four resin-modified glass polyalkenoate cements. Biomaterials 1996;17:1019-1023. 25. McLean JW, Nicholson JW, Wilson AD. Proposed nomenclature for glass-ionomer dental cements and related materials. Quintessence Int 1994;25:587-589. 26. Meyer JM, Cattani-Lorente MA, Dupuis V. Compomers: between glass-ionomer cements and composites. Biomaterials 1998;19:529-539. 27. 郭敏光. 含氟無填料Bis-GMA樹脂之氟離子釋出能力. Chinese Dental Juornal(中 華 牙 誌 ) 1997;16(4):227-241. 28. Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, et al. J Mater Res 1993;8:1179-1184. 29. Yano K. J Polymer Sci: Part A212493 1993. 30. Kojima Y, Fukumori K, Usuki A, Okada A, Kurauchi T. J Mater Sci Lett 1993;12:889. 31. Usuki A, Mizutani T, Fukushima Y, Fujimoto M, Kamigaito O. US Patent 4 889 885 1989. 32. Crivello J. Applications of phototinitiated cationic polymerization in coatings. Journal of Coatings Technology 1991;63(793):35-38. 33. Mornoi Y, Asanuma R, Kohno A, K.Yanagisawa. R Measurement of Galvanic Current and Electrical Potential in Extracted Human Teeth. JDent Res 1986;65:1441-1444. 34. Lutz F, Phillips RW. A classification and evaluation of composite resin systems. J Pros Dent 1983;50:480-488. 35. 廖建勛. 納米高分子複合材料. 工業材料 86年5 月;108(125). 36. 羅佑旭. 奈米科技專刊 91年:14-20. 37. Grim RE. Clay Mineralogy 2nd ed. McGraw-Hill (New York) 1968. 38. Grim RE. Applied Clay Mineralogy. McGRAW-HILL BOOK COMPANY, INC, New York Toronto, London 1962. 39. 田中一範. 你與我的觸媒學. 科普210, 裳華房 2000. 40. 胡瑞林. 黏性土微結構定量模型及其工程地質特微研究. 地質出版社,北京 1990. 41. David R, Lide. CRC handbook of chemistry and physics: Polymer properties. National Institute Standards and Technology, Stanford 2004. 42. Breen C, Waston R. Polycation-exchanged clays as sorbents for organic pollutants: Influence of layer charge on pollutant sorption capacity. Journal of Colloid and Interface Science 1998;208:422-429. 43. Okamoto M, Morita S, Taguchi H, Kim YH, Kotaka T, Tateyama H. Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay/polystyrene nanocomposites via in situ intercalative polymerization. Polymer 2000;41:3887-3890. 44. Delozier DM, Orwoll RA, Cahoon JF, Ladislaw JS, Smith JG, Connell JW. Polyimide nanocomposites prepared from high-temperature reduced charge organoclays. Polymer 2003;44:2231-2241. 45. Wu TM, Wu JY. Structural analysis of polyamide/clay nanocomposites. Journal of Macromolecular Science-Physics 2002;41:17-31. 46. Peter C, LeBaron. Polymer-layered silicate nanocomposites: an overview. Applied Clay Science 1999;15:11-29. 47. Ghosh AK, Kydd RA. Fluorine-Promoted Catalysts. Catal Rev Sci Eng 1985;27(4):539-589. 48. Landis GA. Materials refining on the Moon. Acta Astronautica 2007;60:906-915. 49. Krysztafkiewicz A, Rager B, Maik M. Silica recovery from waste obtained in hydrofluoric acid and aluminum fluoride production from fluosilicic acid. Journal of Hazardous Materials 1996:31-49. 50. Knifton JF, Edwards JC. Methyl tert-butyl ether synthesis from tert-butanol via inorganic solid acid catalysis. Applied Catalysis A:General 1999;183:1-13. 51. 林景彬. 氟化蒙脫石固體酸特性與其應用於生質柴油催化之研究. 國立台灣大學碩士論文 97 年 7月. 52. Silverstone LM. Dental caries. New York: MacMillian, Inc 1981. 53. Edgar WM, Higham SM. Role of saliva in caries models. Adv Dent Res 1995;9:235-238. 54. Dijkman A, Huizinga E, Ruben J, Arends J. Remineralization of human enamel in situ after 3 months: the effect of not brushing versus the effect of an F dentifrice and an F-free dentifrice. Caries Res 1990;24:263-266. 55. Rolla G. On the role of calicium fluoride in the cariostatic mechanism of fluoride. Acta Odont Scand 1988;46:341-345. 56. Toumba KJ, Curzon ME. Slow-release fluoride. Caries Res 1993;27:43-46. 57. ten Cate J. Review on fluoride, with special emphasis on calcium fluoride mechanisms in caries prevention. European Journal of Oral Sciences 1997;105((5 Pt 2)):461-465. 58. Wesenberg G, Hals E. The structure of experimental in vitro lesions around glass ionomer cement restorations in human teeth. J Oral Rehabil 1980;7:175-184. 59. Derkson G, Richardson A, Jinks G. Clinical evaluation of a restoration containing fluoride: two-year results. Pediatric Dentistry Pediatric Dentistry 1989;11(4):286-290. 60. Qvist V, Laurberg L, Poulsen A, Teglers PT. Longevity and cariostatic effects of everyday conventional glass-ionomer and amalgam restorations in primary teeth:three-year results. J Dent Res 1997;76:1387-1396. 61. Roche. Cell proliferation reagent WST-1 protocol. 2005. 62. BioVision. LDH-Cytotoxicity Assay Kit. Montain View : BioVision Research Products, Catalog # K311-400. 63. Lee YH, Chen BY, Lin KY, Lin KF, Lin FH. Feasibility study of using montmorillonite for stability enhancement of L-ascorbic acid. Journal of Chinese Institute of Chemical Engineers 2008;85:1-8. 64. Breen C, Clegg F, Hughes TL, Yarwood J. Thermal and Spectroscopic Characterization of N-Methylformamide/Ca-, Mg-, and Na-Exchanged Montmorillonite Intercalates. Langmuir 2000;16:6648-6656. 65. 張凱鈞. 以高分子/層列黏土合成奈米複合材料作為牙科綴補複合樹脂. 國立台灣大學碩士論文 92年6月. 66. Watts DC, Amer OM, Combe EC. Surface Hardness Development in Light-cured Composites. Dent Mater 1987;3:265-269. 67. RG, editor. Restorative dental materials. St Louis: Mosby 1997. 68. Weerasooriya R, Wickramarathne HUS, Dharmagunawardhane HA. Coll Surfaces A: Physicochem Eng Aspects 1998;144:267. 69. Mohapatra D, Mishra D, Mishra SP, Chaudhury GR, Das RP. J Coll Interf Sci 2004;275:355. 70. Tor A. Removal of fluoride from an aqueous solution by using montmorillonite. Desalination 2006;201:267-276. 71. AGARWAL M, RAI K, SHRIVASTAV R, DASS S. A STUDY ON FLUORIDE SORPTION BY MONTMORILLONITE AND KAOLINITE. Water, Air, and Soil Pollution 2002;141:1-4. 72. Weerasooriya R. Surface complexation modeling of fluoride adsorption onto kaolinite. Colloids and Surface A 1998(144):266-273. 73. Weerasooriya R. Modeling Anion Adsorption on Kaolinite. Colloids and Surface A, Journal of Colloid and Interface Science 1999(213):395-399. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23246 | - |
| dc.description.abstract | 牙科複合樹脂綴補材料由於美觀性佳,在臨床使用上已經漸漸的取代汞齊合金.但是抗磨耗性仍然不甚理想,主因是複合樹脂中大多是採用熔融矽、硼矽酸玻璃及石英等作為無機填料,雖然能抑制基質的變形,提高機械強度,但由於此類的無機填料無法與樹脂基質形成化學鍵結,常因牙齒上下咀嚼食物,使突出的填料顆粒因機械力作用而造成破裂脫落(protruding)現象,使牙科複合樹脂綴補材料在應用上受到限制。 臨床上大多數的複合樹脂無法良好持續釋放氟素,氟素有助鞏固牙齒及有防蛀功效,補牙後敏感的情況亦少發生。本研究目的為改進無機填料與樹脂基質之作用力與氟素的吸收釋放能力。蒙脫石(Montmorillonite)為一種由許多矽酸鹽層所堆疊構成的黏土礦物,由於層間可被外來分子或離子插入(intercalation),因此理論上可用來製備奈米複合材料。進行有機化處理可將單體或高分子導入層間,再於表面接枝適當構造之高分子,例如Bis-GMA,使無機塡料與高分子樹脂基材具有良好的作用力,增強牙科複合樹脂的機械強度。 本研究的主要方向是改進牙醫用複合樹脂中無機填料與樹脂基材的化學鍵結能力,提高磨耗強度使牙綴補材料更具實用性,並藉由氫氟酸(HF)處理蒙脫石,使蒙脫石表面矽酸鹽層形成含氟自由基,冺用氟化蒙脫石(Fluoride-Montmorillonite)及層間差層高分子吸附氟離子,讓牙綴補複合材料可再吸收、釋放氟素,於預防二次齲齒有良好的功用。實驗結果顯示在抗磨耗性方面與市售Estelite複合樹脂相當,而氟離子釋放與再填充的效果比含氟玻璃離子體GC Fuji II更好,經WST-1和LDH實驗證實我們的材料無細胞毒性。我們認為這種複合樹脂於牙綴補材料中可以發揮更好的功用。 | zh_TW |
| dc.description.abstract | The use of composite resin materials for posterior tooth restorations is increasing. This increase is attributed primarily to a demand for improved esthetics. However, poor material properties limited the success of composite restorations in posterior teeth. Microleakage, fractures within the body of the restorations, marginal ditching, protruding, and imperfect wear resistance are reported as being the most common causes of failure in posterior composites. Fluoride release from restorative materials may prevent development of secondary carious lesions at the restoration tooth interface and can develop remineralization of enamel or decalcified dentin, so long as physical and mechanical properties are not adversely affected. The object of this study was to investigate a new composite resin with good bonding between resin matrix and inorganic filler. Besides, It is desirable that restorative material is enough fluoride release for immediate and long-term caries protection. Montmorillonite is a layered aluminosilicate of the 2:1 type. Crystal structure consists of layers made up of two tetrahedrally coordinated silicon atoms fused to an edge-shared octahedral sheet of aluminum. The organofunctionalization of montmorillonite can be made after the intercalation of small polar molecules, such as N-methyl formamide (NMF). A montmorillonite/acrylamide intercalation compound was synthesized by guest displacement reaction of a montmorillonite/NMF intercalation compound. It is desirable that montmorillonite/acrylamide compound could graft on resin matrix and improve the composite resin mechanical properties and wear resistant. We use hydrofluoric acid via the fluorination method to improve the fluoride release and recharge ability of montmorillonite. We can prepare the anti-caries of fluoride-contaning dental restorative materials by hydrofluoric acid modified MMT intercalation compounds that contained fluoride. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:49:34Z (GMT). No. of bitstreams: 1 ntu-98-R96527039-1.pdf: 2775061 bytes, checksum: e2ffa812d210edbea5cf23b93d855367 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 摘要.....................................................i
Abstract ................................................ii 目錄 ................................................... iii 圖目錄 ................................................. vi 表目錄 ..................................................ix 第 一 章 導 論 ..........................................1 1-1 前言 ...............................................1 1-2 牙科綴補材料所需具備的條件 .........................2 1-3 牙科綴補材料的演進 .................................4 1-3-1 銀汞合金(Amalgam)................................4 1-2-2 玻璃離子體(Glass ionomer) .....................4 1-3-3 複合樹脂(Composite resin) .....................7 1-4 研究背景及目的 .....................................8 第 二 章 理 論 基 礎 ....................................9 2-1 牙用樹脂常用聚合方式 ...............................9 2-2 樹脂基質的製備 .....................................10 2-3 牙科填補材料之性質 .................................12 2-4 高分子黏土奈米複材 .................................15 2-4-1 蒙脫石的構造.....................................15 2-4-1 蒙脫石的親油化處理 ..............................18 2-4-3 高分子黏土奈米複合材料的製備 ....................18 2-5 氟化法..............................................21 2-6氟化蒙脫石 ..........................................22 2-7氟離子抑制齲齒的機制 ................................26 第 三 章 實 驗 方 法 ....................................28 3-1 實驗藥品 ...........................................28 3-2 實驗儀器 ...........................................28 3-3 實驗方法與流程 .....................................29 3-3-1 填料與複合樹脂製備之流程 ........................29 3-3-2 氟化蒙脫石(F-MMT)之製備 .........................30 3-3-3 氟化蒙脫石/ N-甲基甲醯胺複合物(F-MMT-NMF)之製備31 3-3-4 氟化蒙脫石/丙烯醯胺含氟複合物(F-MMT/acrylamide)之製備.......................................................32 3-3-5含氟複合樹脂之製備 ...............................33 3-4 無機填料分析 .......................................34 3-4-1 掃描式電子顯微鏡(SEM)/能量散射光譜儀(EDS)........35 3-4-2 X光繞射儀分析(XRD) ............................35 3-4-3 傅冺葉轉紅外光光譜儀分析(FT-IR)................35 3-4-4 熱分析(TGA/DTA) .................................36 3-4-5 氟離子吸附測試 ..................................36 3-5 複合樹脂性質測試 ...................................37 3-5-1硬度測試(Hardness test): ........................37 3-5-2抗磨耗測試(wear resistant test): ................37 3-5-3三點抗彎測試: ...................................38 3-5-4直徑壓縮測試(diameteral tensile test):...........41 3-5-5 氟離子濃度測試 ..................................42 3-5-6 氟離子再吸收試驗 ................................43 3-5-7 氟離子再吸收之後的釋放試驗 ......................43 3-6細胞毒性測試 ........................................44 3-6-1 WST-1細胞活性測試 (Water Soluble Tetrazolium Salt-1 Assay) ..................................................44 3-6-2 LDH乳酸脫氫酶測定(lactate dehydrogenase) ........45 第 四 章 結 果 與 討 論 .................................47 4-1 EDS分析結果 ........................................47 4-2 XRD繞射分析 ........................................47 4-2 FT-IR 紅外線光譜分析 ...............................50 4-3 TGA/DTA 熱分析 .....................................52 4-4 微硬度測試 .........................................55 4-5 抗彎強度測試 .......................................56 4-6 破壞韌性測試 .......................................59 4-7 直徑拉伸測試 .......................................61 4-8 氟離子吸附測試 .....................................62 4-9 氟離子吸附後對機械性質的影響測試....................63 4-9-1 氟離子吸附後對硬度的影響 ........................63 4-9-2 氟離子吸附後對抗彎強度的影響 ....................64 4-9-3 氟離子吸附後對破壞韌性的影響 ....................66 4-9-3 氟離子吸附後對直徑拉伸強度的影響 ................67 4-10 抗磨耗性測試 ......................................68 4-11氟離子釋放測試 .....................................69 4-11-1在pH5環境的氟離子釋放 ...........................70 4-11-2在pH6環境的氟離子釋放 ...........................72 4-12氟離子再吸收後的釋放測試 ...........................73 4-12-1在pH5環境的氟離子釋放............................73 4-12-1在pH6環境的氟離子釋放............................74 4-13細胞毒性測試 .......................................75 第 五 章 結 論 ..........................................78 第 七 章 參 考 文 獻 ....................................79 | |
| dc.language.iso | zh-TW | |
| dc.subject | 奈米複材 | zh_TW |
| dc.subject | 牙綴補 | zh_TW |
| dc.subject | 複合樹脂 | zh_TW |
| dc.subject | 蒙脫石 | zh_TW |
| dc.subject | 氫氟酸 | zh_TW |
| dc.subject | 插入作用 | zh_TW |
| dc.subject | 氟素 | zh_TW |
| dc.subject | composite resin | en |
| dc.subject | NMF | en |
| dc.subject | fluoride | en |
| dc.subject | montmorillonite | en |
| dc.subject | hydrofluoric acid | en |
| dc.subject | intercalation | en |
| dc.subject | restorative materials | en |
| dc.subject | acrylamide | en |
| dc.title | 以氟化蒙脫石做為牙醫用複合樹脂無機填料 | zh_TW |
| dc.title | Fluoride/Montmorillonite as Inorganic Filler for Dental Composite Resin | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林?輝(Feng-Huei Lin) | |
| dc.contributor.oralexamcommittee | 林俊彬(Chun-Pin Lin),吳玉祥(Yu-Shiang Wu),張文固(Wen-Ku Chang) | |
| dc.subject.keyword | 牙綴補,複合樹脂,蒙脫石,氫氟酸,插入作用,氟素,奈米複材, | zh_TW |
| dc.subject.keyword | montmorillonite,hydrofluoric acid,intercalation,restorative materials,composite resin,fluoride,NMF,acrylamide, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-07-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
