Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22362
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳小梨(Show-Li Chen)
dc.contributor.authorPo-Han Chenen
dc.contributor.author陳伯翰zh_TW
dc.date.accessioned2021-06-08T04:16:13Z-
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-08-03
dc.identifier.citationAjuh P, Kuster B, Panov K, Zomerdijk JC, Mann M, Lamond AI. Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. EMBO J. 2000 Dec 1;19(23):6569-81.
Ajuh P, Sleeman J, Chusainow J, Lamond AI. A direct interaction between the carboxyl-terminal region of CDC5L and the WD40 domain of PLRG1 is essential for pre-mRNA splicing. J Biol Chem. 2001 Nov 9;276(45):42370-81. Epub 2001 Sep 5.
Ajuh P, Lamond AI. Identification of peptide inhibitors of pre-mRNA splicing derived from the essential interaction domains of CDC5L and PLRG1. Nucleic Acids Res. 2003 Nov 1;31(21):6104-16.
Bessonov S, Anokhina M, Will CL, Urlaub H, Luhrmann R. Isolation of an active step I spliceosome and composition of its RNP core. Nature. 2008 Apr 17;452(7189):846-50. Epub 2008 Mar 5.
Caceres JF, Stamm S, Helfman DM, Krainer AR. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science. 1994 Sep 16;265(5179):1706-9.
Chan SP, Kao DI, Tsai WY, Cheng SC. The Prp19p-associated complex in spliceosome activation. Science. 2003 Oct 10;302(5643):279-82. Epub 2003 Sep 11.
Chan SP, Cheng SC. The Prp19-associated complex is required for specifying interactions of U5 and U6 with pre-mRNA during spliceosome activation. J Biol Chem. 2005 Sep 2;280(35):31190-9. Epub 2005 Jun 30
Chen HR, Jan SP, Tsao TY, Sheu YJ, Banroques J, Cheng SC. Snt309p, a component of the Prp19p-associated complex that interacts with Prp19p and associates with the spliceosome simultaneously with or immediately after dissociation of U4 in the same manner as Prp19p. Mol Cell Biol. 1998 Apr;18(4):2196-204.
Chen HR, Tsao TY, Chen CH, Tsai WY, Her LS, Hsu MM, Cheng SC. Snt309p modulates interactions of Prp19p with its associated components to stabilize the Prp19p-associated complex essential for pre-mRNA splicing. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5406-11.
Chen M, Manley JL. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat Rev Mol Cell Biol. 2009 Nov;10(11):741-54. Epub 2009 Sep 23. Review.
Eperon IC, Makarova OV, Mayeda A, Munroe SH, Caceres JF, Hayward DG, Krainer AR. Selection of alternative 5' splice sites: role of U1 snRNP and models for the antagonistic effects of SF2/ASF and hnRNP A1. Mol Cell Biol. 2000 Nov;20(22):8303-18.
Grillari J, Ajuh P, Stadler G, Loscher M, Voglauer R, Ernst W, Chusainow J, Eisenhaber F, Pokar M, Fortschegger K, Grey M, Lamond AI, Katinger H. SNEV is an evolutionarily conserved splicing factor whose oligomerization is necessary for spliceosome assembly. Nucleic Acids Res. 2005 Dec 6;33(21):6868-83. Print 2005
Grillari J, Loscher M, Denegri M, Lee K, Fortschegger K, Eisenhaber F, Ajuh P, Lamond AI, Katinger H, Grillari-Voglauer R. Blom7alpha is a novel heterogeneous nuclear ribonucleoprotein K homology domain protein involved in pre-mRNA splicing that interacts with SNEVPrp19-PSO4. J Biol Chem. 2009 Oct 16;284(42):29193-204. Epub 2009 Jul 29.
Grote M, Wolf E, Will CL, Lemm I, Agafonov DE, Schomburg A, Fischle W, Urlaub H, Luhrmann R. Molecular architecture of the human Prp19/CDC5L complex. Mol Cell Biol. 2010 May;30(9):2105-19. Epub 2010 Feb 22.
Kleinridders A, Pogoda HM, Irlenbusch S, Smyth N, Koncz C, Hammerschmidt M, Bruning JC. PLRG1 is an essential regulator of cell proliferation and apoptosis during vertebrate development and tissue homeostasis. Mol Cell Biol. 2009 Jun;29(11):3173-85. Epub 2009 Mar 23
Kuo PC, Tsao YP, Chang HW, Chen PH, Huang CW, Lin ST, Weng YT, Tsai TC, Shieh SY, Chen SL. Breast cancer amplified sequence 2, a novel negative regulator of the p53 tumor suppressor. Cancer Res. 2009 Dec 1;69(23):8877-85. 2009 Nov 10
Legerski RJ. The PSO4 complex splices into the DNA damage response. Cell Cycle. 2009 Nov 1;8(21):3448-9. Epub 2009 Nov 10.
Lin KT, Lu RM, Tarn WY. The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo. Mol Cell Biol. 2004 Oct;24(20):9176-85.
Lleres D, Denegri M, Biggiogera M, Ajuh P, Lamond AI. Direct interaction between hnRNP-M and CDC5L/PLRG1 proteins affects alternative splice site choice. EMBO Rep. 2010 Jun;11(6):445-51. Epub 2010 May 14.
Maass N, Rosel F, Schem C, Hitomi J, Jonat W, Nagasaki K. Amplification of the BCAS2 gene at chromosome 1p13.3-21 in human primary breast cancer. Cancer Lett. 2002 Nov 28;185(2):219-23.
Makarov EM, Makarova OV, Urlaub H, Gentzel M, Will CL, Wilm M, Luhrmann R. Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science. 2002 Dec 13;298(5601):2205-8. Epub 2002 Oct 31.
Makarova OV, Makarov EM, Urlaub H, Will CL, Gentzel M, Wilm M, Luhrmann R. A subset of human 35S U5 proteins, including Prp19, function prior to catalytic step 1 of splicing. EMBO J. 2004 Jun 16;23(12):2381-91. Epub 2004 Jun 3.
Mason JM, Arndt KM. Coiled coil domains: stability, specificity, and biological implications. Chembiochem. 2004 Feb 6;5(2):170-6. Review.
Monaghan J, Xu F, Gao M, Zhao Q, Palma K, Long C, Chen S, Zhang Y, Li X. Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity. PLoS Pathog. 2009 Jul;5(7):e1000526. Epub 2009 Jul 24.
Nagasaki K, Maass N, Manabe T, Hanzawa H, Tsukada T, Kikuchi K, Yamaguchi K. Identification of a novel gene, DAM1, amplified at chromosome 1p13.3-21 region in human breast cancer cell lines. Cancer Lett. 1999 Jun 1;140(1-2):219-26.
Neubauer G, King A, Rappsilber J, Calvio C, Watson M, Ajuh P, Sleeman J, Lamond A, Mann M. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat Genet. 1998 Sep;20(1):46-50.
Ohi MD, Gould KL. Characterization of interactions among the Cef1p-Prp19p-associated splicing complex. RNA. 2002 Jun;8(6):798-815
Ohi MD, Vander Kooi CW, Rosenberg JA, Ren L, Hirsch JP, Chazin WJ, Walz T, Gould KL. Structural and functional analysis of essential pre-mRNA splicing factor Prp19p. Mol Cell Biol. 2005 Jan;25(1):451-60.
Perales R, Bentley D. 'Cotranscriptionality': the transcription elongation complex as a nexus for nuclear transactions. Mol Cell. 2009 Oct 23;36(2):178-91. Review.
Pacheco TR, Moita LF, Gomes AQ, Hacohen N, Carmo-Fonseca M. RNA interference knockdown of hU2AF35 impairs cell cycle progression and modulates alternative splicing of Cdc25 transcripts. Mol Biol Cell. 2006 Oct;17(10):4187-99. Epub 2006 Jul 19.
Qi C, Zhu YT, Chang J, Yeldandi AV, Rao MS, Zhu YJ. Potentiation of estrogen receptor transcriptional activity by breast cancer amplified sequence 2. Biochem Biophys Res Commun. 2005 Mar 11;328(2):393-8.
Tarn WY, Hsu CH, Huang KT, Chen HR, Kao HY, Lee KR, Cheng SC. Functional association of essential splicing factor(s) with PRP19 in a protein complex. EMBO J. 1994 May 15;13(10):2421-31.
Tsai WY, Chow YT, Chen HR, Huang KT, Hong RI, Jan SP, Kuo NY, Tsao TY, Chen CH, Cheng SC. Cef1p is a component of the Prp19p-associated complex and essential for pre-mRNA splicing. J Biol Chem. 1999 Apr 2;274(14):9455-62.
Wahl MC, Will CL, Luhrmann R. The spliceosome: design principles of a dynamic RNP machine. Cell. 2009 Feb 20;136(4):701-18. Review.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22362-
dc.description.abstractBCAS2 (Breast carcinoma amplified sequence 2) 為一核蛋白質,且被發現在MCF-7及BT-20等乳癌細胞株有基因增殖的現象。在早期的研究中指出,BCAS2與雌激素受體有直接的交互作用,並可做為雌激素受體在調控基因表現時的輔助因子。本實驗室最近的研究發現,BCAS2可以直接與抑癌蛋白p53結合,進一步調控p53的基因轉錄活性與p53蛋白的穩定性。在抑癌蛋白p53正常的癌症細胞株中默化BCAS2會使癌症細胞走向細胞凋亡,然而在抑癌蛋白p53異常的癌症細胞株中默化BCAS2則會造成細胞的生長遲緩,顯示BCAS2可能為細胞維持正常生長所必須的蛋白質。
在早期利用質譜儀分析核醣核酸剪切體可能包含的蛋白質研究中發現Spf27(即BCAS2)為一個新穎未被證實功能的蛋白質,後來陸續的研究中發現BCAS2可能為參與核醣核酸剪切次複合體hCDC5L/PSO4 complex的核心成員之一。BCAS2在演化上,酵母菌內的同源蛋白質Cwf7及同功能蛋白Snt309已經被證實為核醣核酸剪切所必需。然而在哺乳類細胞中BCAS2是否參與核醣核酸剪切仍未被證實。
在本研究中,我們確認BCAS2的確包含在hCDC5L/PSO4核醣核酸剪切次複合體之中,利用細胞(in vivo)及試管內(in vitro)的核醣核酸剪切試驗,我們也證明了BCAS2確實參與在核醣核酸的剪切,我們也找到BCAS2蛋白質對於核醣核酸剪切調控時所必須的蛋白質區段,最後我們釐清BCAS2與hCDC5L/PSO4核醣核酸剪切次複合體核心成員CDC5L、PSO4及PLRG1蛋白質交互作用的區段,解釋BCAS2在核醣核酸剪切可能扮演的角色。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-08T04:16:13Z (GMT). No. of bitstreams: 1
ntu-99-R97445104-1.pdf: 2043410 bytes, checksum: 0cd5f2b13cc2f22dde1ddf78489fe627 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsABSTRACT
CHAPTER 1 INTRODUCTION…………………………………… …………..1
1.1 The characteristic of BCAS2…………...………………………………1
1.2 Evolutionarily conserved across species …………..……....………1
1.3 The general splicing mechanism ……………………..…………......3
1.4 hCDC5L/PSO4 complex in RNA processing ……………..…...…...4
1.5 hCDC5L/PSO4 complex in alternative splicing…………………….5
1.6 Aim of this study ………..…………………………………...………….6
CHAPTER 2 MATERIAL AND METHODS…………………..………............8
2.1 Cell culture ……………………………………………………………......8
2.2 Plasmids and constructs …………………………………………….…..8
2.3 In vitro protein-protein interaction ……………………...…………..9
2.4 Western blotting ……...……………………………………………..….11
2.5 Antobody... ………………………………………………………..….....11
2.6 Transfection ………………………...………………………...………...11
2.7 RNA extraction ………………………..……………………………......12
2.8 RT-PCR ………………………………………………………………......13
2.9 In vivo constitutive splicing …………..……………………………...15
2.10 In vivo alternative splicing ………………………………………….16
2.11 Southern blotting ………………………………………………….....17
2.12 Nuclear extract preparation ……………………………………..…18
2.13 In vitro splicing …………………………………………………….....20
2.14 Immunoprecipitation and immunodepletion …………………..23
CHAPTER 3 RESULTS…………………………………...……………..........25
3.1 BCAS2 is evolutionarily conserved across species….…….……..25
3.2 BCAS2 is involved in the hCDC5L/PSO4 complex……………….26
3.3 BCAS2 participates in pre-mRNA splicing in vivo and in vitro….......27
3.4 BCAS2 is involved in the alternative splicing regulation……..……...29
3.5 Functional domain required for BCAS2 in splicing regulation..……..30
3.6 Mapping interaction domain between BCAS2, CDC5L and PSO4..…32
CHAPTER 4
DISCCUSION……………………………………………………………34
REFERENCES …………………………………………………...……..41
FIGURES………………………………………………………...………45
APPENDIX
dc.language.isoen
dc.subjectBCAS2zh_TW
dc.subjectSpf27zh_TW
dc.subject核醣核酸剪切zh_TW
dc.subjectCDC5Lzh_TW
dc.subjectPSO4zh_TW
dc.subjectSpf27en
dc.subjectPSO4en
dc.subjectCDC5Len
dc.subjectRNA splicingen
dc.subjectBCAS2en
dc.titleBCAS2在核醣核酸剪切及hCDC5L/PSO4複合體所扮演的角色zh_TW
dc.titleThe role of BCAS2 in RNA splicing and hCDC5L/PSO4 complexen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee譚婉玉(Woan-Yuh Tarn),鄧述諄(Shu-Chun Teng),吳君泰(June-Tai Wu)
dc.subject.keywordBCAS2,Spf27,核醣核酸剪切,CDC5L,PSO4,zh_TW
dc.subject.keywordBCAS2,Spf27,RNA splicing,CDC5L,PSO4,en
dc.relation.page58
dc.rights.note未授權
dc.date.accepted2010-08-03
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved