Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23016
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉安義
dc.contributor.authorYu-Hsuan Leeen
dc.contributor.author李宇瑄zh_TW
dc.date.accessioned2021-06-08T04:37:55Z-
dc.date.copyright2009-08-19
dc.date.issued2009
dc.date.submitted2009-08-16
dc.identifier.citation于達元。濃度對介質研磨纖維素流變性質的影響。國立台灣大學食品科技研究所 碩士論文:台北市,2008。
林良平。土壤微生物學。南山堂出版社:台北市,1987;上冊,239。
周婉萍。Bacillus coagulans NTU-FC-1幾丁質酶之研究。國立台灣大學農業化學研究所 碩士論文:台北市,1993。
徐珠璽。水溶性幾丁聚醣的製備與其物化特性。國立台灣海洋大學水產食品科學研究所 碩士論文:基隆市,1995。
徐敬添。濕式珠磨分散技術在奈米機能性產品之應用。產業奈米技術應用資訊園地-奈米粉體專刊,2001; 1, 86-99。
陳美惠、莊淑惠、吳志律。幾丁聚醣的物化特性。食品工業月刊,1999, 31(10), 1-6。
陳慶源。幾丁聚醣在藥物運送系統上之應用。食品工業月刊,2000, 32(4), 18-28。
黃仁毅。纖維素於介質研磨下之破碎模式。國立台灣大學食品科技研究所 碩士論文:台北市,2007。
黃宜瑾。介質研磨對纖維素之酵素動力學的影響。國立台灣大學食品科技研究所 碩士論文:台北市,2007。
趙明煜。奈米纖維製備方法之研究。國立台灣大學食品科技研究所 碩士論文:台北市,2004。
戴明志。以氧化還原降解法從不同來源幾丁聚醣製備幾丁寡醣之探討。國立海洋大學食品科學研究所 碩士論文:基隆市,1999。
Abdel-Naby, M. A.; El-Shayeb, N. M. A.; Sherief, A. A. Purification and some properties of chitinase from Aspergillus Carneus. Appl. Biochem. Biotechnol. 1992, 37(2), 141-154.
Aiba, S. I. Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated chitosans. Int. J. Biol. Macromol. 1992, 14(4), 225-228.
Aiba, S. I. Preparation of N-acetylchitooligosaccharides by hydrolysis of chitosan with chitinase followed by N-acetylation. Carbohydr. Res. 1994, 265(2), 323-328.
Allan, G. C.; Peyron, M. Molecular weight manipulation of chitosan I: kinetics of depolymerization by nitrous acid. Carbohydr. Res. 1995a, 277(2), 257-272.
Allan, G. C.; Peyron, M. Molecular weight manipulation of chitosan II: prediction and control of extent of depolymerization by nitrous acid. Carbohydr. Res. 1995b, 277(2), 273-282.
Arthur, P. A.; Panda, T. Studies on applications of chitin and its derivatives. Bioprocess Biosyst. Eng. 1999, 20(6), 505-512.
Austin, P. R.; Brine, C. J.; Castle, J. E.; Zikakis, J. P. Chitin: New facets of research. Science 1981, 212(4496), 749-753.
Barker, S. A.; Foster, A. B.; Stacey, M.; Webber, J. M. Amino-sugars and related compounds. Part IV. Isolation and properties of oligosaccharides obtained by controlled fragmentation of chitin. J. Chem. Soc. 1958, 2218, 2227.
Baxter, A.; Dillan, M.; Taylor, K. D. A.; Roberts, G. A. F. Improved method for IR determination of the degree of N-acetylation of chitosan. Int. J. Biol. Macromol. 1992, 14(3), 166-169.
Blaiseau, P. L.; Lafay, J. F. Primary structure of a chitinase-encoding gene (chi1) from the filamentous fungus Aphanocladium album: similarity to bacterial chitinases. Gene 1992, 120(2), 243-248.
Boller, T.; Gehri, A.; Mauch, F.; Vogeli, U. Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta 1983, 157(1), 22-31.
Bootza, A.; Vogelb, V.; Schubertb, D.; Kreutera, J. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly (butylcyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm. 2004, 57(2), 369–375.
Chang, K. L. B.; Tsai, G. Response surface optimization and kinetics of isolating chitin from pink shrimp (Solenocera melantho) shell waste. J. Agric. Food Chem. 1997, 45(5), 1900-1904.
Chiou, S. H.; Wu, W. T.; Huang, Y. Y.; Chung, T. W. Effects of the characteristics of chitosan on controlling drug release of chitosan coated PLLA microspheres. J. Microencapsul. 2001, 18(5), 613-625.
Choi, W. S.; Ahn, K. J.; Lee, D. W.; Byun, M. W.; Park, H. J. Preparation of chitosan oligomers by irradiation. Polym. Degrad. Stab. 2002, 78(3), 533-538.
Chu, K. H. Removal of copper from aqueous solution by chitosan in prawn shell: adsorption equilibrium and kinetics. J. Hazard. Mater. 2002, 90(1), 77-95.
Davis, D. H.; Hayes, E. R. Determination of the degree of acetylation of chitin and chitosan. Meth. Enzymol. 1988, 161, 442-446.
Deshpande, M. V. Enzymatic degradation of chitin and its biological applications. J. Sci. Ind. Res. 1986, 45, 273-277.
Dickinson, K.; Keer, V.; Hitchcock, C. A.; Adams, D. J. Chitinase activity from Candida albicans and its inhibition by allosamidin. J. Gen. Microbiol. 1989, 135, 1417-1421.
Fadhel, H. B.; Frances, C.; Mamourian, A. Investigations on ultra-fine grinding of titanium dioxide in a stirred media mill. Powder Technol. 1999, 105(3), 362-373.
Fadhel, H. B.; Frances, C. Wet batch grinding of alumina hydrate in a stirred bead mill. Powder Technol. 2001, 119(2-3), 257-268.
Hasegawa, M.; Isogai, A.; Onabe, F. Preparation of low-molecular-weight chitosan using phosphoric acid. Carbohydr. Polym. 1993, 20(4), 279-283.
He, M.; Wang, Y.; Forssberg, E. Parameter effects on wet ultrafine grinding of limestone through slurry rheology in a stirred media mill. Powder Technol. 2006, 161(1), 10-21.
He, M.; Forssberg, E. Influence of slurry rheology on stirred media milling of quartzite. Int. J. Miner. Process 2007, 84(1-4), 240-251.
Henrissat, B.; Bairoch, A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1993, 293(3), 781-788.
Holanda, H. D.; Netto, F. M. Recovery of Components from shrimp (Xiphopenaeus kroyeri) processing waste by enzymatic hydrolysis J. Food Sci. 2006, 71(5), 298-303.
Ikeda, I. S. M.; Youshida, K.; Sasaki, E.; Iwamoto, Y.; Hatano, K. Effects of chitosan hydrolyzates on lipid absorption and on serum and liver lipid concentration in rats. J. Agric. Food Chem. 1993, 41(3), 431-435.
Jeuniaux, C. Methods in Enzymology. Academic Press: N.Y., 1966; 8, 644-654.
Jillavenkatesa, A.; Kelly, J. F. Nanopowder characterization: challenges and future directions. J. Nanopart. Res. 2002, 4(5), 463-468.
Kabal’ nova N. N.; Murinov, K. Y.; Mullagaliev, I.R.; Krasnogorskaya, N. N.; Shereshovets, V. V.; Monakov, Y. B.; Zaikov, G. E. Oxidative destruction of chitosan under the effect of ozone and hydrogen peroxide. J. Appl. Polym. Sci. 2001, 81(4), 875-881.
Kendra, D. F.; Christian, D.; Hadwiger, L. A. Chitosan oligomers from Fusarium solani/pea interactions, chitinase/β-glucanase digestion of sporelings and from fungal wall chitin actively inhibit fungal growth and enhance disease resistance. Physiol. Mol. Plant Pathol. 1989, 35(3), 215-230.
Kendra, D. F.; Hadwiger, L. A. Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Exp. Mycol. 1984, 8(3), 276-281.
Knorr, D. Functional properties of chitin and chitosan. J. Food Sci. 1982, 47(2), 593-598.
Knorr, D. Dye binding properties of chitin and chitosan. J. Food Sci. 1983, 48(1), 36-37.
Knorr, D. Use of chitinous polymers in food-A challenge for food research and development. Food Technol. 1984, 38(1), 85-97.
Koga, D. Comparative biochemistry of insect and plant chitinase. In Chitin Zymology; Muzzarelli R. A. A. Eds.; Atec Edizioni: Ancona, Italy, 1996; 2, 85-94.
Koga, D.; Isgai, A.; Sakuda, S.; Matsumoto, S.; Suzuki, A.; Kimura, S.; Ide, A. Specific inhibition of Bombyx mori chitinase by allosamidin. Agric. Biol. Chem. 1987, 51(2), 471-476.
Koga, D.; Sasaki, Y.; Uchiumi, Y.; Hirai, N.; Arakane, Y; Nagamatsu, Y. Purification and characterization of Bombyx mori chitinases. Insect Biochem. Mol. Biol. 1997, 27(8-9), 757-767.
Kono, M.; Matsui, T.; Shimizu, C.; Koga, D. Purification and some properties of chitinase from the stomach of Japanese Eel, Anguilla japonica. Agric. Biol. Chem. 1990, 54(4), 973-978.
Krajewska, B. Membrane-based processes performed with use of chitin/chitosan materials. Sep. Purif. Technol. 2005, 41(3), 305-312.
Lee, F. Chitin and Chitosan: Speciality Biopolymers for Foods, Medicine, and Industry; Report of the Technical Insights, Inc.: N.J., 1989.
Leuba, J. L.; Stossel, P. Chitosan and other polyamines: antifungal activity and interaction with biological membranes. In Chitin in Nature and Technology; Muzzarelli, R., Jeuniaux, C., Gooday, G. W. Eds.; Pleunm Press: N.Y., 1986; 215-222.
Liu, X. D.; Tokura, S; Haruki, M.; Nishi, N.; Sakairi, N. Surface modification of nonporous glass beads with chitosan and their adsorption property for transition metal ions. Carbohydr. Polym. 2002, 49(2), 103-108.
Minagawa, T.; Okamura, Y.; Shigemasa, Y.; Minami, S.; Okamoto, Y. Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing. Carbohydr. Polym. 2007, 67(4), 640-644.
Minamisawa, H.; Iwanami, H; Arai, N.; Okutani, T. Adsorption behavior of cobalt(II) on chitosan and its determination by tungsten metal furnace atomic absorption spectrometry. Anal. Chim. Acta. 1999, 378(1-3), 279-285.
Minke, R.; Blackwell, J. The structure of α-chitin. J. Mol. Biol. 1978, 120(2), 167-181.
Molina-Boisseau, S.; Bolay N. L. Fine grinding of polymers in a vibrated bead mill. Powder Technol. 1999, 105(1-3), 321-327.
Muzzarelli, R. A. A.; Barontini, G.; Rocchetti, R. Isolation of lysozyme on chitosan. Biotechnol. Bioeng. 1978, 20(1), 87-94.
Ohno, T.; Armand, S.; Hata, T.; Nikaidou, N.; Henrissat, B.; Mitsutomi, M.; Watanabe, T. A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. J. Bacteriol. 1996, 178(17), 5065-5070.
Ohtakara, A. Studies on the chitnolytic enzymes of black-kogi mold. Part Ι. Viscometric determination of chitinase activity by application of glycol chitin as a new substrate. Agric. Biol. Chem. 1963, 25, 50-54.
Ohtakara, A.; Izume, M. Preparation of D-Glucosamine oligosaccharides by the enzymatic hydrolysis of chitosan. Agric. Biol. Chem. 1987, 51(4), 1189-1191.
Ohtakara, A.; Matsunaga, H.; Mitsutomi, M. Action pattern of Streptomyces griseus chitinase on partially N-acetylated chitosan. Agric. Biol. Chem. 1990, 54(12), 3191-3199.
Powers, K. W.; Brown, S. C.; Krishna, V. B.; Wasdo, S. C.; Moudgil, B.M.; Roberts, S. M. Research Strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol. Sci. 2006, 90(2), 296-303.
Roberts, G. A. F. Chitin Chemistry; Macmillian Press Ltd.: London, UK, 1992; 350.
Roby, D.; Gadelle, A.; Toppan, A. Chitin oligosaccharides as elicitors of chitinase activity in melon plants. Biochem. Biophys. Res. Commun. 1987, 143(3), 885-892.
Rupley, J. A. The hydrolysis of chitin by concentrated hydrochloric acid, and the preparation of low-molecular-weight substrate for lysozyme. Biochim. Biophys. Acta. 1964, 83(3), 245-255.
Sakai, K.; Najo, F.; Usui, T. Production and utilization of oligosaccharides from chitin and chitosan. Depun. Kangaku. 1990, 37, 79-86.
Sannan, T.; Kurita, K.; Iwakura, Y. Studies on chitin 2: Effect of deacetylation on solubility. Makromolekulare Chemie. 1976, 177(12), 3589-3600.
Sashiwa, H.; Fujishima, S.; Yamano, N.; Kawasaki, N.; Nakayama, A.; Muraki, E.; Sukwattanasinitt, M.; Pichyangkura, R.; Aiba, S. I. Enzymatic production of N-acetyl-D-glucosamine from chitin. Degradation study of N-acetylchito-oligo -saccharide and the effect of mixing of crude enzymes. Carbohydr. Polym. 2003, 51(4), 391-395.
Seino, H.; Tsukuda, K.; Shimasue, Y. Properties and action pattern of a chitosanase from Bacillus sp. PI-7S. Agric. Biol. Chem. 1991, 55(9), 2421-2423.
Shahidi, F.; Arachchi, J. K. V.; Jeon, Y. J. Food applications of chitin and chitosans. Trends Food Sci. Technol. 1999, 10(2), 37-51.
Shigemasa, Y.; Matsuura, H.; Sashiwa,; Saimoto, H. Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin. Int. J. Biol. Macromol. 1996, 18(3), 237-242.
Shigemasa, Y.; Saito, K.; Sashiwa, H,; Saimoto, H. Enzymatic degradation of chitins and partially deacetylated chitins. Int. J. Biol. Macromol. 1994, 16(1), 43-49.
Singla, A. K.; Chawla, M. Chitosan: some pharmaceutical and biological aspects–an update. J. Pharm. Pharmacol. 2001, 53(8), 1047-1067.
Somorin, O.; Nishi, N. Studies on chitinⅡ. Preparation of benzyl chitins. Polym. J. 1979, 11(5), 391-396.
Soto-Peralta, N. V.; Muller, H.; Knorr, D. Effects of chitosan treatments on the clarity and color of apple juice. J. Food Sci. 1989, 54(2), 495-496.
Stanley, W. L.; Watters, G. G.; Chan, B. G.; Mercer, J. M. Lactase and other enzymes bound to chitin with glutaraldehyde. Biotechnol. Bioeng. 1975, 17(3), 315-326.
Suzuki, K.; Mikami, T.; Okawa, Y.; Tokoro, A.; Suzuki, S.; Suzuki, M. Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr. Res. 1986, 151, 403-408.
Takayanagi, T.; Ajisaka, K.; Takiguchi, Y.; Shimahara, K. Isolation and characterization of thermostable chitinases from Bacillus licheniformis X-7u. Biochim. Biophys. Acta 1991, 1078(3), 404-410.
Tharanathan R.N.; Harish Prashanth, K. V. Chitin/chitosan: modifications and their unlimited application potential–an overview. Trends Food Sci. Technol. 2007, 18(3), 117-131.
Tharanathan, R. N.; Kittur, F. S. Chitin–the undisputed biomolecule of great potential. Crit. Rev. Food Sci. Nutr. 2003, 43(1), 61-87.
Tokora, A.; Kobayashi, M.; Tatekawa, N.; Suzuki, K.; Okawa, Y.; Mikami, T. Protective effect of N-Acetyl chitohexaose on Listeria monocytogenes infection in mice. Microbiol. Immunol. 1989, 33(4), 357-367.
Tsai, G. J.; Su, W. H.; Chen, S. C. Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation. Fish. Sci. 2002, 68(1), 170-177.
Tsukamoto, T.; Koga, D.; Ide, A.; Ishibashi, T. Purification and some properties of chitinases from yam, Dioscorea opposita THUMB. Agric. Biol. Chem. 1984, 48(4), 931-939.
Uchida, Y.; Izume, M.; Ohtakara, A. Preparation of chitosan oligomers with purified chitosanase and its application. In Chitin and Chitosan, Skjaek-Braek, G., Anthonsen, T., Sandford, P. Eds.; Elsevier Applied Science: N.Y., 1989; 373-382.
Varinot, C.; Hiltgun, S.; Pons, M. N.; Dodds, J. Identification of the fragmentation mechanisms in wet phase fine grinding in a stirred bead mill. Chem. Eng. Sci. 1997, 52(20), 3605-3612.
Wang, Q; Zhou, Z. Y.; Sakuda, S.; Yamada, Y. Purification of allosamidin-sensitive and insensitive chitinase produced by allosamidin-producing Streptomyces. Biosci. Biotechnol. Biochem. 1993, 57(3), 467-470.
Wang, S. L.; Chang, W. T. Purification and characterization of two bifunctional chitinases/lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium. Appl. Environ. Microbiol. 1997, 63(2), 380-386.
Zheng, J.; Harris, C. C.; Somasundaran, P. A study on grinding and energy input in stirred media mills. Powder Technol. 1996, 86(2), 171-178.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23016-
dc.description.abstract幾丁質為多功能性的天然高分子多醣聚合物,主要存在於海洋無脊椎動物、昆蟲的外殼與真菌菌體細胞壁。由於幾丁質及其衍生物具生物活性、生物相容性、生物可降解性等特質,使其應用範圍廣泛。然而幾丁質不水溶的特性使其應用受限,水解後之N-乙醯幾丁寡醣及幾丁寡醣,分子量小且水溶性佳,有較佳之利用性。
  本研究主旨在探討經介質研磨之幾丁質的物性改變,及其對後續酵素水解效率之影響。實驗所使用之蟹殼幾丁質原料的體經平均粒徑為224.50 ± 13.44 μm。藉由0.8 mm釔鋯珠作為介質,取5克及12.5克幾丁質原料與500克去離子水混合形成濃度為1及2.5%的幾丁質懸浮液,於研磨0、30、60及120分鐘後,濃度1%幾丁質懸浮液之體積平均粒徑分別為224.5、76.08、58.45及7.13 μm;2.5%幾丁質懸浮液之體積平均粒徑則為224.5、82.40、52.40及23.80 μm。經由掃描式電子顯微影像觀察幾丁質懸浮液顆粒表面樣貌,確定次微米顆粒的存在。以動態流變儀進行流動測試,懸浮液黏度隨幾丁質濃度提高而增加,隨剪切速率增加而下降,屬於剪切致稀性流體。利用傅立葉紅外線光譜儀測量幾丁質之去乙醯度,發現介質研磨可提高幾丁質之去乙醯度;從原來的30.5%提高至43%。
  在酵素反應的部分,採用Streptomyces griseus產生之幾丁質酶水解經介質研磨後之幾丁質。結果發現隨著研磨時間增加,水解後N-乙醯幾丁二醣之產率明顯提高。未經研磨的幾丁質懸浮液,經酵素水解8小時,N-乙醯幾丁二醣之產率為16.04%;使用濃度為1%經研磨30、60及120分鐘之幾丁質懸浮液進行酵素水解時,N-乙醯幾丁二醣之產率分別為33.73、34.09及41.35%;使用濃度為2.5%經研磨30、60及120分鐘之幾丁質懸浮液作酵素水解時,產率則為31.51、34.15及44.28%。就最終水解產物N-乙醯幾丁二醣之產率而言,發現經研磨120分鐘之幾丁質懸浮液其產率較未研磨者提高約2.5倍以上。
zh_TW
dc.description.abstractBeing abundant polysaccharides in nature and multi-applications such as biological, biocompatible and biodegradable functions, chitin and its derivatives are useful biopolymers and taken a lot of attentions by scientists and researchers in decades. They are present mainly in exoskeletons of invertebrates and the cell walls of fungi. The water insolubility constrains the application of chitin, however, the hydrolytic products of chitin such as N-acetyl chitooligosaccharides and chitooligosaccharides are water soluble and get lots of employments.
The objective of this study was to investigate the influence of media milling on the particle sizes and physical properties of chitin as well as the enhancement of media milled chitin on the enzymatic hydrolysis. The volume mean diameter of purchased chitin was 224.50 ± 13.44 μm. It was processed by media mill to reduce the particle size to micron and submicron scales. Physical properties such as particle size distribution, pH, deacetylation, rheology and morphology were compared between the unmilled and milled chitin. Finally the yield of N-acetyl diglucosamine ((GlcNAc)2) was applied to explore the effect of milling on chitin hydrolysis.
Chitin (5 or 12.5 g) was blended with 500 g deionized water to prepare a 1% or 2.5% slurry for media milling, where 0.8 mm YTZ (yttria-stabilized tetragonal zirconia) beads was selected as the milling media. After 30-, 60- and 120-min milling, the volume mean diameters were reduced to 76.08, 58.45 and 7.13 μm, respectively, for 1% solution and 82.40, 52.40 and 23.80 μm for 2.5% one. The particle size distribution and SEM morphology showed the presence of submicron chitin particles for 120-min milled products. The rheological studies of the milled chitin-suspension showed the viscosity was increased with the increase of concentration, and, however it decreased with increase of shear rate; i.e., the milled chitin-suspension appeared to be a shear-thinning fluid. The degree of deacetylation of chitin evaluated by FTIR was increased from 30.5 to 43% by media milling.
The chitinase obtained from Streptomyces griseus was applied to proceed the hydrolysis of milled chitin. It showed that a longer milling product resulted in a higher yield of (GlcNAc)2 as the same hydrolytic duration was considered (8 hr). The yield of (GlcNAc)2 from unmilled chitin-suspension was 16.04%. For the hydrolysis of 30-, 60-, 90-min milled 1% chitin suspension, the yield of (GlcNAc)2 was 33.73, 34.09 and 41.35%, respectively; while for the hydrolysis of 30-, 60-, 120-min milled 2.5% chitin suspension, the yield of (GlcNAc)2 was 31.51, 34.15 and 44.28%.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:37:55Z (GMT). No. of bitstreams: 1
ntu-98-R95641028-1.pdf: 2901059 bytes, checksum: df5c3b04d88aeff649a69c62a5a61d09 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 IX
壹、前言 1
貳、文獻回顧 3
2.1 幾丁質與幾丁聚醣 3
2.1.1 幾丁質之分佈與結構 3
2.1.2 幾丁質與幾丁聚醣之特性 4
2.1.3 幾丁質與幾丁聚醣之製備 5
2.1.4 幾丁質與幾丁聚醣之應用 7
2.2 幾丁質酶 11
2.2.1 幾丁質酶之酵素活性 11
2.2.2 幾丁質酶之天然分佈 12
2.2.3 幾丁質酶之水解模式 13
2.3 N-乙醯幾丁寡醣與幾丁寡醣 15
2.3.1 N-乙醯幾丁質寡醣與幾丁寡醣之製備 16
2.3.2 N-乙醯幾丁質寡糖與幾丁寡醣之應用 17
2.4 介質研磨-濕式研磨 19
2.4.1 粒子破碎機制 21
2.4.2 影響研磨效益的主要因素 22
2.5 粒徑量測 24
2.5.1 靜態光散射 26
2.5.2 粒徑分佈 26
參、材料與方法 28
3.1 材料與試藥 28
3.2 儀器設備 28
3.3 實驗流程及步驟 32
3.3.1 原料製備 33
3.3.2 介質研磨 33
3.3.3 粒徑分析 34
3.3.4 顯微觀察 34
3.3.5 流變性質測量 35
3.3.6 去乙醯程度測定 35
3.3.7 固形物含量 36
3.3.8 酵素水解產率分析 37
3.3.9 醣類分析與定量 38
肆、結果與討論 39
4.1 原料性質 39
4.2 經介質研磨幾丁質之性質分析 41
4.2.1 粒徑分析 41
4.2.2 顯微型態 50
4.2.3 流變性質分析 55
4.2.4 去乙醯程度分析 59
4.2.5 pH值 60
4.2.6 醣類含量分析 61
4.3 酵素水解產率分析 62
伍、結論 71
陸、參考文獻 73
柒、附錄 80
7.1 N-乙醯幾丁二醣為基質進行酵素水解 80
dc.language.isozh-TW
dc.subject幾丁質zh_TW
dc.subject酵素zh_TW
dc.subject介質研磨zh_TW
dc.subjectN-乙醯幾丁二醣zh_TW
dc.subject水解zh_TW
dc.subject幾丁質&#37238zh_TW
dc.subjectchitinen
dc.subjectN-acetyl chitobioseen
dc.subjectStreptomyces griseusen
dc.subjectmedia millingen
dc.subjectenzymatic hydrolysisen
dc.title介質研磨對幾丁質之物性與酵素水解之影響zh_TW
dc.titleEffect of Media Milling on Physical Characteristics and Enzymatic Hydrolysis of Chitinen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔣丙煌,盧訓,張克亮,賴鳳羲
dc.subject.keyword幾丁質,酵素,水解,介質研磨,幾丁質&#37238,N-乙醯幾丁二醣,zh_TW
dc.subject.keywordchitin,enzymatic hydrolysis,media milling,Streptomyces griseus,N-acetyl chitobiose,en
dc.relation.page94
dc.rights.note未授權
dc.date.accepted2009-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved