請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22923完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔣丙煌(Been-Huang Chiang) | |
| dc.contributor.author | Jia-Ching Lin | en |
| dc.contributor.author | 林嘉慶 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:33:43Z | - |
| dc.date.copyright | 2009-08-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-19 | |
| dc.identifier.citation | 宋曙輝。環球時報生命周刊。第七版。2005。
曾岐原。最新病理學。第二版。匯華圖書出版有限公司1999。337-339頁。 詹淑婷。NF-κB 抑制劑在人類大腸腫瘤細胞引發細胞凋亡作用之探討。國立台灣大學醫學院藥理學研究所碩士論文。2002。台北。台灣。 孫菡儀。馬栗樹皮素抑制人類肝癌細胞株 Hep G2 cells 生長分子機制之探討。私立中山醫學院生物化學研究所碩士論文。2001。台中。台灣。 簡文斌。細胞色素 P-450 1A2 和乙醯轉移酶 2 基因多形性與台灣肺癌及結直腸癌之危險性研究。私立中山醫學大學毒理學研究所碩士論文。2002。台中。台灣。 鄺玉芳。十字花科蔬菜衍生物誘導人類肺腺癌細胞程式凋亡暨其機制探討。私立台北醫學院保健營養學研究所碩士論文。2002。台北。台灣。 嚴新富。蘿蔔嬰。花蓮區農業推廣簡訊。1984 。第 1 卷。2 – 4 頁。 顏國欽、危貴金。十字花科蔬菜中硫醣苷含量之測定。中國農業化學會誌。1991。第 30 期。129 – 137 頁。 顏國欽、危貴金。甘藍菜經不同加熱處理後其硫醣苷之變化。中國農業化學會誌。1991 年。第 31 期。378–386 頁。 鍾文霞。十字花科蔬菜種子與植株硫配醣體成分之分析。屏東科技大學食品科學系碩士論文。2004。屏東,臺灣。 Arnao, M. B.; Casas, J. L.; del Rio, J. A.; Acosta, M.; Garcia-Canovas, F. An enzymatic colorimetric method for measuring naringin using 2,2′-Azino-bis- (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in the presence of peroxidase. Anal. Biochem. 1990, 185, 335-338. Barillari J.; Cervellati R.; Costa S.; Guerra M. C.; Speroni E.; Utan A.; Iori R. Antioxidant and Choleretic Properties of Raphanus sativus L. Sprout (Kaiware Daikon) Extract. J. Agric. Food Chem. 2006, 54, 9773-9778. Block, G.; Jensen, C.; Dietrich, M.; Norkus, E. P.; Hudes, M.; Packer, L. Plasma C-reactive protein concentrations in active and passive smokers: Influence of antioxidant supplementation. J. Am. Coll. Nutr. 2004, 23, 141-147. Bradfield, C. A.; Bjeldanes, L. F. Structure-activity relationships of dietary indoles: a proposed mechanism of action as modifiers of xenobiotic metabolism. J. Toxicol. Environ. Health. 1987, 21, 311-323. Burguieres, E.; McCue, P.; Kwon, Y.-I.; Shetty, K. Effect of vitamin C and folic acid on seed vigour response and phenolic-linked antioxidant activity. Bioresour Technol. 2007, 98, 1393-404. Chavan, J.; Kadam, S. S. Nutritional improvement of cereals by sprouting. Crit. Rev. Food Sci. Nutr. 1989, 28, 401-437. Cheney, G. Rapid healing of peptic ulcers in patients receiving fresh cabbage juice. Calif. Med. 1949, 70, 10-5. Cook, N. C.; Samman, S. Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. Nutr. Biochem. 1996, 7, 66-76. Czeczot, H. Biological activities of flavonoids—a review. Pol. J. Food Nutr. Sci. 2000, 95, 3-13. Danger, D. P.; Baldwin, W. S.; LeBlanc, G. A. Photoaffinity labelling of steroid-hormone-binding glutathione S-transferases with [3H]methyltrienolone. Inhibition of steroid-binding activity by the anticarcinogen indole-3-carbinol. Biochem. J. 1992, 288, 361-367. Das S.; Tyagi A. K.; Kaur H. Cancer modulation by glucosinolates: A review. Curr. Sci. 2000, 79, 1665-1671. Davey, M. W.; van Montagu, M.; Inze, D.; Sanmartin, M.; Kanellis, A.; Smirnoff, N.; Benzie, I. J. J.; Strain, J.; Favell, D.; Fletcher, J. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. food Agric. 2000, 80, 825-860. Ettlinger, W. G.; Luuden, A. J. First synthesis of a mustard oil glucoside: the enzymatic lossen rearrangement. J. Am. Oil Chem. Soc. 1957, 79, 1764-1765. Evans E. J.; Billsborrow P. A. Comparison of rapid (X-ray fluorescence, near -infrared reflectance) and glucose release methods for the determination content of oilseed rape (Brassicia oleracea). J. Sci. Food Agric. 1989, 34, 297-305. Fahey, J. W.; Zhang, Y.; Talalay, P. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 10367-10372. Fahey J. W.; Talalay P. Antioxidant Functions of Sulforaphane: a Potent Inducer of Phase II Detoxication Enzymes. Food Chem. Toxic. 1999, 37, 973-979. Fahey, J. W.; Wade, K. L.; Stephenson, K. K.; Chou, F. E. Separation and purification of glucosinolates from crude plant homogenates by high-speed counter-current chromatography. J. Chromatogr. A. 2003, 996, 85-93. Fenwick, G. R.; Heaney, R. K.; Mullin, W. J. Glucosinorates and their breakdown products in food and food plants. CRC Crit. Rev. Food Sci. Nutr. 1983, 18, 123-201. Fong, A. T.; Swanson, H. I.; Dashwood, R. H.; Williams, D. E.,; Hendricks, J. D; Bailey, G. S. Mechanisms of anticarcinogenesis by indole-3-carbinol: studies of enzyme induction, electrophile-scavenging, and inhibition of aflatoxin B1 activation. Biochem. Pharmacol. 1990, 39, 19-26. Freeman, G. G.; Mossadeghi, N. Studies on relationship between water regime and flavour strength in watercress (Rorippa nasturtium-aquaticum (L.) Hayek) cabbage (Brassica oleracea capitata) and onion (Allium cepa). J. Hortic. Sci. 1979, 48, 1183-1186. Goss, K. H.; Groden, J. Biology of adenomatous polyposis coli tumor suppressor. J. Clin. Oncology. 2000, 18, 1967-1979. Heaney, R. K.; Fenwick, G. R. Glucosinolates in Brassica vegetables. analysis of twenty–two varieties of Brussels sprout (Brassica oleracea L. var. gemmifera). J. Sci. Food Agric. 1980, 31, 785-793. Heaney, R. H.; Fenwick, G. R. Identifying toxin and their effects: glucosinolates. In Natural Toxicants in Food Progress and Prospects. (eds Watson, D. H.; Horwood, E). Chichester, England. 1985, pp. 76. Helboe, P.; Olsen, O.; Sorensem, H. Separation of glucosinolates by high performance-liquid chromatography. J. Chromatogr. 1980, 197, 199-205. Higdon, J. V.; Delage, B.; Williams, D. E.; Dashwood, R. H. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Brassica oleracea capitata. Pharmacol. Res. 2007, 55, 224-236. Hollman, P. C. H.; Hertog, M. G. L.; Katan, M. B. Analysis and health effects of flavonoids. Food Chem. 1996, 57, 43-46. Horii, A.; McCue, P.; Shetty, K. Seed vigour studies in corn, soybean and tomato in response to fish protein hydrolysates and consequences on phenolic-linked responses. Bioresour Technol. 2007, 98, 2170-2177. Jiracek, V.; Kutacek, M.; Salkade, S.; Kostir, J. Effect of zine on the biosynthesis of indole glucosinolates, glucobrassicin and neo glucobrassicin in etiolated rape seedlings (Brassicia napus var. arrensis (Lam Thell) ). Biol. Planturum. 1974, 16, 454-457. Josefesson, E. Pattern, content, and biosynthesis of glucosinolates in some Ccultivated Cruciferae. Svalöf, Swedish Seed. 1970. Josefesson, E. Glucosinolates content and amino acid composition of rapeseed (Brassica napus) meal as affect by sulphur and nitrogen nutrition. J. Sci. Food Agric. 1970, 21, 98-100. Kubo, J. Radical scavenging abilities of hydrogen-donating hydrocarbons from petroleum. Ind. Eng. Chem Res. 1998, 37, 4492-4500. Kumar, S.; Yadav, S. K.; Chauhan, J. S.; Singh, A. K.; Khan, N. A.; Kumar, P. R. Total glucosinolate estimation by complex formation between glucosinolates and tetrachloropalladate (II) using ELISA reader. J. Food Sci. Technol. (Mysore). 2004, 41, 63-65. Kuntz, S.; Wenzel, U.; Daniel, H. Comparative analysis of the effects of flavonoids on proliferation, cytotoxity, and apoptosis in human colon cancer cell lines. Eur. J. Nutrition. 1999, 38, 133-142. Kurilich, A. C.; Tsau, G. J.; Brown, A.; Howard, L.; Klein, B. P.; Jeffery, E. H.; Kushad, M.; Wallig, M. A.; Juvik, J. A. Carotene, tocopherol, and ascorbate contents in subspecies of Brassica oleracea. J. Agric. Food Chem. 1999, 47, 1576-1581. Larsen, P. O. The Biochemistry of Plants (eds Stumpf, P. K.; Conn, E. E.), Academic Press, London. 1981, 7, pp. 501. Le, H. T.; Schaldach, C. M.; Firestone, G. L.; Bjeldanes, L. F. Plant-derived 3,3'-diindolylmethane is a strong androgen antagonist in human prostate cancer cells. J. Biol. Chem. 2003, 278, 21136-21145. Leong, H.; Firestone, G. L.; Bjeldanes, L. F. Cytostatic effects of 3,3'-diindolylmethane in human endometrial cancer cells result from an estrogen receptor-mediated increase in transforming growth factor-alpha expression. Carcinogenesis. 2001, 22, 1809-1817. McDannell, R.; Mclean, A. E. M.; Hanley, A. R.; Heaney, R. K.; Fenwick, G. R. Chemical and biology properties of indole glucosinolates (glucobrassicins)–a review. Food Comet. Toxicol. 1986, 26, 59-70. McGrrfor, D. I.; Muillin, W. J.; Fenwick, G. R. Analytical methodology for determination glucosinolates composition and content in review of glucosinolates. J. Assoc. off Anel. 1983, 4, 825-849. McCue, P.; Zheng, Z.; Pinkham, J.L.; Shetty, K. A model for enhanced pea seedling vigour following low pH and salicylic acid treatments. Process Biochem. 2000, 35, 603-613. MacLeod, A. J. Glucosinolates in the cruciferae. In the Biology and Chemistry ofcruciferae. (eds. Vaughan, J. G.; Macoleod, A. J.; G.jone, B. M.) Academic Press, London. 1976, pp. 207-219. Manson, M. M.; Ball, H. W. L.; Barrett, M. C.; Clark, H. L.; Judan, D. J.; Williamson, G.; Neal, G. E. Mechanism of action of dietary chemopretective agents in rat liver: induction of phase I and II drug metabolizing enzymes and aflatoxin B1 metabolism. Carcinogenesis. 1997, 18, 1729-1738. Martinez-Villaluengaet, C.; Frias, J.; Gulewicz, P.; Gulewicz, K.; Vidal-Valverde, C. Food safety evaluation of broccoli and radish sprouts. Food Chem Toxicol. 2008, 46, 1635-1644. Matusheski, N. V.; Jeffery, E. H. Comparison of the bioactivity of two glucoraphaninhydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. J. Agric. Food Chem. 2001, 49, 5743-5749. Michnovicz, J. J.; Brdlow, H. L. Food Phytochemicals for Cancer Prevention I (eds Huang, M. T.; Osawa, T.; Ho, C-T.; Rosen, R. T.). American Chemical Society, Washington DC. 1994, pp. 282–293. Muir, H. M. Plant supplement and method for increasing plant productivity and quality. United States Patent. 1990. Mullin, W. J.; Proudfood, K. G.; Collins, M. J. Glucosinolates content and clubroot of rutabage and turnip. Can. J. Plant Sci. 1980, 10, 605–612. Nestle, M.; Chair, M. P. H. Broccoli in cancer prevention. Nutr Rev. 1997, 56, 127-130. Nestle, M. Broccoli sprouts as inducers of carcinogen-detoxifying enzyme systems: clinical, dietary, and policy implications. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 11149-11151. Olsen, O.; Sorensen H. Glucosinolates and Amines in Reseda media. Phytochemistry. 1980, 19, 1783–1787. Paxman, P. J.; Hill, R. The goitrogenicity of kale and its relation to thiocyanate. J. Sci. Food Agric. 1974, 25, 329-337. Renwick, A. B.; Mistry, H.; Barton, P. T.; Mallet, F.; Price, R. J.; Beamand, J. A.; Lake, B. G. Effect of some indole derivatives on xenobiotic metabolism and xenobioticinduced toxicity in cultured rat liver slices. Food Chem Toxi. 1999, 37, 609-618. Salac, I. Influence of the sulphur and nitrogen supply on S metabolites involved in Sulphur Induced Resistance (SIR) of Brassica napus L. Technische Universität Braunschweig, Gemeins.Natw.Fak.: FB 4: Biowissenschaften, Psychologie, 2004. Shertzer, H. G.; Tabor, M. W. Nucleophilic index value: implication in the protection by indole-3-carbinol from N-nitrosodimethylamine cyto and genotoxicity in mouse liver. J. Applied Toxicol. 1988, 8, 105-110. Shertzer, H. G.; Berger, M. L.; Tabor, M. W. Intervention in free radical mediated hepatotoxicity and lipid peroxidation by indole-3-carbinol. Biochem. Pharmacol. 1988, 37, 333-338. Shertzer, H. G.; Sainsbury, N. Chemoprotective and hepatic enzyme induction properties of indole and indenoindole antioxidants in rats. Food Chem. Toxicol. 1991, 29, 391-400. Schone, F.; Paetzelt, H. Extraction of thiocyanate in urine of growing pigs after rapeseed meal feeding. Dic. Nahrung. 1985, 29, 541-543. Thies W. Quantitative gas–liquid chromatography of glucosinolates on a microlitle scale. Fette. Seifen. Anstrichem. 1976, 78, 231-234. Thies, W. Complex formation between glucosinolates and tetrachloropalladate (Ⅱ) and its utilization in plant breeding. Fette. Seifen. Anstrichem. 1982, 84, 338-342. VanEtten, C. H.; Paxenbichler, M. E.; Williams, P. H.; Kwolek, W. F. Glucosinolates and derived products in cruciferous vegetables. analysis of the edible part from twenty–two varieties of cabbage. J. Agric. Food Chem. 1976, 24, 452-455. VanEtten, C. H.; Daxenbichler, M. E.; Schroeder, W.; Princen, L. H.; Perny, T. W. Tests for epiprogoitrin derived nitriles and goitrin in body tissued from cattleed fed crambe seed meal. Can. J. Anim. Sci. 1977, 57, 78-80. VanEtten, C. H.; Daxenbichler, M. E.; Kwolek, W. F.; Williams, P. H. Distribution of glucosinolates in the pith cambial-cortex and leaves of the head in cabbage, Brassica oleracea L. J. Agric. Food Chem. 1980, 47, 648-650. Wilkinson, Ⅳ J. and Clapper M. Detoxication enzymes and chemoprevention. P. S. E. B. M. 1997, 216, 192-200. Woodman, H. M. Cabbage leaves are poor man's poultice. Br. Med. J. 2003, 326, 1406. Zheng, Z.; Shetty, K. Enhancement of pea (Pisum sativum) seedling vigor and associated phenolic content by extracts of apple pomace fermented with Trichoderma spp. Process Biochem. 2000, 36, 79-84. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22923 | - |
| dc.description.abstract | 芽菜已知富含多種對人體健康有益的植物化合物,為一種具潛力的新興機能性食品。已有文獻指出芽菜比其成熟的蔬菜具更多量的植物成分,例如十字花科植物中的硫配醣體 (Glucosinolates),其已被證實可提高人體中解毒酵素系統 phase II 酵素的解毒作用、抑制腫瘤的形成及抗氧化等功能,具有許多保健功效。亦有許多文獻證實在栽培芽菜時,於培養基中添加額外的營養物質,更能有效提升其生物活性。本實驗嘗試添加三種不同的含硫鹽類 – 硫酸銨鹽 (Ammonium sulfate)、硫酸鎂鹽 (Magnesium sulfate) 以及硫代硫酸鈉鹽 (Sodium thiosulfate) 於三種十字花科植物:甘藍菜芽 (Cabbage sprout)、綠色花椰菜芽 (Broccoli sprout) 與蘿蔔嬰 (Radish sprout) 的培養土中,以期增加活性成分並提升抗癌功能。結果顯示,在培養到達第十二天時,三種芽菜含有的總硫配醣體含量達最大量。而選擇三種不會影響植物生長的含硫鹽類濃度:20、40 及 60 kg/ha 添加於甘藍菜芽、綠色花椰菜芽與蘿蔔嬰的培養土中培養十二天後,皆能有效提升總硫配醣體的含量。在蘿蔔嬰方面,添加硫代硫酸鈉鹽 (60 kg/ha) 其水萃液中硫配醣體的含量 (1.996 mM) 比未添加組 (0.699 mM) 高,約提升了 5.58 倍,且其也具有良好清除 DPPH 及 ABTS+. 自由基的能力 (清除率分別為 89% 及 96%) 與抑制肝癌細胞 Hep G2 與結腸癌細胞 CT-26 的活性 (抑制率分別為 53% 與 78%)。相同地添加硫代硫酸鈉鹽 (60 kg/ha) 於甘藍菜與綠花椰菜方面,也能有效提升其總硫配醣體的含量、清除自由基與抑制癌細胞生長的能力。在甘藍菜芽方面抑制Hep G2 與 CT-26 的抑制率分別為 72% 與 84%,而在綠花椰菜芽方面的抑制率則分別為 67% 與 77%。因此在添加不同的含硫鹽類於十字花科植物芽菜上皆能有效地提升其抗癌活性的能力。 | zh_TW |
| dc.description.abstract | Edible sprouts are one of the potentially new functional foods. Especially, cruciferous sprouts contain high concentration of glucosinolates, which are potent source of protective chemicals against cancer. Glucosinolates can induce the phase II enzyme system thus inhibiting the growth of tumor. Besides, it has been observed that supplementing the nutrient medium (water/soil) of sprouting seeds can be of great benefit for improving the nutritional quality of the sprouts. The purpose of our efforts was to enhance the antioxidant and anticancer properties of cruciferous sprouts by supplementing the growth medium with different sulphur salts (ammonium sulfate, magnesium sulfate and sodium thiosulfate), which could increase the main concentration of the bioactive compounds – glucosinolates. Three cruciferous sprouts used in our studies namely, cabbage, broccoli and radish, showed an increase in glucosinolates content during sprouting with a maximum at day 12. Sulfur salt concentrations were optimized and finally used at 20, 40 and 60 kg/ha, where the sprout yield was not adversely affected by salt concentrations. In case of radish sprouts supplemented with sodium thiosulfate (60 kg/ha), the aqueous extracts showed higher glucosinolate content (1.996 mM) than ethanolic extract (0.699 mM). Also there was a 5.58 fold increase as compared to control. Further it showed very good DPPH and ABTS+. scavenging activity, i.e., 89% and 96% respectively. The anticancer activity of radish aqueous extract was also check and was found to suppress the growth of Hep G2 hepatoma cells by 53% and CT-26 colon cancer cells by 78%. Similar increase of glucosinolate content and free radical scavenging activity were obtained in case of cabbage and broccoli sprouts. Accordingly, the cancer cell inhibition for cabbage sprouts was found to be 72% and 84% for Hep G2 and CT-26 cells, respectively. While for broccoli sprouts the cancer cell inhibition was found to be 67% and 77% for Hep G2 and CT-26 cells, respectively. Thus the supplementation of different cruciferous sprouts with sulfur salts was found to be very effective in increasing their anticancer properties against different cancer cell lines. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:33:43Z (GMT). No. of bitstreams: 1 ntu-98-R96641004-1.pdf: 1973586 bytes, checksum: 88bbd0dc4739eb54da77728f6db4922f (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 目錄
摘要……………………………………………………………………………….................Ⅰ Abstract………………………………………………………………………………………………...Ⅱ 目錄………………………………………………………………………………………………………Ⅳ 圖目錄……………………………………………………………………………………………….......Ⅴ 表目錄……………………………………………………………………………………………….......Ⅵ 壹、文獻回顧 1 一、 癌症 (Cancer) 1 二、 芽 (Sprout) 2 三、十字花科植物 (Cruciferous plant) 3 1. 甘藍菜 (Cabbage) 4 2. 綠花椰菜 (Broccoli) 6 3. 蘿蔔 (Radish) 9 四、硫配醣體 (Glucosinolate) 10 1. 來源與化學結構 10 2. 影響硫配醣體含量的因子 12 3. 硫配醣體的水解 12 4. 硫配醣體的分析方法 14 五、解毒酵素系統 (Xenobiotic metabolizing enzyme system) 15 六、營養補充 (Supplement) 17 貳、研究目的 19 參、實驗架構 20 肆、材料與方法 21 一、實驗材料 21 二、實驗方法 24 伍、結果與討論 31 一、芽菜的培養 31 1. 芽菜生長條件 31 2. 芽菜培養天數對於硫配醣體含量的影響 34 二、芽菜對含硫鹽類溶液的耐受性 36 三、芽菜中總硫配醣體之萃取方式與其抗氧化和抑制癌細胞生 長之評估 38 1. 蘿蔔嬰 38 2. 甘藍菜 48 3. 綠花椰菜 55 陸、總結 62 柒、參考文獻 64 圖目錄 圖一 甘藍菜之外觀 5 圖二 綠花椰菜的外觀 7 圖三 蘿蔔的外觀 9 圖四 硫配醣體與 sinalbin 的基本結構 11 圖五 硫配醣體 (glucosinolate) 的水解過程 13 圖六 人體內的解毒酵素系統 16 圖七 硫在植物體內的代謝路徑 18 圖八 在給予芽菜以日溫 25℃ ± 1℃,夜溫 20℃ ± 1℃,濕度 70 ~ 95%,自然太陽光照的環境條件下培養十二天,芽菜生長長度的變化 32 圖九 在給予芽菜以日溫 25℃ ± 1℃,夜溫 20℃ ± 1℃,濕度 70 ~ 95%,自然太陽光照的環境條件下培養十二天,芽菜生長重量的變化 33 圖十 硫配醣體標準品 – sinigrin 的標準曲線。 35 圖十一 添加三種不同含硫鹽類溶液的各種不同濃度下培養芽菜十二天後其重量的變化 37 圖十二 蘿蔔嬰添加三種不同含硫鹽類溶液的不同濃度下培養十二天後其酒精萃取中硫配醣體含量的變化 42 圖十三 蘿蔔嬰添加三種不同含硫鹽類溶液的不同濃度下培養十二天後其水萃液中總硫配醣體含量的變化 43 圖十四 蘿蔔嬰添加三種不同含硫鹽類溶液的不同濃度下培養十二天後其水萃液對 DPPH 自由基的清除率 44 圖十五 蘿蔔嬰添加三種不同含硫鹽類溶液的不同濃度下培養十二天後其水萃液對 ABTS+• 自由基的清除率 45 圖十六 蘿蔔嬰添加三種不同含硫鹽類溶液的不同濃度下培養十二天後其水萃液抑制 Hep G2 細胞生長之影響 46 圖十七 蘿蔔嬰添加三種不同含硫鹽類溶液的不同濃度下培養十二天後其水萃液抑制 CT-26 細胞生長之影響 47 圖十八 甘藍菜芽添加三種不同含硫鹽類溶液的不同濃度下培養十二天後其水萃液中總硫配醣體含量的變化 50 圖十九 甘藍菜芽添加三種不同含硫鹽類溶液的不同濃度下培養十二天後其水萃液對 DPPH 自由基的清除率 51 圖二十 甘藍菜芽添加三種不同含硫鹽類溶液的不同濃度下培養十二天後其水萃液對 ABTS+• 自由基的清除率 52 圖二十一 甘藍菜芽添加三種不同含硫鹽類溶液的不同濃度下培養十二天後其水萃液抑制 Hep G2 細胞生長之影響 53 圖二十二 甘藍菜芽添加三種不同含硫鹽類溶液的不同濃度下培養十二天後其水萃液抑制 CT-26 細胞生長之影響 54 圖二十三 綠花椰菜芽添加三種不同含硫鹽類溶液的不同濃度下培養十二天後其水萃液中總硫配醣體含量的變化 57 圖二十四 綠花椰菜芽添加三種不同含硫鹽類溶液的不同濃度下培養十二天後其水萃液對 DPPH 自由基的清除率 58 圖二十五 綠花椰菜添加三種不同含硫鹽類溶液的不同濃度下培養十二天後其水萃液對 ABTS+• 自由基的清除率 59 圖二十六 綠花椰菜芽添加三種不同含硫鹽類溶液的不同濃度下培養十二天後其水萃液抑制 Hep G2 細胞生長之影響 60 圖二十七 綠花椰菜芽添加三種不同含硫鹽類溶液的不同濃度下培養十二天後其水萃液抑制 Hep G2 細胞生長之影響 61 表目錄 表 一 十字花科植物中含有具有潛力的抗癌成分與特性 8 表 二 不同濃度含硫鹽類溶液的配置方法..……………………………….25 | |
| dc.language.iso | zh-TW | |
| dc.subject | 硫配醣體 | zh_TW |
| dc.subject | 芽 | zh_TW |
| dc.subject | 甘藍菜 | zh_TW |
| dc.subject | 花椰菜 | zh_TW |
| dc.subject | 蘿蔔嬰 | zh_TW |
| dc.subject | 硫鹽 | zh_TW |
| dc.subject | broccoli | en |
| dc.subject | sulphur salt | en |
| dc.subject | radish | en |
| dc.subject | sprout | en |
| dc.subject | cabbage | en |
| dc.subject | glucosinolates | en |
| dc.title | 探討添加三種不同的含硫鹽類以加強十字花科植物芽菜的抗癌活性 | zh_TW |
| dc.title | Enhancement of anticancer properties of cruciferous sprouts by supplementing with different sulphur salts | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫璐西(Lucy Sun Hwang),沈立言(Lee-Yan Sheen),呂廷璋(Ting-Jang Lu),許輔(Fu Sheu) | |
| dc.subject.keyword | 芽,硫配醣體,甘藍菜,花椰菜,蘿蔔嬰,硫鹽, | zh_TW |
| dc.subject.keyword | sprout,glucosinolates,cabbage,broccoli,radish,sulphur salt, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
