請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23121完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂廷璋 | |
| dc.contributor.author | Chin-Chin Chen | en |
| dc.contributor.author | 陳晴晴 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:42:59Z | - |
| dc.date.copyright | 2009-08-11 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-05 | |
| dc.identifier.citation | 韓子榕。2008。使用微波輔助酸修飾生產半結晶性玉米澱粉糊精與其性質。國立台灣大學食品科技研所碩士論文。
張永欣。1992。微波食品加工原理與應用。財團法人中華民國冷凍食品發展協會出版。 鄭信民 & 林麗娟。2002。X光繞射應用簡介。工業材料雜誌 181期 1月。 AACC. 1993. Method 61-02. Determination of the Pasting Properties of Rice with the Rapid Visco Analyser. AACC. 1999. Method 76-21. General Pasting Method for Wheat or Rye Flour or Starch Using the Rapid Visco Analyser. Aggarwal, V.; Singh, N.; Kamboj, S. S.; Brar, P. S., Some properties of seeds and starches separated from different Indian pea cultivars. Food Chemistry 2004, 85, (4), 585-590. Anderson, A. K.; Guraya, H. S., Effects of microwave heat-moisture treatment on properties of waxy and non-waxy rice starches. Food Chemistry 2006, 97, (2), 318-323. Baker, L. A.; Rayas-Duarte, P. Freeze-thaw stability of amaranth starch and the effects of salt and suger. Cereal Chemistry 1998, 75, 301-303. Bemiller, J. N.; Pappelis, A. J., 2,4,-Dihydroxy-7-Methoxy-1,4-Benzoxazin-3-1 Glucoside in Corn .I. Relation of Water-Soluble 1-Butanol-Soluble Glycoside Fraction Content of Pith Cores and Stalk Rot Resistance. Phytopathology 1965, 55, (11), 1237-&. Biliaderis, C.G. Structures and phase transitions of starch polymers. In: Walter, R.H., (Ed.), Polysaccharide Association Structures in Foods, Marcel Dekker, New York 1998, pp. 57–168. Biliaderis, C. G.; Grant, D. R.; Vose, J. R., Structural Characterization of Legume Starches .1. Studies on Amylose, Amylopectin, and Beta-Limit Dextrins. Cereal Chemistry 1981, 58, (6), 496-502. Biliaderis, C. G.; Grant, D. R.; Vose, J. R., Structural Characterization of Legume Starches .2. Studies on Acid-Treated Starches. Cereal Chemistry 1981, 58, (6), 502-507. Bogracheva, T. Y.; Morris, V. J.; Ring, S. G.; Hedley, C. L., The granular structure of C-type pea starch and its role in gelatinization. Biopolymers 1998, 45, (4), 323-332. Bule´on, A., Colonna, P., Planchot, V., Ball, S. Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules 1998a, 23, 85–112. Chang, Y. H.; Lin, J. H.; Chang, S. Y. Physicochemical properties of waxy and normal corn starches treated in different anhydrous alcohols with hydrochloric acid. Food Hydrocoll 2006, 20, 332-339. Cheetham, N. W. H.; Tao, L. P., Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydrate Polymers 1998, 36, (4), 277-284. Donovan, J. W.; Lorenz, K.; Kulp, K., Differential Scanning Calorimetry of Heat-Moisture Treated Wheat and Potato Starches. Cereal Chemistry 1983, 60, (5), 381-387. Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350-356. Eerlingen, R. C.; Jacobs, H.; Van Win, H.; Delcour, J. A., Effect of hydrothermal treatment on the gelatinisation properties of potato starch as measured by differential scanning calorimetry. Journal of Thermal Analysis 1996, 47 , 1229. Eliasson, A.-C. Starch gelatinization in the presence of emulsifiers: A morphological study of wheat starch. Starch 1985, 37, 411–415. French, D. Organization of starch granules, in ‘‘Starch Chemistry and Technology’’ (R. L. Whistler,J.N. BeMiller, and E. F. Paschall, Eds.), Academic Press, Orlando, FL 1984, p. 232. Genovese, D. B., & Rao, M. A. Role of starch granule characteristics (volume fraction, rigidity and fractal dimension) on rheology of starch dispersions with and without amylose. Cereal Chemistry 2003, 80, 350–355. Greenwood, C. T.; Thompson, J. Physicochemical studies on starches. XXIV. The fraction and characterization of starches of various plant origins. Journal of the Chemical Society 1962, January–March, 222–229. Han, J. A.; Lim, S. T., Structural changes in corn starches during alkaline dissolution by vortexing. Carbohydrate Polymers 2004(a), 55, (2), 193-199. Han, J. A.; Lim, S. T., Structural changes of corn starches by heating and stirring in DMSO measured by SEC-MALLS-RI system. Carbohydrate Polymers 2004(b), 55, (3), 265-272. Hibi, Y.; Matsumoto, T.; Hagiwara, S., Effect of High-Pressure on the Crystalline-Structure of Various Starch Granules. Cereal Chemistry 1993, 70, (6), 671-676. Hizukuri, S., Relationship between the Distribution of the Chain-Length of Amylopectin and the Crystalline-Structure of Starch Granules. Carbohydrate Research 1985, 141, (2), 295-306. Hizukuri, S., Polymodal Distribution of the Chain Lengths of Amylopectins, and Its Significance. Carbohydrate Research 1986, 147, (2), 342-347. Hizukuri, S. Towards an understanding of the fine structure of starch molecules. Denpun Kagaku 1993, 40, 133–147. Hizukuri, S., Takeda, Y., Yasuda, M., Suzuki, A. Multi branched nature of amylose and the action of debranching enzymes. Carbohydrate Research 1981, 94, 205–213. Hoover, R., Acid-treated starches. Food Reviews International 2000, 16, (3), 369-392. Hoover, R.; Manuel, H., The effect of heat-moisture treatment on the structure and physicochemical properties of normal maize, waxy maize, dull waxy maize and amylomaize V starches. Journal of Cereal Science 1996, 23, (2), 153-162. Hoover, R.; Swamidas, G.; Vasanthan, T., Studies on the Physicochemical Properties of Native, Defatted, and Heat Moisture Treated Pigeon Pea (Cajanus-Cajan L) Starch. Carbohydrate Research 1993, 246, 185-203. Hoover, R.; Vasanthan, T. Studies on isolation and characterization of starch from oat (Avena nuda) grains. Carbohydrate Polymers 1992, 19, 285–297. Hoover, R.; Vasanthan, T., Effect of Heat-Moisture Treatment on the Structure and Physicochemical Properties of Cereal, Legume, and Tuber Starches. Carbohydrate Research 1994b, 252, 33-53. Hoover, R.; Vasanthan, T., The Effect of Annealing on the Physicochemical Properties of Wheat, Oat, Potato and Lentil Starches. Journal of Food Biochemistry 1994a, 17, (5), 303-325. lmberty, A., Chanzy, H., Perez, S., Buleon, A. and Tran, V. New three-dimensional structure for A-type starch. Macromolecules 1987, 20, 2634-2636. Inouchi, N.; Glover, D. V.; Fuwa, H., Properties of Residual Maize Starches Following Acid-Hydrolysis. Starch-Starke 1987, 39, (8), 284-288. Jacobs, H.; Eerlingen, R. C.; Clauwaert, W.; Delcour, J. A., Influence of Annealing on the Pasting Properties of Starches from Varying Botanical Sources. Cereal Chemistry 1995, 72, (5), 480-487. Jacobs, H.; Eerlingen, R. C.; Rouseu, N.; Colonna, P.; Delcour, J. A., Acid hydrolysis of native and annealed wheat, potato and pea starches - DSC melting features and chain length distributions of lintnerised starches. Carbohydrate Research 1998, 308, (3-4), 359-371. Jane, J. L.; Wong, K. S.; McPherson, A. E., Branch-structure difference in starches of A- and B-type x-ray patterns revealed by their Naegeli dextrins. Carbohydrate Research 1997, 300, (3), 219-227. Kainuma, K.; French, D., Nageli Amylodextrin and Its Relationship to Starch Granule Structure .1. Preparation and Properties of Amylodextrins from Various Starch Types. Biopolymers 1971, 10, (9), 1673-1680. Kerr, R. W.; Cleveland, F. C., The Structure of Amyloses. Journal of the American Chemical Society 1952, 74, (16), 4036-4039. Khunae, P; Tran, T; Sirivongpaisal, P., Effect of heat-moisture treatment on structural and thermal properties of rice starches differing in amylose content. Starch/Starke 2007, 59, (12), 593-599. Kirchoff, G.S.G. Impe´riale des Sciences de St Petersburg, Memores 1871, 4, 27. Knutson, C. A., Annealing of Maize Starches at Elevated-Temperatures. Cereal Chemistry 1990, 67, (4), 376-384. Krueger, B. R.; Knutson, C. A.; Inglett, G. E.; Walker, C. E., A Differential Scanning Calorimetry Study on the Effect of Annealing on Gelatinization Behavior of Corn Starch. Journal of Food Science 1987b, 52, (3), 715-718. Krueger, B. R.; Walker, C. E.; Knutson, C. A.; Inglett, G. E., Differential Scanning Calorimetry of Raw and Annealed Starch Isolated from Normal and Mutant Maize Genotypes. Cereal Chemistry 1987a, 64, (3), 187-190. Kulp, K.; Lorenz, K., Heat-Moisture Treatment of Starches .1. Physicochemical Properties. Cereal Chemistry 1981, 58, (1), 46-48. Larsson, I.; Eliasson, A. C., Annealing of Starch at an Intermediate Water-Content. Starch-Starke 1991, 43, (6), 227-231. Lauro, M.; Ring, S. G.; Bull, V. J.; Poutanen, K., Gelation of waxy barley starch hydrolysates. Journal of Cereal Science 1997, 26, (3), 347-354. Lee, S. J.; Sandhu, K. S.; Lim, S. T., Effect of microwave irradiation on crystallinity and pasting viscosity of corn starches different in amylose content. Food Science and Biotechnology 2007, 16, (5), 832-835. Lewandowicz, G; Fornal, J; Walkowski, A., Effect of microwave radiation on physico-chemical properties and structure of potato and tapioca starches. Carbohydrate polymers 1997, 34, (4), 213-220. Lintner, C. J.; Prakt J. Chemie 1886, 34, 378. Lorenz, K.; Kulp, K., Cereal-Starch and Root Starch Modification by Heat-Moisture Treatment .1. Physicochemical Properties. Starke 1982, 34, (2), 50-54. Luo, Z. G.; He, X. W.; Fu, X.; Luo, F. X.; Gao, Q. Y., Effect of microwave radiation on the physicochemical properties of normal maize waxy, maize and amylomaize V starches. Starch-Starke 2006, 58, (9), 468-474. Ma, W. P.; Robyt, J. F., Preparation and Characterization of Soluble Starches Having Different Molecular Sizes and Composition, by Acid-Hydrolysis in Different Alcohols. Carbohydrate Research 1987, 166, (2), 283-297. Maningat, C. C.; Juliano, B. O., Properties of Lintnerized Starch Granules from Rices Differing in Amylose Content and Gelatinization Temperature. Starke 1979, 31, (1), 5-10. Miles, M. J.; Morris, V. J.; Orford, P. D.; Ring, S. G., The Roles of Amylose and Amylopectin in the Gelation and Retrogradation of Starch. Carbohydrate Research 1985, 135, (2), 271-281. Morrison, W.R., Karkalas, J. Starch. In: Dey, P.M., (Ed.), Methods in Plant Biochemistry, vol. 2. Academic Press, London 1990, pp. 323–352. Morrison, W. R.; Law, R. V.; Snape, C. E., Evidence for Inclusion Complexes of Lipids with V-Amylose in Maize, Rice and Oat Starches. Journal of Cereal Science 1993, 18, (2), 107-109. Mua, J. P.; Jackson, D. S., Fine structure of corn amylose and amylopectin fractions with various molecular weights. Journal of Agricultural and Food Chemistry 1997, 45, (10), 3840-3847. Muhr, A. H.; Blanshard, J. M. V.; Bates, D. R., The Effect of Lintnerization on Wheat and Potato Starch Granules. Carbohydrate Polymers 1984, 4, (6), 399-425. Na¨geli, C. W. Justus Liebigs Ann. Chemistry 1874, 173, 218. Nara, S.; Komiya, T. Studies on the relationship between water-satured state and crystallinity by the diffraction method for moistened potato starch. Starch 1983, 35, (12), 407-410. Nara, S.; Mori, A.; Komiya, T. Study on relative crystallinity of moist potato starch. Starch 1978, (4), 111-114. Palav, T.; Seetharaman, K., Mechanism of starch gelatinization and polymer leaching during microwave heating. Carbohydrate Polymers 2006, 65, (3), 364-370. Paredes-Lopez O.; Herna´ndez-Lopez D., Application of Differential Scanning Calorimetry to Amaranth Starch Gelatinization - Influence of Water, Solutes and Annealing . Sta¨rke 1991, 43, 57. Ring, S. G. Some studies on starch gelation. Starch 1985, 37, 80–83. Ring, S., & Stainsby, G. Filler reinforcement of gels. Progress in Food and Nutrition Science 1982, 6, 323–329. Robin, J. P.; Mercier, C.; Charbonn.R; Guilbot, A., Lintnerized Starches Gel-Filtration and Enzymatic Studies of Insoluble Residues from Prolonged Acid Treatment of Potato Starch. Cereal Chemistry 1974, 51, (3), 389-406. Robyt, J. F.; Choe, J. Y.; Fox, J. D.; Hahn, R. S.; Fuchs, E. B., Acid modification of starch granules in alcohols: Reactions in mixtures of two alcohols combined in different ratios. Carbohydrate Research 1996, 283, 141-150. Sabularse, V. C.; Liuzzo, J. A.; Rao, R. M.; Grodner, R. M., Physicochemical Characteristics of Brown Rice as Influenced by Gamma-Irradiation. Journal of Food Science 1992, 57, (1), 143-145. Sair, L., Heat-Moisture Treatment of Starch. Cereal Chemistry 1967, 44, (1), 8-26. Sasaki, T.; Yasui, T.; Matsuki, J. Effect of amylase content on gelatinization, retrogradation and pasting properties of starches from waxy and non-waxy wheat and their F1 seeds. Cereal Chemistry 2000, 77, 58-63. Schoch, T. J.;Maywald E. C., Preoaration and properties of various legume starch. Cereal Chemistry 1968, 45, 564-573. Shi, Y. C.; Seib, P. A., The Structure of 4 Waxy Starches Related to Gelatinization and Retrogradation. Carbohydrate Research 1992, 227, 131-145. Singh, V.; Ali, S.Z.; Somashekar, R.; Mukherjee, P.S. Native of crystallinity and acid modified starches. Intenternational Journal of Food Properties 2006, 9, 845–854. Singh, S.; Raina, C. S.; Bawa, A. S.; Saxena, D. C., Effect of heat-moisture treatment and acid modification on rheological, textural, and differential scanning calorimetry characteristics of sweetpotato starch. Journal of Food Science 2005, 70, (6), E373-E378. Stevenson, D. G.; Biswas, A.; Inglett, G. E., Thermal and pasting properties of microwaved corn starch. Starch-Starke 2005, 57, (8), 347-353. Stute, R., Hydrothermal Modification of Starches - the Difference between Annealing and Heat Moisture-Treatment. Starch-Starke 1992, 44, (6), 205-214. Takeda, Y.; Hizukuri, S.; Takeda, C.; Suzuki, A., Structures of Branched Molecules of Amyloses of Various Origins, and Molar Fractions of Branched and Unbranched Molecules. Carbohydrate Research 1987, 165, (1), 139-145. Takeda, Y.; Shibahara, S.; Hanashiro, I., Examination of the structure of amylopectin molecules by fluorescent labeling. Carbohydrate Research 2003, 338, (5), 471-475. Tester, R. F.; Debon, S. J. J.; Karkalas, J., Annealing of wheat starch. Journal of Cereal Science 1998, 28, (3), 259-272. Tester, R.F.; Karkalas, J. Starch. In: Steinbu¨chel, A. (Series Ed.) Vandamme, E.J., De Baets, S., Steinbu¨chel, A. (vol. Eds.), Biopolymers, vol. 6. Polysaccharides. II. Polysaccharides from Eukaryotes, Wiley–VCH, Weinheim 2002, 381–438. Tester, R. F.; Karkalas, J.; Qi, X., Starch - composition, fine structure and architecture. Journal of Cereal Science 2004, 39, (2), 151-165. Vasanthan, T.; Bhatty, R. S., Physicochemical properties of small- and large-granule starches of waxy, regular, and high-amylose barleys. Cereal Chemistry 1996, 73, (2), 199-207. Vasanthan, T.; Hoover, R., A Comparative-Study of the Composition of Lipids Associated with Starch Granules from Various Botanical Sources. Food Chemistry 1992, 43, (1), 19-27. Wang, L.; Wang, Y. J. Structures and Physicochemical Properties of Acid-Thinned Corn, Potato and Rice Starches. Starch/Stärke 2001, 53, 570–576. Wang, Y. J.; Truong, V. D.; Wang, L. F., Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydrate Polymers 2003, 52, (3), 327-333. Wang, L. Z.; White, P. J., Structure and Properties of Amylose, Amylopectin, and Intermediate Materials of Oat Starches. Cereal Chemistry 1994, 71, (3), 263-268. Whistler R. L., BeMiller J. N., Paschall E. F, Starch : chemistry and technology, Academic Press, FL1984. Wu, H.C.H.; Sarko, A. The double-helical molecular structure of crystalline A-amylose. Carbohydrate Research 1987b, 61, 27–40. Yashushi, Y.B.; Takenouchi, T.; Takeda, Y. Molecular structure and some physicochemical properties of waxy and low-amylose barley starches. Carbohydrate Polymers 2002, 47, 159–167. Yoshimoto, Y.; Tashiro, J.; Takenouchi, T.; Takeda, Y., Molecular structure and some physicochemical properties of high-amylose barley starches. Cereal Chemistry 2000, 77, (3), 279-285. Yost, D. A.; Hoseney, R. C., Annealing and Glass-Transition of Starch. Starch-Starke 1986, 38, (9), 289-292. Yuan, R. C.; Thompson, D. B.; Boyer, C. D. Fine structure of amylopectin in relation to gelatinization and retrogradation behaviour of maize starches from three wax-containing genotypes in two inbred lines. Cereal Chemistry 1993, 70, 81-89. Zobel H. F. X-ray Anylysis of Starch Granules, in “Methods in carbohydrate chemistry” (R. L. Whistler and M. L. Wolfrom, Eds.), Academic Press, FL1962, p. 109-113. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23121 | - |
| dc.description.abstract | 澱粉是顆粒型態的多醣,雖然分散容易但在加熱糊化時黏度極高且糊化後分子不穩定易產生回凝,使應用性受限,因此工業上有許多修飾形式,其中酸水解為常見修飾澱粉的方法,此外酸水解也作為研究澱粉顆粒結構的方法。微波具有穿透性而能整體加熱,選擇性吸收及省時的優點,本研究結合微波輔助減少酸水解時間及廢液產生,以不同濃度鹽酸水溶液(0 N(blank)、0.05 N、0.1 N、0.5 N、1.0 N、2.0 N)調整澱粉顆粒水分含量至34~43 %,加熱30秒(溫度約為56 ℃),探討玉米澱粉受微波輔助酸影響,結果顯示不同直鏈澱粉含量之玉米澱粉對微波加熱耐受性不同。在水(0 N)下,糯性玉米澱粉、一般玉米澱粉、Hylon V澱粉的溶出率為21.9 %、0.9 %、0.68 %,在酸的作用下,其溶解率以高至低仍為糯性玉米澱粉、一般玉米澱粉、Hylon V澱粉。顆粒上出現部分膨潤及中心臍偏光消失,顯示微波作用在非結晶區;隨著酸濃度增加,偏光更加明顯消失且出現顆粒碎片。在結晶性方面,糯性玉米澱粉在水、0.05 N、0.1 N,一般澱粉在0.05 N、0.1 N、0.5 N出現構型改變且結晶度降低,而後結晶度增加(reordering)由一般玉米澱粉的熱焓值(△H1)作印証,ㄧ般玉米澱粉在0.5 N條件鏈長適合與直鏈澱粉反應而有較高的熱焓值(△H2),Hylon V澱粉結晶度與熱焓值皆降低。在黏度方面,低剪力下一般玉米澱粉修飾後顆粒產生膨潤而有較高彈力參數(G’),釋出較多直鏈澱粉而具高setback,在0.5 N G’明顯低於天然澱粉且糊化起始溫度(To)提前,表示澱粉顆粒受到嚴重損傷,1.0 N與2.0 N無G’,冷卻後殘存顆粒或顆粒碎片凝聚產生G’,在高剪力下比起天然澱粉呈現較低的黏度與setback。Hylon V修飾澱粉的G’降低,且酸濃度增加G’與To明顯降低,直鏈澱粉凝膠而產生離水測得最後G’。分子量方面,ㄧ般玉米澱粉與Hylon V澱粉隨酸濃度增加分子量顯著降低,一般玉米澱粉在2.0 N呈現ㄧ窄分子量分佈,推測分子重排成整齊結構,與熱焓和X-ray繞射圖譜結晶強度較高成正相關。 | zh_TW |
| dc.description.abstract | Starch is in granular form in nature and easily to disperse in cold water. After cooked, starch produces high viscosity and tends to retrograde. Acid modification is conducted to overcome the high viscosity and retrograding tendency of native starch for industrial applications and is also one of means to study microstructure of starch granules. Microwave heating is a more efficient process than traditional heating since it ensures homogenous operation on the whole volume of substance, greater penetrating depth, and selective absorption by water in food systems. Microwave assisted acid modification of starch granules was the main theme of this study to reduce the reaction time and acid waste. Waxy, normal and Hylon V (high-amylose) corn starches were impregnated with different concentrations (0 N(control), 0.05 N, 0.1 N, 0.5 N, 1.0 N, 2.0 N) of HCl solution to adjust water content of starch to the range of 34 ~ 43 % before being heated in a domestic microwave oven for 30 seconds. After heating, all sample temperatures were around 56 ℃ which was below the gelatinization temperature of native starch samples. The susceptibility significantly varied among of selected starch samples on microwave assisted acid modification. The solubility of starch granule increased as concentration of HCl increased but varied among different starch samples. Microwave alone without acid was sufficient to cause 21.9 % by weight loss of waxy starch but only had slightly effects on normal and Hylon V starch samples with solubility of 0.9 and 0.68 %, respectively. Increased acid concentration significantly caused higher solubility and reduced the yield, viscosity and apparent molecular weighted of starch. The microwave-heating caused partially swelling and birefringence loss from region around the helium toward periphery of starch granules with significantly corresponding of HCl concentration increasing. Substantial amount of broken and disintegrated debris appeared as 1.0 N and 2.0 N of HCl solutions were used to treat the starch granules. According the size-exclusion chromatographic analysis, the products from high concentration groups (1.0 N and 2.0 N of HCl solution) had been converted to small molecular amylodextrin, and significantly lost their viscosity and gel forming capability on dynamic rheological and Rapid Visco-Amylographic analysis. The microwave energy could alter starch molecular structure and selectively heated on lose packed and amorphous region of starch granules and caused heterogeneous acid hydrolysis revealed by x-ray diffraction and differential scanning calorimetric analysis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:42:59Z (GMT). No. of bitstreams: 1 ntu-98-R96641025-1.pdf: 7539480 bytes, checksum: ed136fb0e55c012a7203447a37dfcfec (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II 總目錄 IV 圖目錄 VI 表目錄 VIII 壹、前言 1 貳、文獻整理 2 ㄧ、澱粉 2 (ㄧ)直鏈澱粉(amylose) 2 (二)支鏈澱粉(amylopectin) 2 (三)雙股螺旋與結晶 3 二、酸水解澱粉(acid-treated starch) 4 (ㄧ)稀沸澱粉(thin-boiling starch) 4 (二)Nägeli - Lintner starch 4 (三)酸水解機制 5 a.澱粉的溶解度 5 三、不同處理對酸水解的影響 7 (ㄧ)高壓 7 (二)直鏈澱粉與脂質錯合物 7 (三)酸醇水解的機制 7 (四)水分與溫度 8 a.溼熱處理 8 b.Annealing 10 四、酸修飾對澱粉物化性質之影響 11 (ㄧ)莫耳質量 11 (二)澱粉結晶度 12 (三)黏度 13 (四)熱糊化溫度 14 (五)稀沸澱粉(thin-boiling starch) 15 五、微波(microwave) 16 (ㄧ)微波原理 16 (二)微波優點 17 (三)影響微波加熱因素 17 (四)微波修飾澱粉 19 参、材料與方法 25 ㄧ、實驗流程 25 二、實驗材料 26 三、樣品製備 26 (一)酸修飾澱粉 26 四、溶出率測定 28 五、光學與偏光十字性 28 六、糊化熱性質-DSC分析 28 七、澱粉結晶性質分析 29 八、分子量分布 30 九、流變性質(Oscillatory shear mode) 32 十、Rapid Visco Analyser (RVA) 32 肆、結果與討論 33 一、微波酸修飾澱粉溶出率 34 三、玉米澱粉糊化熱性質 46 四、天然與微波酸修飾澱粉結晶型態 51 五、天然與微波酸修飾澱粉流變性質 54 六、天然與微波酸修飾澱粉分子量分布 62 伍、結論 68 陸、參考文獻 69 柒、附錄 79 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微波 | zh_TW |
| dc.subject | 澱粉 | zh_TW |
| dc.subject | 酸水解 | zh_TW |
| dc.subject | microwave | en |
| dc.subject | starch | en |
| dc.subject | acid hydrolysis | en |
| dc.title | 微波輔助酸處理對不同直鏈澱粉含量玉米澱粉的理化性質之影響 | zh_TW |
| dc.title | Effects of microwave-acid treatment on physicochemical properties of corn starch differing in amylose content | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 盧訓,張永和,賴喜美,邵貽沅 | |
| dc.subject.keyword | 澱粉,酸水解,微波, | zh_TW |
| dc.subject.keyword | starch,acid hydrolysis,microwave, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-08-05 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 7.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
