Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22818
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳錫侃(Shyi-Kaan Wu)
dc.contributor.authorYau-Ching Liauen
dc.contributor.author廖姚晴zh_TW
dc.date.accessioned2021-06-08T04:29:24Z-
dc.date.copyright2010-01-21
dc.date.issued2010
dc.date.submitted2010-01-19
dc.identifier.citation1. L. C. Chang and T. A. Read, Trans. AIME., 189, (1951), 47.
2. T. Tadk, K. Otsuka and K. shimizu, Ann. Rev. mater. Sci, 18, (1988), 25.
3. H. Kessler and W. Pitsch, Acta Met. 15, (1967), 401.
4. T. Saburi, S. Nenno and C. M. Wayman, ICOMAT-79, (1979), 619.
5. A. Nagasawa, K. Enami, Y. Ishino, Y. Abe and S. Nenno, Scripta Metall., 8, (1974), 1055.
6. T. Saburi and S. Nenno, Scripta Metall. 8, (1974), 1363.
7. T. A. Schroder and C. M. Wayman, Scripta Metall., 11, (1977), 225.
8. K. Enami A. Negasawa and S. Nenno, Scripta Metall., 9, (1975), 941.
9. L. Delaey and J. Thienel, in : Shape Memory Effects in Alloys, (J. Perkins, ed.), Plenum Press, New York, (1975), 341.
10. T. Saburi and S. Nenno, in : Proc. Int. Conf. On solid to Solid Phase Transformations, ASM, Metals Park, Ohio, (1982), 1455.
11. M. Nishida and T. Honma, Scripta Metall., 18, (1984), 1293.
12. M. Nishida and T. Honma, Scripta Metall., 18, (1984), 1299.
13. M. Nishida and C. M. Wayman, Scripta Metall., 18, (1984), 1389.
14. K. Otsua and K. Shimizu, Int. Met. Rev, 31, (1986), 93.
15. M. Nishida and T. Honma, ICOMAT-82 43, (1982), C4-225.
16. T. Honma, Proc, Guklin Symp. of Shape Memory Alloys, SMA 86 Guilin, China, (1986), 709.
17. T. Honma, ICOMAT-86, (1986), 709.
18. K. Otsuka and K. Shimizu, Metals Forum, 4, (1981), 142.
19. K. Otsuka and C. M. Wayman, in: Reviews on the Deformation Behavior of Materials, (P. Feltham ed.), Israel, (1977), 81.
20. K. Otsuka, in: Proc. Int. Conf. On Solid to Solid Phase Transformations, TMS-AIME Pittsburgh, Pa. (USA), (1981), 1267.
21. K. Otsuka, X. Ren, Intermetellics, 7, (1999), 511.
22. TB Massalski, H. Okamoto, PR. Subramanian, L. Kacprzak, Editors. Binary alloy phase diagrams, 2nd ed., vol. 3. Ohio: ASM International, (1990), 2875.
23. C. M. Jackson, H. J. Wagner, R. J. Wasilewski, Nasa-SP 5110, (1972).
24. K. Otsuka, S. Sawamura and K. Shimizu, Phys. Stat. Sol. 5, (1971), 457.
25. O. Matsumoto, S. Miyaaki, K. Otsuka and H. Tamura, Acta Mater. , (1987), 2137.
26. K. M. Knowls and K. A. Smith, Acta Mater., 29, (1981), 101.
27. D. P. Dautovich, G. R. Purdy, Can. Matall., 6, (1972), 115.
28. D. Bradley, J. Acoust, Soc. Am., 37, (1965), 700.
29. C. M. Wayman, I Cornelis, Scripta Metall., 6, (1972), 115.
30. H. C. Ling, R. Kaplow, Met. Trans., 11, (1980), A77.
31. D. P. Dautovich and G. R. Purdy, Can. Metall. Quart, 4, (1965), 129.
32. F. E. Wang, B. F. Desavage and W. I. Buehler, J. Appl. Phys., 39, (1968), 2166.
33. G. D. Sandrock, A. J. Perkin and R. F. Hechemann, Met. Trans., 2, (1971), 2769.
34. O. Mercier and K. N. Melten, Acta Met., 27, (1979), 1467.
35. H. C. Ling and R. Kaplow, Met. Trans., 12A , (1981), 2101.
36. E. Goo and R. Siinclair, Acta Met., 33, (1985), 1717.
37. S. K. Wu and H. C. Lin Scripta Met., 25, (1991), 1529.
38. C. M. Hwang, M. Meichle, M. B. Salamon and C. M. Wayman, Phys. Mag., A, 47, (1983), 31.
39. K. H. Eckelmeyer, Scripta Mater., 10, (1976), 677.
40. J. E. Hanlon, S. R. Butler and R. J. Wasilewski, Trans. Metall. Soc. AIME, 239, (1967), 1323.
41. T. Saburi, T. Tatsumi and S. Nenno, J. de Physique (Supp.) 43, (1982), C4-261.
42. T. Tadaki, Y. Nakata and K. Shimizu, Trans. JIM., 28, (1987), 883.
43. S. Miyazaki, Y. Igo and K. Otsuka, Acta Met., 34, (1986), 275.
44. M. Nishda and C. M. Wayman, Metallography, 21, (1988), 275.
45. G. Airoldi, G. Bellini and C. D. Franceso, J. Phys. F, 14, (1984), 1983.
46. H. S. Lin, S. K. Wu., T. S. Chou and H. P. Kuo, Acta Metall. Mater., Vol. 39 No. 9, (1991), 2069~2080.
47. C. M. Wayman, Proc. ICOMAT-89, Sydney, Australia, (1989), 519.
48. 黃兵民,哈爾濱工業大學博士論文,(1997)。
49. C. S. Zhang, Y. Q. Wang, U. X. Cheng, L. C. Zhao, Proc. First International Conference on Shape Memory and Superelastic Technologies, California, (1994), 383.
50. 黃兵民,蔡傳,趙連城,宇航材料工藝,27(5),(1997),24。
51. T. Saburi, S. Nenno, Proc. Intern. Conf. On Solid-Solid Phase Transformations, Pittsburgh, (1981), 1455.
52. T. Saburi, M. Yoshida, S. Nenno, Scr. Metall., 18, (1984), 363.
53. S. Miyazaki, S. Kimura, K. Otsuka, Y. Suuki, Scri. Metall., 18, (1984), 833.
54. T. Saburi, Proc. MRS Int. Mtg. On Adv. Mats., Tokyo, 9 (Shape Memory Mater.), (1989), 77.
55. T. Tadaki, C. M. Wayman, Scripta Metall., 14, (1980), 911.
56. Y. F. Zheng, B. M. Huang, J. X. Zhang, L. C. Zhao, Materials Science and Engineering A, 279, (2000), 25.
57. 黃坤祥,粉末冶金學,中華民國粉末冶金學會,第二版,(2003),1。
58. M. Whitney, S. F. Corbin and R. B. Gorbet, Acta Material, 56, (2008), 559.
59. M. Igharo and J. V. Wood , Powder Metallurgy, 28, (1985),131.
60. S. M. Green, D. M. Grant, and N. R. Kelly, Powder Metallurgy , 40, (1997), 43.
61. S. F. Corbin, D. Cluff, Journal of Alloys and Compounds, 487, (2009), 179.
62. Ning Zhang, P. Babayan Khosrovabadi, J. H. Lindenhovius and B. H. Kolster, Material Science and Engineering, A, 150, (1992), 263.
63. J. C. Hay, A. P. Jardin, Materials Science and Engineering, A, 188, (1994), 291.
64. B. Bertheville, M. Neudenberger, J.-E. Bidaux, Materials Science and Engineering, A, 384, (2004), 143.
65. B. Bertherville, J.-E. Bidaux, Scripta Materialia, 52, (2005), 507.
66. 吳筱涵,國立台灣大學材料科學與工程學研究所碩士論文,(2008),102。
67. H. C. Lin, S. K. Wu and J. C. Lin, Materials Chemistry and Physics, 37, (1994), 184.
68. B. Y. Li, L. J. Rong, Y. Y. Li, Materials Science and Engineering, A, 281, (2000), 169.
69. H. C. Yi, J. J. Moore, Journal of Materials Science, 27, (1992), 5067.
70. Aniruddha Biswas, Acta Material, 11, (2004), 35.
71. Juliane Mentz, Martin Bram, Hans Peter Buchkremer, Detlev Stӧver, Material Science and Engineering, A, 481-482, (2008), 630.
72. Juliane Mentz, Jan Frenzel, Martin F. - X., Wagner, Klaus Neuking, Gunther Eggeler, Hans Peter Buchkremer, Detlev Stӧver, Material Science and Engineering, A, 491, (2008), 270.
73. M. Bram, A. Ahmad-Khanlou, A. Heckmann, B. Fuchs, H. P. Buchkremer, D. Stӧver, Material Science and Engineering, A, 337, (2002), 254.
74. Y. Shugo, S. Hanada, T. Honma, Bull. Res. Inst. Min. Dress. Metall. Tohoku. Univ., 41, (1985), 35.
75. E. Schüller, L. Krone, M. Bram, H. P. Buchkremer, D. Stöver, Journal of Materials Science , 40, (2005), 4231.
76. Matthew D. McNeese, Dimitris C. Lagoudas, Thomas C. Pollock, Material Science and Engineering, A, 280, (2000), 334.
77. H. C. Yi and J. J. Moore, Scripta Metallurgica, 22, (1988), 1889.
78. 張國祥,國立台灣大學材料科學與工程學大專學生參與專題計畫研究,(2008)。
79. 陳志軒,國立台灣大學材料科學與工程學大專學生參與專題計畫研究,(2009)。
80. Mueller. M. H., Knott. H. W., Trans. Met. Soc. AIME, 277, (1963), 674.
81. Rostoker, Armour Research Foundation, Chicago, Illinois, USA, Private Communication.
82. F. M. Miller, “Chemistry: Structure and Dynamics”, MeGraw-Hill, 1984, 176.
83. 黃振賢,機械材料,新文京開發出版股份有限公司,第二版,(2000),439。
84. R. J. Wasilewski, S. R. Butler, J. E. Hanlon, and D. Worden, Metallurgical Transactions, 2, (1971), 229.
85. G. F. Bastin and G. D. Dieck, Metallurgical Transactions, 5, (1974), 1817.
86. W. Tang, B. Sundmann, R. Sandstrom, C. Quiu, Acta Mater., 47, (1999), 3457.
87. H. Funakudo, Shape Memroy alloys, Gordon and Breach Science Publishers, NY, (1987), 89.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22818-
dc.description.abstract以粉末冶金(PM)製備富鈦TiNi形狀記憶合金,於900℃以下之溫度燒結時,因Kirkendall Effect於Ni粒附近留有≦5μm之孔洞,當在900℃持溫1小時後,因共晶反應使原本的Ti粒處形成大約20~50μm之孔洞,但Ti55.08at%-Ni者因有多量的Ti2Ni於高溫時成為液相,可將孔洞補平。PM Ti50at%-Ni於900℃以下燒結時,其變態溫度較同成份之VAR製備者高,且與PM Ti52at%-Ni和PM Ti55.08at%-Ni者相近,此應與其內均是富鈦TiNi B2相有關;當燒結溫度提升至1000℃以上時,PM Ti50at%-Ni的變態溫度則下降至比VAR者低,此應與TiNi B2相已由偏富Ti變為偏富Ni有關,且此時會固溶較多之C、O原子。在不同燒結流程的研究中,使用兩階段燒結法之Ti50at%-Ni的試片,相較於一階段燒結法,其密度可提升約10%,主因於900℃持溫2小時時,Ti和Ni間會先形成Ti2Ni、TiNi和TiNi3等中間相,因此再升溫至942℃時,其共晶反應不如一階段燒結者激烈。二階段燒結之Ti50at%-Ni其形狀回復率只有76%,較同成份VAR之90%小,應為PM試片中有許多孔洞之故。使用兩階段燒結法燒結之Ti52at%-Ni試片,相較於一階段燒結者,其密度可從76%提升至97%,其形狀回復率因有較多Ti2Ni相而為70%,但與同成份VAR者相近,但經5次之形狀回復測試後其回復率可達97%。PM Ti52at%-Ni的tanδ之峰值較同成分VAR者略大,顯示PM試片中的孔洞有助於吸收震動之能量。本文同時由Ti-Ni二元平衡圖,對富鈦TiNi形狀記憶合金之變態溫度常在出現M*≒60℃,A*≒100℃之現象提出解釋。zh_TW
dc.description.abstractMartensitic transformation behaviors of Ti-rich TiNi shape memory alloys (SMAs) fabricated by powder metallurgy (PM) are investigated. When sintering at <900℃, PM SMAs have small pores(≦5μm) formed near Ni particles due to Kirkendall Effect, but sintering at 900℃ for 1 h, they have big pores(20~50μm) formed at the prior site of Ti particles due to eurtectic reaction. Ti55.08at%-Ni contains lots of Ti2Ni which becomes liquid phase at 984℃ and fills up the pore. As sintering at <900℃, the forward and reverse transformation peak temperatures (M* and A*) of PM Ti50at%-Ni are higher than those of VAR one, but similar to those of Ti52at%-Ni and Ti55.08at%
-Ni due to the formation of Ti-rich TiNi B2 phase. As sintering at >1000℃, M* and A* of PM Ti50at%-Ni are lower than those of VAR one due to the formation of Ni-rich TiNi B2 phase in which lots of carbon and oxygen atoms are dissolved simultaneously. Different sintering processes are also examined in this study. The density of Ti50at%-Ni sintered by 2-step process is 10% higher than that sintered by 1-step process. Because Ti2Ni, TiNi and TiNi3 are formed in Ti-rich PM SMAs during the holding time at 900℃, the eutectic reaction in 2-step process is not so violent as that in 1-step process. The shape recovery of PM Ti50at%-Ni is 76% which is lower than that of VAR one, 90%, due to the pores existed in PM alloy. Ti52at%-Ni alloy’s density sintered by 2-step process is 20% higher than that sintered by 1-step process, but its shape recovery (70%) is near to that of VAR one (72%) due to both have lots of Ti2Ni and the PM alloy has high density (92%). The damping capacity (tanδ) of PM Ti52at%-Ni is higher than that of VAR Ti52at%-Ni due to the pores in PM alloy can absorb the damping energy. In this study, PM Ti-rich TiNi SMAs exhibit M*≒60℃ and A*≒100℃ and this characteristic is explained from the viewpoint of Ti-Ni phase diagram.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:29:24Z (GMT). No. of bitstreams: 1
ntu-99-R96527067-1.pdf: 22978430 bytes, checksum: 96c604940241c78ad4b93b0452a8ce83 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract v
目錄 vii
第一章 前言 1
第二章 文獻回顧 3
2-1 形狀記憶合金簡介 3
2-1-1 熱彈型麻田散體變態 4
2-1-2 形狀記憶效應 (SME) 6
2-1-3 擬彈性 (PE) 8
2-2 TiNi基形狀記憶合金 10
2-2-1 TiNi二元形狀記憶合金之各相與結晶構造 10
2-2-2 TiNi二元形狀記憶合金之力學特性 11
2-3 以粉末冶金方式製備TiNi形狀記憶合金 14
2-3-1 粉末冶金基本製程 14
2-3-2 以粉末冶金方式製備TiNi形狀記憶合金 16
2-3-2-1 傳統燒結 16
2-3-2-2 反應燒結(Reaction Sintering) 19
2-3-2-3 熱均壓(Hot Isostatic Pressing,HIP) 19
2-3-2-4 射出成形(Metal Injection Molding,MIM) 20
2-3-3 本研究的主題 20
第三章 實驗方法與步驟 39
3-1 實驗流程 39
3-2 粉末混合、壓胚 39
3-3 燒結 40
3-3-1 使用大氣爐燒結後淬火(第一部分實驗) 40
3-3-2 真空爐燒結(第二部分實驗) 40
3-4 DSC分析 41
3-5 顯微組織觀察 41
3-5-1 一般金相觀察 41
3-5-2 穿透式電子顯微鏡 42
3-6 XRD分析 42
3-7 密度測試 42
3-8 碳氧分析 43
3-9 形狀記憶效應測試 43
3-10 DMA分析 44
第四章 實驗結果 53
4-1 燒結過程分析與討論 53
4-1-1 DSC的結果與分析 53
4-1-2 顯微組織觀察與分析 56
4-1-2-1 OM觀察與分析 56
4-1-2-2 SEM觀察與分析 57
4-1-2-3 TEM觀察與分析 59
4-1-3 XRD分析與討論 60
4-1-4 綜合討論 62
4-2 不同燒結條件之影響 65
4-2-1 燒結曲線 65
4-2-2 密度之測量結果 65
4-2-3 燒結後合金中碳、氧含量之測量結果 67
4-2-4 DSC的結果與分析 68
4-2-5 顯微組織觀察與分析 69
4-2-6 形狀記憶效應 70
4-2-7 DMA的結果與分析 71
4-2-8 綜合討論 73
4-3 PM TiNi SMAs麻田散體變態溫度之討論 75
4-3-1 TiNi B2相在不同溫度下之飽和溶解度曲線的含Ni含量 75
4-3-2 TiNi B2相的Ni含量與Ms變態溫度之關係 75
4-3-3 不同之燒結溫度下PM TiNi合金之Ms(M*)溫度 76
4-3-4 不同燒結流程下PM TiNi SMAs之Ms(M*)溫度 77
第五章 結論 119
參考文獻 123
dc.language.isozh-TW
dc.subjectTiNi形狀記憶合金zh_TW
dc.subject粉末冶金zh_TW
dc.subject燒結機制zh_TW
dc.subject顯微組織zh_TW
dc.subject變態溫度zh_TW
dc.subjectTi-rich TiNi shape memory alloysen
dc.subjecttransformation temperaturesen
dc.subjectmicrostructureen
dc.subjectsintering processen
dc.subjectpowder metallurgyen
dc.title以粉末冶金製備富鈦TiNi形狀記憶合金及其變態性質之研究zh_TW
dc.titlePowder Metallurgy Fabricated Ti-rich TiNi Shape Memory Alloys and Their Transformation Behavior Studyen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃坤祥(Kuen-Shyang Hwang),林新智,周棟勝,張世航
dc.subject.keywordTiNi形狀記憶合金,粉末冶金,燒結機制,顯微組織,變態溫度,zh_TW
dc.subject.keywordTi-rich TiNi shape memory alloys,powder metallurgy,sintering process,microstructure,transformation temperatures,en
dc.relation.page128
dc.rights.note未授權
dc.date.accepted2010-01-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
22.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved