Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22858
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林唯芳(Wei-Fang Su)
dc.contributor.authorYa-Wen Suen
dc.contributor.author蘇雅雯zh_TW
dc.date.accessioned2021-06-08T04:30:58Z-
dc.date.issued2009
dc.date.submitted2009-11-18
dc.identifier.citationChapter 1
[1] S. D. Dingman, N. P. Rath, P. D. Markowitz, P. C. Gibbons, W. E. Buhro, Angew. Chem. Int. Ed. 2000, 39, 1470.
[2] H. Parala, A. Devi, F. Hipler, , E. Maile, A. Birkner, H. W. Becker, R. A. Fischer, J. Cryst. Growth 2001, 231, 68.
[3] N. Takahashi, A. Niwa, T. Takahashi, T. Nakamura, M. Yoshika, Y. Momose,
J. Mater. Chem. 2002, 12, 1573.
[4] K. Kawasaki, D. Yamazaki, A. Kinoshita, H. Hirayama, K. Tsutsui, and Y. Aoyagi, Appl. Phys. Lett., 2001, 79, 2243.
[5] S. F. Hu, , W. Z. Wong, , S. S. Liu, , Y. C. Wu, , C. L. Sung, , T. Y. Huang, , and T. J. Yang, , Adv. Mater., 2002, 14, 736.
[6] M. Bockrath, , D. H. Cobden, , P. L. McEuen, , N. G. Chopra, , A. Zettl, , A. Thess, , R. E. Smalley, , Science, 1977, 275, 1922.
[7] H. Ishikuro, T. Hiramoto, Applied Physics Letters , 1997, 71, 3691.
[8] C.W. Wang, C. Y. Pan, H. C. Wu, P. Y. Shih, C. C. Tsai, K. T. Liao, L. L. Lu, W. H. Hsieh, C. D. Chen, and Y. T. Chen, Small, 2007, 3(8), 1350.
[9] C. S. Wu, Chen , C. D., Shih, S. M., Su, W. F., Appl. Phys. Lett , 2002, 81, 4595.
[10] M. S. Hu, W. M. Wang, T. T. Chen, L. S. Hong, C. W. Chen, C. C. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, Advanced Functional Materials, 2006, 16, 537.
[11] M. C. Lin, C. J. Chu, L. C. Tsai,| H. Y. Lin, C. S. Wu, X Y. P. Wu, Y. N. Wu, D. B. Shieh, Y. W. Su, and C. D. Chen, Nano Letters, 2007, 7, 3656.
Chapter 2
[1] G. W. Sears, Acta Metall. 1955, 3, 367.
[2] A. G., Bhuiyan, A., Hashimoto, A., Yamamoto, J. Appl. Phys. 2003, 94, 2779.
[3] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, Y. Nanishi, Appl. Phys. Lett. 2002, 80, 3967.
[4] S. Strite and H. Morkoc, J. Vac. Sci. Technol. B, 1992, 10, 1237.
[5] O. Ambacher, J. Phys. D 1998, 31, 2653.
[6] I. Akasaki, H. Amano, N. Koide, M. Kotaki, and K. Manabe, Physica B, 1993, 185, 428.
[7] S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys., Part 2 1993, 32, L8.
[8] S. K. O’Leary, B. E. Foutz, M. S. Shur, U. V. Bhapkar, and L. F. Eastman, J. Appl. Phys. 1998, 83, 826.
[9] V. W. L. Chin, T. L. Tansley, and T. Osotchan, J. Appl. Phys. 1994, 75, 7365.
[10] E. Bellotti, B. K. Doshi, K. F. Brennan, J. D. Albrecht, and P. P. Ruden, J. Appl. Phys. 1999, 85, 916.
[11] B. E. Foutz, S. K. O’Leary, M. S. Shur, and L. F. Eastman, J. Appl. Phys. 1999, 85, 7727.
[12] A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto, Sol. Energy Mater. Sol. Cells, 1994, 35, 53.
[13]I. Mahboob, T.D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, Physical Review Letters., 2004, 92, 36804-1.
[14] J. Zhang, L. Zhang, X. Peng, X. F. Wang, J. Mater. Chem. 2002, 12, 802.
[15] Z. H. Lan, W.M. Wang, C. L. Sun, S. C. Shi, C. W. Hsu, T. T. Chen, K.H. Chen, C. C. Chen, Y. F. Chen, L.C. Chen, J. Cryst. Growth, 2004, 269, 87.
[16] L. W. Yin, Y. Bando, D. Golberg, M. S. Li, Adv. Mater. 2004, 16, 1833.
[17] O Briot, B Maleyre and S Ruffenach, Appl. Phys. Lett., 2003, 83, 2919.
[18] S. D. Dingman, N. P. Rath, P. D. Markowitz, P. C. Gibbons, W. E. Buhro, Angew. Chem. Int. Ed. 2000, 39, 1470.
[19] H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, R. A. Fischer, J. Cryst. Growth 2001, 231, 68.
[20] N. Takahashi, A. Niwa, T. Takahashi, T. Nakamura, M. Yoshika, Y. Momose, J. Mater. Chem. 2002, 12, 1573.
[21] R. Juza and H. Hahn, Z. Anorg. Allg. Chem. 1938, 239, 282.
[22] A. Wakahara and A. Yoshida, Appl. Phys. Lett. 1989, 54, 709.
[23] A. Wakahara, T. Tsuchiya, and A. Yoshida, J. Cryst. Growth, 1990, 99, 385.
[24] Y. Saito, H. Harima, E. Kurimoto, T. Yamaguchi, N. Teraguchi, A. Suzuki, T. Araki, and Y. Nanishi, Phys. Status Solidi B 2002, 234, 796.
[25] M. S. Hu, W. M. Wang, T. T. Chen, L. S. Hong, C. W. Chen, C. C. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, Advanced Functional Materials, 2006, 16, 537.
[26] I. Mahboob, T.D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, Physical Review Letters., 2004, 92, 36804-1.
[27] A. I. Kingon, J. P. Maria, S.K. Streiffo, Nature, 2000, 406, 1032.
[28] L. Zhuang, L. Guo, S.Y. Chou, Applied Physics Letters , 1998, 72, 1205.
[29] H. van Houten, C.W.J. Beenakker, A.A.M. Staring, Coulomb-blockade oscillations in semiconductor nanostructures, in: H. Grabert, M.H. Devoret (Eds.), Single Charge Tunneling, Plenum Press, New York, 1992, p. 167.
[30] M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, Smalley, R. E., Science, 1977, 275, 1922
[31] S. D. Franceschi, J. A. van Dam, E. P. A. M. Bakkers, L. F. Feiner, L. Gurevich, and L. P. Kouwenhoven, 2003, Appl. Phys. Lett., 2003, 83, 344.
[32] K. Kawasaki, D. Yamazaki, A. Kinoshita, H. Hirayama, K. Tsutsui, and Y. Aoyagi, Appl. Phys. Lett., 2001, 79, 2243.
[33] S. D. Franceschi, J. A. van Dam, E. P. A. M. Bakkers, L. F. Feiner, L. Gurevich, and L. P. Kouwenhoven, 2003, Appl. Phys. Lett., 2003, 83, 344.
[34] K. Matsumoto, M. Ishii, K. Segawa, Y. Oka, Y. B. Vartanian, and J. S. Harris, Appl. Phys. Lett., 1996, 68, 34.
[35] S. F. Hu, W. Z. Wong, S. S. Liu, Y. C. Wu, C. L. Sung, T. Y. Huang, and T. J. Yang, Adv. Mater., 2002, 14, 736
[36] Y. F. Hsiou, Y. J. Yang, L. Stobinski, Watson Kuo, C. D. Chen, Applied Physics Letters , 2004, 84, 984.
[37] S. D. Dingman, N. P. Rath, P. D. Markowitz, P. C. Gibbons, W. E. Buhro, Angew. Chem. Int. Ed. 2000, 39, 1470.
[38] H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, R. A. Fischer, J. Cryst. Growth 2001, 231, 68.
[39] N. Takahashi, A. Niwa, T. Takahashi, T. Nakamura, M. Yoshika, Y. Momose, J. Mater. Chem. 2002, 12, 1573.
[40] J. Kong, N.R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Science, 2000, 287, 622.
[41] V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, Nano Letters, 2001, 1, 453.
[42] Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science, 2001, 293, 1289.
Y. Cui, X. Duan, J. Hu, C. M. Lieber, J. Phys. Chem. B, 2000, 104, 5213.
[43] Y. Cui, C. M. Lieber, Science 2001, 291, 851.
[44] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature 2001, 409, 66.
[45]4. F. Seker, K. Meeker, T. F. Kuech, A. B. Ellis, Chem. Rev. 2000, 100, 2505.
[46] C. W. Wang, C.Y. Pan, H. C. Wu, P. Y. Shih, C. C. Tsai, K. T. Liao, L. L. Lu, W. H. Hsieh, C. D. Chen, Y. T. Chen, small, 2007, 3, 1350.
[47] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, R. S. Williams, Nano Letters, 2004, 4, 245.
[48] K. Nauka, T. I. Kamins, J. Electrochem. Soc. 1999,146, 292.
[49] M. Stutzmann, J. A. Garrido, M. Eickhoff, & Brandt, Phys. Stat. sol. (a) 2006, 203, 3424.
[50] M. Hu, S. Noda, T. Okubo, Y. Yamaguchi, & H. Komiyama, Applied Surface Science , 2001, 181, 307.
[51] M. A. Henderson, J. M. White, H. Uetsuka, & H. Onishi, J. Am. Chem. Soc. 2003, 125, 14974.
[52] K. M. R., Kallury, U. J. Krull, & M. Thompson, Anal. Chem. 1988, 60, 169.
[53] J. A. Howarter, & J. P. Youngblood, Macromolecules , 2007, 40, 1128.
[54] J. Xiang, P. Zhu, Y. Masuda, & K. Koumoto, Langmuir , 2004, 20, 3278.
[55] W. R. Ashurst, C. Yau, C. Carraro, R. Maboudian, & M. T. Dugger, Journal of Microelectromechanical Systems , 2001, 10, 41.
[56] M. Pursch, D. L. Vanderhart, L. C. Sander, X. Gu, T. Nguyen, S. A. Wise, & D. A. Gajewski, J. Am. Chem. Soc. 2000, 122, 6997.
[57] P. Harder, K. Bierbaum, Ch. Woell, M. Grunze, Langmuir 1997, 13, 445.
[58] Z. Zhong, Y. Fang, W. Lu, C. M. Lieber, Nano Lett. 2005, 5, 1143.
[59] F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, C. M. Lieber, PNAS , 2004, 101, 14017.
[60] J. I. Hahm, C. M. Lieber, Nano Lett., 2004, 4, 51.
[61] Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science, 2001, 293, 1289.
[62] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, R. S. Williams, Nano Lett. 2004, 4, 245.
[63] G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, C. M. Lieber, Nat. Biotechnol., 2005, 23, 1294.
Chapter 3
[1] Y. Li, F. Qian, J. Xiang, and C.M. Lieber, Materials Today , 2006, 9, 18.
[2] Q. X. Guo, M. Nishio, H. Ogawa et.al, Phys. Rev. B ,1998, 58, 15304.
[3] J. Wu, W. Walukiewicz, K. M. Yu et.al, Appl. Phys. Lett., 2002, 80, 3967.
[4] T. L. Tansley and C. P. Foley, J. Appl. Phys., 1986, 59, 3241.
[5] B. L. Al’tshuler, V. E. Kravtsov, and I. V. Lerner, JETP Lett., 1986, 43, 441.
[6] M. S. Hu,W. M. Wang, T. T. Chen et.al , Adv. Funct. Mater., 2006, 16, 537.
[7] I. Mahboob, T. D. Veal, C. F. McConville et.al Phys. Rev. Lett., 2004, 92, 36804.
[8] I. Mahboob, T. D. Veal, L. F. J. Piper et.al Phys. Rev. B, 2004, 69, 201307.
[9] C. Y. Chang, G. C. Chi, W. M. Wang, Appl. Phys. Lett., 2005, 87, 93112.
[10] P. Sheng, Phys. Rev. B, 1980, 21, 2180.
Y. H. Lin, S. P. Chiu and J. J. Lin, Nanotechnology, 2008, 19, 365201.
[11] M.M. Fogler, S.V. Malinin and T.Nattermann, Phys. Rev. Lett. 2006, 97, 096601.
[12] A. L. Efros and B. I. Shklovskii, J. Phys.C: Solid State Phys., 1975, 8, 49; S. Beloborodov, A. V. Lopatin, et.al, Rev. Mod. Phys., 2007, 79, 469.
[13] W. Eiler, Jour. Low Temp.Phys. 1984, 56,481.
[14] P. A. Lee and A. D. Stone, Phys. Rev. Lett. 1985, 55, 1622.
[15] C. W. Beenakker and H. van Houten, Phys. Rev. B, 1988, 37, 6544.
[16] W. J. Skocpol, Physica scripta, 1987, T19, 95.
[17] C. W. J. Beenakker and H. van Houton, Solid state physics, 1991, 44, 1.
[18] Ch. Blomers, Th. Schapers, T. Richter, R. Calarco, H. Luth and M. Marso, Appl. Phys. Lett. 2008, 92, 132101.
Ch. Blomers, Th. Schapers, T. Richter, R. Calarco, H. Luth and M. Marso, Phys. Rev B, 2008, 77, 201301(R).
[19] Onsager, Phys. Rev. 1931, 38, 2265.
H. B. G. Casimir, Rev. Mod. Phys. 1945, 17, 343.
[20] A. Anaya, M. B. Bowman, A. L. Korotkov et.al, Phy. Rev. B, 2005, 72, 35452.
[21] S. B. Kaplan, Phys. Rev. B, 1988, 38, 7558.
[22] Z. W. Jia, W. Z. Shen, H. Ogawa and Q. X. Guo, Appl. Phys. Lett. 2004, 89, 232107.
[23] U. Murek, R. Schafer, W. Langheinrich, Phys. Rev. Lett. 1993, 70, 841;
P. A. M. Holweg, J. A. Kokkedee, J. Caro, A. H. Verbruggen, S. Radelaar, A. G. M. Jansen and P. Wyder, Phys. Rev. Lett. 1991, 67, 2549.
[24] C.S. Yang, C.Zhang, J. Redepenning,B. Doudi, Appl. Phys. Lett. 2004, 84, 2865.
[25] M. Viret, S. Berger, M. Gabureac et.al, Phys. Rev. B, 2002, 66, 220401.
[26] E. Y. Tsymbal, A. Sokolov, I. F. Sabirianov and B. Doudin, Phys. Rev. Lett. 2003, 90, 186602.
[27] R.P. Tan, J.Carrey, C.Desvaux, J.Grisolia, P.Renaud, B.Chaudret and M.Respaud, Phys. Rev. Lett. 2007, 99, 176805.
[28] K. Hamaya, M. Kitabatake, M. Jung, M. Kawamura, S. Ishida, T. Taniyama, K. Hirakawa, Y. Arakawa, and T. Michida, Appl. Phys. Lett. 2008, 93, 222107.
[29] L. K. Castelano, G. Q. Hai and M. T. Lee, Phys. stat. sol.(c) 2007, 4, 466.
[30] B. Solleder, C. Lemell, K. Tokesi, N. Hatcher and J. Burgdorfer, Phys. Rev B , 2007, 76, 075115.
Chapter 4
[1] Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Materials Today , 2006, 9, 18.
[2] J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan and C. M. Lieber, Nature, 2006, 441, 489.
[3] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y.Saito and Y. Nanishi , Appl. Phys. Lett. 2002, 80, 3967.
[4] M. S .Hu, W. M. Wang, T. T. Chen, L. S. Hong, C. W. Chen, C. C. Chen, Y. F. Chen, K. H. Chen and L. C. Chen, Adv. Funct. Mater. 2006, 16, 537.
[5] H.Grabert,. and M. H.Devoret, ‘Single Charge Tunneling’, (Plenum Press, New York, 1992), Vol. 294.
[6] I. Mahboob, T. D. Veal, L. F. J. Piper, C. F. McConville, H. Lu, W. J. Schaff, J. Furthmüller and F. Bechstedt, Phys. Rev. B, 2004, 69, 201307.
[7] I. Mahboob, T. D. Veal, C. F. McConville, H. Lu and W. J. Schaff, Phys. Rev. Lett., 2004, 92,036804.
[8] F. Werner, F. Limbach, M. Carsten, C. Denker, J. Malindretos and A. Rizzi, Nano Lett., 2009, 9, 1567.
[9] V. Houten and C. W. J. Beenakker, Phys. Rev. Lett., 1989, 63, 1893.
[10] L. I. Glazman and V. Chandrasekhar, Euro. Phys. Lett., 1992, 19, 623.
Chapter 5
[1] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, Y. Nanishi, Appl. Phys. Lett. 2002, 80, 3967.
[2] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, J. Appl. Phys. 2003, 94, 6477.
[3] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett., 2002, 81, 1246.
[4] K. Xu, and A. Yoshikawa, Appl. Phys. Lett , 2003, 83, 251.
[5] I. Mahboob, T. D. Veal, C. F. McConville, H. Lu and W. J. Schaff, Phys. Rev. Lett., 2004, 92, 036804.
[6] C. L. Wu, H. M. Lee, C. T. Kuo, C. H. Chen, and S. Gwo, Phys. Rev. Lett., 2008, 101, 106803..
[7] T. Inushima, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, S. Motokawa, and S. Ohoya, J. Cryst. Growth, 2001, 227, 481.
[8] K. Murano, T. Inushima, Y. Ono, T. Shiraishi, S. Ohoya, and S. Yasaka, Phys. Status Solidi B, 2001, 228, 31.
[9] T. Inushima, N. Kato, Y. Sasaki, T. Takenobu, and M. Motokawa, Phys. Status Solidi C, 2005, 2, 2271.
[10] T. Inushima, M. Higashiwaki, T. Matsui, T. Takenobu, and M. Motokawa,
Phys. Rev. B, 2005, 72, 085210.
[11] T. Inushima, N. Kato, D. K. Maude, H. Lu, W. J. Schaff, R. Tauk, Y. Meziani, S. Ruffenack, O. Briot, W. Knap, B. Gil, H. Miwa, A. Yamamoto, D. Muto, Y. Nanishi, M. Higashiwaki, and T. Matsui, Phys. Status Solidi B 2006, 243, 1679.
[12] T. Inushima, Sci. Technol. Adv. Mater., 2006, 7, S112.
[13] T. Inushima, N. Kato, T. Takenobu, M. Motokawa, M. Higashiwaki, and T. Matsui, J. Phys.: Conf. Ser., 2006, 51, 279.
[14] T. Inushima, N. Kato, T. Takenobu and M. Motokawa, Phys. Stat. Sol. (a), 2006, 203, 80.
[15] D. C. Ling, J. H. Cheng, Y. Y. Lo, C. H. Du, A. P. Chiu, C. A. Chang, and P. H. Chang, Phys. Stat. Sol. (b), 2007, 244, 4594.
[16] M. S. Hu, W. M. Wang, T. T. Chen, L. S. Hong, C. W. Chen, C. C. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, Adv. Funct. Mater., 2006, 16, 537.
[17] S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerlings and C. Dekker, Nature, 1997, 386, 474.
[18] Y. W. Su, K. Aravind, C. S. Wu, Watson Kuo, K. H. Chen, L. C. Chen and K. S. Chang-Liao, W. F. Su and C. D. Chen, J. Phys. D: Appl. Phys., 2009, 42, 185009.
[19] D. H. Douglass, Phys. Rev. Lett., 1961, 6, 346.
[20] M. Tinkham, Introduction to superconductivity, 2nd edition, 18-19, Dover publications, Inc , 1996.
[21] T. Inushima, T. Sakon, and M. Motokawa, J. Cryst. Growth, 2004, 269, 173.
[22] H. S. J. van der Zant, W. J. Elion, L. J. Geerligs, and J. E. Mooij, Phys. Rev. B, 1996, 54, 10081.
[23] C. T. Liang, Z. H. Sun, C. L. Hsiao, M. Z. Hsu, L. W. Tu, J. Y. Lin, J. H. Chen, Y. F. Chen and C. T. Wu, Appl. Phys. Lett., 2007, 90, 172101.
[24] P. Yang and C. M. Lieber, Science 1996, 273, 1836.
[25] M. Tian, J. Wang, J. Snyder, J. Kurtz, Y. Liu, P. Schiffer, T. E. Mallouk, and M. H. W. Chan, Appl. Phys. Lett., 2003, 83, 1620.
Chapter 6
[1] F. Fixe, H. M. Branz, N. Louro, , V. Chu, D. M. F. Prazeres, and J. P. Conde, Nanotechnology, 2005, 16, 2061.
[2] M. A. Holden, S. Kumar, , A. Beskok, and P. S. Cremer, J.Micromech. Microeng. 2003, 13, 412.
[3] L. Tan, Y. P. Kong, L.-R. Bao, X. D. Huang, L. J. Guo, S. W. Pang, and A. F. Yee, J. Vac. Sci. Technol.B, 2003, 21, 2742.
[4] J. A. Howarter, and J. P. Youngblood, Langmuir, 2006, 22, 11142.
[5] F. Fixe, , M. Dufva, , P. Telleman, and C. B. V. Christensen, Nucleic Acids Research 2004, 32, e9.
[6] A. Simon, , T. Cohen-Bouhacina, , M. C. Porte, , J. P. Aime, and C. Baquey, Journal of Colloid and Interface Science 2002, 251, 278.
[7] D. Miksa, , E. R. Irish, , D. Chen, , R. J. Composto, and D. M. Eckmann, Biomacromolecules 2006, 7, 557.
[8] K. Bierbaum, , M. Kinzler, , C. Woell, , M. Grunze, , G. Haehner, , S. Heid, and F. Effenberger, Langmuir 1995, 11, 512.
[9] A. Y. Fadeev, and T. J. McCarthy, Langmuir 2000, 16, 7268.
[10] A. A. Golub, , A. I. Zubenko, and B. V. Zhmud, Journal of Colloid and Interface Science 1996, 179, 482.
[11] T. Sakata, and Y. Miyahara, Chem. Bio. Chem. 2005, 6, 703.
[12] F. Fixe, V. Chu, D. M. F. Prazeres, and J. P. Conde, Nucleic Acids Research 2004, 32, e70.
[13] N. Crampton, W. A. Bonass, J. Kirkham, & N. H. Thomson, Langmuir 2005, 21, 7884.
[14] F. Fixe, A. Faber, D. Goncalves, , D. M. F. Prazeres, R. Cabeca, V. Chu, G. Ferreira, J.P. Conde, Mat. Res. Soc. Symp. Proc. 2002, 723, O2.3.
[15] J. Zhang, Y. Ma, S. Stachura, and H. He, Langmuir 2005, 21, 4180.
[16] P. Acharya, P. Cheruku, S. Chatterjee, S. Acharya, and J. Chattopadhyaya, J. Am. Chem. Soc. 2004, 126, 2862.
[17] D. O. Jordan, The Nucleic Acid, vol. 1. Academic Press 1955, p 447.
[18] D. Vashaee, A. Shakouri, J. Goldberger, T. Kuykendall, P. Pauzauskie, P. Yang, J. Appl. Phys. 2006, 99, 54310.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22858-
dc.description.abstract由材料組成的一維奈米線具有潛力成為下個世代的電子元件。一方面,由一維奈米線組成的元件展現出具有極好的傳輸現象,其可以介觀物理學來解釋,而非以傳統普遍常見的歐姆定律來解釋。在另一方面,一維半導體奈米線也是理想的電荷感應器,因為他們具有非常大的表面積。在本論文中,分別討論一維氮化銦奈米線的傳輸現象與矽奈米線於分子感應器的應用。
由於表面積對體積比值較大的條件下,氮化銦奈米線的傳輸特性幾乎由圍繞著表面電子來決定。因為相對低密度,電子與電子之間的交互作用是顯而易見的。這些表面電荷的移動可以由介觀物理學來解釋,其中包含:電子本身顯著的波動與不可忽略的長程電子關連性。在我們研究的氮化銦元件中,在低溫的電子傳輸行為變化多半取決於電極-奈米線接觸及缺陷結構。氮化銦奈米線伴隨著雜質/缺陷分佈,表現出磁致電阻擾動現象;在高接觸電阻下,奈米線中電子的強侷限效應造成了庫侖阻斷發生,另外也量測到穿隧接觸型態的超導現象。較完整且詳細的結果,將在下列幾章節中討論。
在感應器應用上,我們利用在奈米線的表面修飾具有反應末端基的分子,藉由在待測的矽奈米線導電度的變化,來偵測分子中電荷的改變。在我們的研究中,矽奈米線被使用作為研究其表面分子形成極化的特性行為,並用來檢測互補的單股-去氧核醣核酸分子的雜交。進一步的,我們發現在外加電場下,極化的表面修飾分子會規則排列,分子規則的程度可以由在分子下方的矽奈米線測得。
一維奈米線是個極有趣的題材,不僅因為他具有多方面的傳輸現象可以成為最佳的介觀物理學研究對象,而且,高靈敏度的特性,可用來偵測分子級的反應。由於它的高電荷-靈敏度,將一維奈米線合併入現代的半導體積體電路電子元件中,將有希望出現嶄新的電子元件紀元。
zh_TW
dc.description.abstractOne-dimensional (1D) nanowires fabricated from different materials are potential candidates for the next generation of electronic devices. On the one hand, devices based on 1D nanowires exhibit fascinating transport phenomena which can be described in the context of mesoscopic physics rather than the well-known Ohm’s law. On the other hand, 1D semiconductor wires are ideal charge sensors due to their relatively large surface area. In this thesis, electron transport properties in 1D InN nanowires and sensor application using Si-nanowires are investigated.
Owing to the large surface-to-volume ratio, the transport characteristics of InN nanowires are generally governed by the surface charges. Because of relatively low density, the electron-electron interaction is noticeable. The motion of these surface charges can be described by mesoscopic physics in which, electron wave nature is notable and long-range electron correlation cannot be overlooked. In the 1D nanowire devices that we studied, the low temperature transport behaviors were depending on the lead-wire contacts and the wire defects. For devices with low contact resistances, the wires exhibited magnetoresistance fluctuations associated with weak disorder system, and for devices with high contact resistances, Coulomb blockade behaviors due to strong localization of electrons in the wires were generally observed. Furthermore, we also found superconductivity in an individual InN nanowire.
When the 1D nanowire is fabricated into a sensor, its surface is modified with an active target molecular layer, and the variation in the molecular charge is reflected by a change in the wire conductance. In our study, silicon nanowires are employed to characterize the polarization of surface molecules and to detect the hybridization between complimentary single-stranded DNA molecules. Furthermore, we showed it is possible to order the surface molecules by an external electric field, and the degree of ordering can be detected by the underneath nanowire.
1D nanowire is an interesting subject to investigate not only because of its rich transport phenomena that provide a good playground for studying mesoscopic physics, but also the high-sensitivity that allows detection of reactions at molecular levels. With its high charge-sensitivity, the incorporation of 1D nanowire with current CMOS electronic devices may results in an innovative era for future semiconductor electronics.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:30:58Z (GMT). No. of bitstreams: 1
ntu-98-D92527011-1.pdf: 2375341 bytes, checksum: b2d863e9f6b71a98d8eb9d2090c9a17c (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要...................................................2
Abstract...................................................4
Contents...................................................6
List of Figure.............................................8
Chapter...................................................121Motivation...............................................12References................................................14
Chapter 2 Introduction....................................15
2.1 InN nanowire..........................................15
2.1.1 Important properties of InN.........................15
2.1.2 Synthesis of InN....................................20
2.2 Single-electron transistor (SET).....................22
2.2.1 Characteristics of SET..............................22
2.2.2 Nanowire based SET..................................24
2.3 Field effect transistor (FET) based sensors...........25
2.3.1 Nanowire sensor.....................................25
2.3.2 Silicon-On-Insulator (SOI) substrate................34
2.3.3 Organo-silanization on Si surface..................35
2.3.4 Silicon nanowire sensor.............................37
2.4 References................................................39
Chapter 3 Magnetoresistance Fluctuations in a Weak Disorder Indium Nitride Nanowire...................................45
3.1 Introduction..........................................45
3.2 Experimental procedure................................46
3.3 Results and discussion................................47
3.4 Summary...............................................57
3.5 References............................................58
Chapter 4 Coulomb blockade behavior in an indium nitride nanowire with disordered surface states...................61
4.1 Introduction..........................................61
4.2 Experimental procedure................................62
4.3 Results and discussion................................63
4.4 Summary...............................................72
4.5 References............................................73
Chapter 5 Superconductivity in an indium nitride nanowire.74
5.1 Introduction..........................................74
5.2 Experimental procedure................................75
5.3 Results and discussion................................76
5.4 Summary...............................................85
5.5 References............................................86
Chapter 6 Control and detection of organosilane polarization on nanowire field-effect-transistors.........89
6.1 Experimental procedure................................89
6.1.1. Device fabrication.................................89
6.1.2. APTES modification procedures......................90
6.1.3. Immobilization of DNA molecules....................92
6.2 Results and discussion................................93
6.3 Summary..............................................112
6.4 References...........................................113
Chapter 7 Summary........................................115
Curriculum Vitae of Yawen Su.............................116
dc.language.isoen
dc.subject一維奈米線zh_TW
dc.subject去氧核醣核酸zh_TW
dc.subject介觀物理學zh_TW
dc.subject感應器zh_TW
dc.subject氮化銦奈米線zh_TW
dc.subject磁致電阻zh_TW
dc.subject矽奈米線zh_TW
dc.subjectOne-dimensional (1D) nanowiresen
dc.subjectmagnetoresistanceen
dc.subjectInN nanowireen
dc.subjectmesoscopic physicsen
dc.subjectpolarizationen
dc.subjectDNAen
dc.subjectsensoren
dc.title一維奈米線之電子傳輸特性與奈米線之分子反應檢測器zh_TW
dc.titleElectron Transport Properties of One-Dimensional Nanowire and the Study of Nanowire Sensoren
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree博士
dc.contributor.coadvisor陳啟東(Chii-Dong Chen)
dc.contributor.oralexamcommittee林麗瓊(Li-Chyong Chen),林宏一(Hung-Yi Lin),陳敏璋(Miin-Jang Chen),蔡麗珠(Li-Chu Tsai)
dc.subject.keyword一維奈米線,介觀物理學,氮化銦奈米線,磁致電阻,感應器,矽奈米線,去氧核醣核酸,zh_TW
dc.subject.keywordOne-dimensional (1D) nanowires,mesoscopic physics,InN nanowire,magnetoresistance,sensor,polarization,DNA,en
dc.relation.page106
dc.rights.note未授權
dc.date.accepted2009-11-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved