請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21775
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔣丙煌(Been-Huang Chiang) | |
dc.contributor.author | Ting-Yi Li | en |
dc.contributor.author | 李亭逸 | zh_TW |
dc.date.accessioned | 2021-06-08T03:46:16Z | - |
dc.date.copyright | 2019-02-15 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-02-11 | |
dc.identifier.citation | [1] D.F. Quail, J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis, Nature medicine 19(11) (2013) 1423-1437.
[2] M.B. Sporn, Approaches to prevention of epithelial cancer during the preneoplastic period, Cancer research 36(7 Part 2) (1976) 2699-2702. [3] A.S. Tsao, E.S. Kim, W.K. Hong, Chemoprevention of cancer, CA: A Cancer Journal for Clinicians 54(3) (2004) 150-180. [4] C. Hagerling, A.-J. Casbon, Z. Werb, Balancing the innate immune system in tumor development, Trends in cell biology 25(4) (2015) 214-220. [5] A. Albini, M.B. Sporn, The tumour microenvironment as a target for chemoprevention, Nature Reviews Cancer 7(2) (2007) 139-147. [6] G.P. Gupta, D.X. Nguyen, A.C. Chiang, P.D. Bos, J.Y. Kim, C. Nadal, R.R. Gomis, K. Manova-Todorova, J. Massagué, Mediators of vascular remodelling co-opted for sequential steps in lung metastasis, Nature 446(7137) (2007) 765-770. [7] S.A. Wrighton, J.C. Stevens, The human hepatic cytochromes P450 involved in drug metabolism, Critical reviews in toxicology 22(1) (1992) 1-21. [8] J.F. Perz, G.L. Armstrong, L.A. Farrington, Y.J. Hutin, B.P. Bell, The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide, Journal of hepatology 45(4) (2006) 529-538. [9] P.A. Farazi, R.A. DePinho, Hepatocellular carcinoma pathogenesis: from genes to environment, Nature Reviews Cancer 6(9) (2006) 674-687. [10] H. Liu, L. Lv, K. Yang, Chemotherapy targeting cancer stem cells, American journal of cancer research 5(3) (2015) 880. [11] S.V. Shmelkov, J.M. Butler, A.T. Hooper, A. Hormigo, J. Kushner, T. Milde, R.S. Clair, M. Baljevic, I. White, D.K. Jin, CD133 expression is not restricted to stem cells, and both CD133+ and CD133–metastatic colon cancer cells initiate tumors, The Journal of clinical investigation 118(6) (2008) 2111-2120. [12] T. Yamashita, J. Ji, A. Budhu, M. Forgues, W. Yang, H.Y. Wang, H. Jia, Q. Ye, L.X. Qin, E. Wauthier, EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features, Gastroenterology 136(3) (2009) 1012-1024. e4. [13] S. Sell, H.L. Leffert, Liver cancer stem cells, Journal of Clinical Oncology 26(17) (2008) 2800-2805. [14] T. Chiba, Y.-W. Zheng, K. Kita, O. Yokosuka, H. Saisho, M. Onodera, H. Miyoshi, M. Nakano, Y. Zen, Y. Nakanuma, Enhanced self-renewal capability in hepatic stem/progenitor cells drives cancer initiation, Gastroenterology 133(3) (2007) 937-950. [15] Z.F. Yang, D.W. Ho, M.N. Ng, C.K. Lau, W.C. Yu, P. Ngai, P.W. Chu, C.T. Lam, R.T. Poon, S.T. Fan, Significance of CD90+ cancer stem cells in human liver cancer, Cancer cell 13(2) (2008) 153-166. [16] S. Ma, K.W. Chan, L. Hu, T.K.W. Lee, J.Y.H. Wo, I.O.L. Ng, B.J. Zheng, X.Y. Guan, Identification and characterization of tumorigenic liver cancer stem/progenitor cells, Gastroenterology 132(7) (2007) 2542-2556. [17] A.V. Salnikov, G. Kusumawidjaja, V. Rausch, H. Bruns, W. Gross, A. Khamidjanov, E. Ryschich, M.-M. Gebhard, G. Moldenhauer, M.W. Büchler, Cancer stem cell marker expression in hepatocellular carcinoma and liver metastases is not sufficient as single prognostic parameter, Cancer letters 275(2) (2009) 185-193. [18] T. Yamashita, M. Forgues, W. Wang, J.W. Kim, Q. Ye, H. Jia, A. Budhu, K.A. Zanetti, Y. Chen, L.-X. Qin, EpCAM and α-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma, Cancer research 68(5) (2008) 1451-1461. [19] N. Oishi, T. Yamashita, S. Kaneko, Molecular biology of liver cancer stem cells, Liver cancer 3(2) (2014) 71-84. [20] Y.-f. Shan, Y.-l. Huang, Y.-k. Xie, Y.-h. Tan, B.-C. Chen, M.-t. Zhou, H.-q. Shi, Z.-p. Yu, Q.-t. Song, Q.-y. Zhang, Angiogenesis and clinicopathologic characteristics in different hepatocellular carcinoma subtypes defined by EpCAM and α-fetoprotein expression status, Medical Oncology 28(4) (2011) 1012-1016. [21] P. Li, S.-S. Wang, H. Liu, N. Li, M.A. McNutt, G. Li, H.-G. Ding, Elevated serum alpha fetoprotein levels promote pathological progression of hepatocellular carcinoma, World J Gastroenterol 17(41) (2011) 4563-4571. [22] A. Durnez, C. Verslype, F. Nevens, J. Fevery, R. Aerts, J. Pirenne, E. Lesaffre, L. Libbrecht, V. Desmet, T. Roskams, The clinicopathological and prognostic relevance of cytokeratin 7 and 19 expression in hepatocellular carcinoma. A possible progenitor cell origin, Histopathology 49(2) (2006) 138-151. [23] G.L. Beatty, W.L. Gladney, Immune escape mechanisms as a guide for cancer immunotherapy, Clinical Cancer Research 21(4) (2015) 687-692. [24] I. Penn, Tumors of the immunocompromised patient, Annual review of medicine 39(1) (1988) 63-73. [25] C. Sigmund, C. Jones, I. Mullins, U. Kim, K. Gross, Viruses in human cancers, Oncogene 5 (1990) 1507. [26] J. Tian, L. Zhou, Y. Zhao, Y. Wang, Y. Peng, S. Zhao, Multiplexed detection of tumor markers with multicolor quantum dots based on fluorescence polarization immunoassay, Talanta 92 (2012) 72-77. [27] E.R. Unanue, V. Turk, J. Neefjes, Variations in MHC Class II Antigen Processing and Presentation in Health and Disease, Annual review of immunology 34 (2016) 265-297. [28] G.P. Dunn, L.J. Old, R.D. Schreiber, The immunobiology of cancer immunosurveillance and immunoediting, Immunity 21(2) (2004) 137-148. [29] G. Kochan, D. Escors, K. Breckpot, D. Guerrero-Setas, Role of non-classical MHC class I molecules in cancer immunosuppression, Oncoimmunology 2(11) (2013) e26491. [30] D. Spano, M. Zollo, Tumor microenvironment: a main actor in the metastasis process, Clinical & experimental metastasis 29(4) (2012) 381-395. [31] C. Fremd, F. Schuetz, C. Sohn, P. Beckhove, C. Domschke, B cell-regulated immune responses in tumor models and cancer patients, Oncoimmunology 2(7) (2013) e25443. [32] D. Lindau, P. Gielen, M. Kroesen, P. Wesseling, G.J. Adema, The immunosuppressive tumour network: myeloid‐derived suppressor cells, regulatory T cells and natural killer T cells, Immunology 138(2) (2013) 105-115. [33] S. Ostrand-Rosenberg, P. Sinha, D.W. Beury, V.K. Clements, Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression, Seminars in cancer biology, Elsevier, 2012, pp. 275-281. [34] W. Zhang, Z. Chen, F. Li, H. Kamencic, B. Juurlink, J.R. Gordon, J. Xiang, Tumour necrosis factor‐α (TNF‐α) transgene‐expressing dendritic cells (DCs) undergo augmented cellular maturation and induce more robust T‐cell activation and anti‐tumour immunity than DCs generated in recombinant TNF‐α, Immunology 108(2) (2003) 177-188. [35] L. Galluzzi, O. Kepp, G. Kroemer, Mitochondria: master regulators of danger signalling, Nature reviews Molecular cell biology 13(12) (2012) 780-788. [36] K. Palucka, J. Banchereau, Cancer immunotherapy via dendritic cells, Nature Reviews Cancer 12(4) (2012) 265-277. [37] M. Merad, P. Sathe, J. Helft, J. Miller, A. Mortha, The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting, Annual review of immunology 31 (2013). [38] R.M. Steinman, Decisions about dendritic cells: past, present, and future, Annual review of immunology 30 (2012) 1-22. [39] Y. Ma, G.V. Shurin, D.W. Gutkin, M.R. Shurin, Tumor associated regulatory dendritic cells, Seminars in cancer biology, Elsevier, 2012, pp. 298-306. [40] S.V. Schmidt, A.C. Nino-Castro, J.L. Schultze, Regulatory dendritic cells: there is more than just immune activation, The nature of activatory and tolerogenic dendritic cell-derived signal 2 (2014) 112. [41] D. Raïch-Regué, M. Glancy, A.W. Thomson, Regulatory dendritic cell therapy: From rodents to clinical application, Immunology letters 161(2) (2014) 216-221. [42] L.N. Abdullah, E.K.-H. Chow, Mechanisms of chemoresistance in cancer stem cells, Clinical and translational medicine 2(1) (2013) 1. [43] F. Reim, Y. Dombrowski, C. Ritter, M. Buttmann, S. Häusler, M. Ossadnik, M. Krockenberger, D. Beier, C.P. Beier, J. Dietl, Immunoselection of breast and ovarian cancer cells with trastuzumab and natural killer cells: selective escape of CD44high/CD24low/HER2low breast cancer stem cells, Cancer research 69(20) (2009) 8058-8066. [44] T. Di Tomaso, S. Mazzoleni, E. Wang, G. Sovena, D. Clavenna, A. Franzin, P. Mortini, S. Ferrone, C. Doglioni, F.M. Marincola, Immunobiological characterization of cancer stem cells isolated from glioblastoma patients, Clinical Cancer Research 16(3) (2010) 800-813. [45] M. Todaro, M.P. Alea, A.B. Di Stefano, P. Cammareri, L. Vermeulen, F. Iovino, C. Tripodo, A. Russo, G. Gulotta, J.P. Medema, Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4, Cell stem cell 1(4) (2007) 389-402. [46] T. Schatton, M.H. Frank, Cancer stem cells and human malignant melanoma, Pigment cell & melanoma research 21(1) (2008) 39-55. [47] V.S. Bruttel, J. Wischhusen, Cancer stem cell immunology: key to understanding tumorigenesis and tumor immune escape?, Frontiers in immunology 5 (2014) 360. [48] A. Dashti, M. Ebrahimi, J. Hadjati, A. Memarnejadian, S.M. Moazzeni, Dendritic cell based immunotherapy using tumor stem cells mediates potent antitumor immune responses, Cancer letters 374(1) (2016) 175-185. [49] Y.-J. Chen, P.-C. Cheng, C.-N. Lin, H.-F. Liao, Y.-Y. Chen, C.-C. Chen, K.-M. Lee, Polysaccharides from Antrodia camphorata mycelia extracts possess immunomodulatory activity and inhibits infection of Schistosoma mansoni, International Immunopharmacology 8(3) (2008) 458-467. [50] P.-C. Cheng, C.-Y. Hsu, C.-C. Chen, K.-M. Lee, In vivo immunomodulatory effects of Antrodia camphorata polysaccharides in a T1/T2 doubly transgenic mouse model for inhibiting infection of Schistosoma mansoni, Toxicology and Applied Pharmacology 227(2) (2008) 291-298. [51] F. Sheu, P.-J. Chien, K.-Y. Hsieh, K.-L. Chin, W.-T. Huang, C.-Y. Tsao, Y.-F. Chen, H.-C. Cheng, H.-H. Chang, Purification, cloning, and functional characterization of a novel immunomodulatory protein from Antrodia camphorata (bitter mushroom) that exhibits TLR2-dependent NF-κB activation and M1 polarization within murine macrophages, J Agri. Food. Chem. 57(10) (2009) 4130-4141. [52] T.-H. Lee, C.-K. Lee, W.-L. Tsou, S.-Y. Liu, M.-T. Kuo, W.-C. Wen, A new cytotoxic agent from solid-state fermented mycelium of Antrodia camphorata, Planta medica 73(13) (2007) 1412-1415. [53] C.-C. Yu, P.-C. Chiang, P.-H. Lu, M.-T. Kuo, W.-C. Wen, P. Chen, J.-H. Guh, Antroquinonol, a natural ubiquinone derivative, induces a cross talk between apoptosis, autophagy and senescence in human pancreatic carcinoma cells, The Journal of nutritional biochemistry 23(8) (2012) 900-907. [54] V.B. Kumar, T.-C. Yuan, J.-W. Liou, C.-J. Yang, P.-J. Sung, C.-F. Weng, Antroquinonol inhibits NSCLC proliferation by altering PI3K/mTOR proteins and miRNA expression profiles, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 707(1) (2011) 42-52. [55] P.-C. Chiang, S.-C. Lin, S.-L. Pan, C.-H. Kuo, I.-L. Tsai, M.-T. Kuo, W.-C. Wen, P. Chen, J.-H. Guh, Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: a crucial role of AMPK and mTOR pathways, Biochemical pharmacology 79(2) (2010) 162-171. [56] K.S. Kumar, F.-H. Chu, H.-W. Hsieh, J.-W. Liao, W.-H. Li, J.C.-C. Lin, J.-F. Shaw, S.-Y. Wang, Antroquinonol from ethanolic extract of mycelium of Antrodia cinnamomea protects hepatic cells from ethanol-induced oxidative stress through Nrf-2 activation, Journal of ethnopharmacology 136(1) (2011) 168-177. [57] P.Y. Tsai, S.M. Ka, J.M. Chang, J.H. Lai, M.S. Dai, H.L. Jheng, M.T. Kuo, P. Chen, A. Chen, Antroquinonol differentially modulates T cell activity and reduces interleukin‐18 production, but enhances Nrf2 activation, in murine accelerated severe lupus nephritis, Arthritis & Rheumatism 64(1) (2012) 232-242. [58] S.-M. Yang, S.-M. Ka, K.-F. Hua, T.-H. Wu, Y.-P. Chuang, Y.-W. Lin, F.-L. Yang, S.-H. Wu, S.-S. Yang, S.-H. Lin, Antroquinonol mitigates an accelerated and progressive IgA nephropathy model in mice by activating the Nrf2 pathway and inhibiting T cells and NLRP3 inflammasome, Free Radical Biology and Medicine 61 (2013) 285-297. [59] V. Thiyagarajan, M.-J. Tsai, C.-F. Weng, Antroquinonol targets FAK-signaling pathway suppressed cell migration, invasion, and tumor growth of C6 glioma, PloS one 10(10) (2015) e0141285. [60] W.-T. Lee, T.-H. Lee, C.-H. Cheng, K.-C. Chen, Y.-C. Chen, C.-W. Lin, Antroquinonol from Antrodia Camphorata suppresses breast tumor migration/invasion through inhibiting ERK-AP-1-and AKT-NF-κB-dependent MMP-9 and epithelial-mesenchymal transition expressions, Food and Chemical Toxicology 78 (2015) 33-41. [61] H.-C. Lin, M.-H. Lin, J.-H. Liao, T.-H. Wu, T.-H. Lee, F.-L. Mi, C.-H. Wu, K.-C. Chen, C.-H. Cheng, C.-W. Lin, Antroquinonol, a Ubiquinone Derivative from the Mushroom Antrodia camphorata, Inhibits Colon Cancer Stem Cell-like Properties: Insights into the Molecular Mechanism and Inhibitory Targets, Journal of Agricultural and Food Chemistry (2016). [62] W.-H. Chang, M.C. Chen, I.H. Cheng, Antroquinonol Lowers Brain Amyloid-β Levels and Improves Spatial Learning and Memory in a Transgenic Mouse Model of Alzheimer’s Disease, Scientific Reports 5 (2015) 15067. [63] Y.W. Lin, J.H. Pan, R.H. Liu, Y.H. Kuo, L.Y. Sheen, B.H. Chiang, The 4‐acetylantroquinonol B isolated from mycelium of Antrodia cinnamomea inhibits proliferation of hepatoma cells, Journal of the Science of Food and Agriculture 90(10) (2010) 1739-1744. [64] Y.-W. Lin, B.-H. Chiang, 4-acetylantroquinonol B isolated from Antrodia cinnamomea arrests proliferation of human hepatocellular carcinoma HepG2 cell by affecting p53, p21 and p27 levels, Journal of agricultural and food chemistry 59(16) (2011) 8625-8631. [65] S.-H. Yang, Y.-W. Lin, B.-H. Chiang, Biosynthesis of 4-acetylantroquinonol B in Antrodia cinnamomea via a pathway related to coenzyme Q synthesis, Biochemical engineering journal 117 (2017) 23-29. [66] K.C.-C. Chou, S.-H. Yang, H.-L. Wu, P.-Y. Lin, T.-L. Chang, F. Sheu, K.-H. Chen, B.-H. Chiang, Biosynthesis of antroquinonol and 4-acetylantroquinonol B via a polyketide pathway using orsellinic acid as a ring precursor in Antrodia cinnamomea, Journal of agricultural and food chemistry 65(1) (2016) 74-86. [67] H.-C. Wang, F.-H. Chu, S.-C. Chien, J.-W. Liao, H.-W. Hsieh, W.-H. Li, C.-C. Lin, J.-F. Shaw, Y.-H. Kuo, S.-Y. Wang, Establishment of the metabolite profile for an Antrodia cinnamomea health food product and investigation of its chemoprevention activity, J Agri. Food. Chem. 61(36) (2013) 8556-8564. [68] T.-C. Chang, C.-T. Yeh, B.O. Adebayo, Y.-C. Lin, L. Deng, Y.K. Rao, C.-C. Huang, W.-H. Lee, A.T. Wu, M. Hsiao, 4-Acetylantroquinonol B inhibits colorectal cancer tumorigenesis and suppresses cancer stem-like phenotype, Toxicology and applied pharmacology 288(2) (2015) 258-268. [69] C.-H. Chang, T.-F. Huang, K.-T. Lin, C.-C. Hsu, W.-L. Chang, S.-W. Wang, F.-N. Ko, H.-C. Peng, C.-H. Chung, 4-Acetylantroquinonol B suppresses tumor growth and metastasis of hepatoma cells via blockade of translation-dependent signaling pathway and VEGF production, Journal of agricultural and food chemistry 63(1) (2014) 208-215. [70] M. Barathan, V. Mariappan, E. Shankar, B.J. Abdullah, K. Goh, J. Vadivelu, Hypericin-photodynamic therapy leads to interleukin-6 secretion by HepG2 cells and their apoptosis via recruitment of BH3 interacting-domain death agonist and caspases, Cell death & disease 4(6) (2013) e697. [71] C. Berges, C. Naujokat, S. Tinapp, H. Wieczorek, A. Höh, M. Sadeghi, G. Opelz, V. Daniel, A cell line model for the differentiation of human dendritic cells, Biochemical and biophysical research communications 333(3) (2005) 896-907. [72] J. Zheng, Q. Liu, J. Yang, Q. Ren, W. Cao, J. Yang, Z. Yu, F. Yu, Y. Wu, H. Shi, Co-culture of apoptotic breast cancer cells with immature dendritic cells: a novel approach for DC-based vaccination in breast cancer, Brazilian Journal of Medical and Biological Research 45(6) (2012) 510-515. [73] P.-P. Hao, M.-J. Lee, G.-R. Yu, I.-H. Kim, Y.-G. Cho, D.-G. Kim, Isolation of EpCAM+/CD133− hepatic progenitor cells, Molecules and cells 36(5) (2013) 424-431. [74] J.S. Bae, S.J. Noh, K.Y. Jang, H.S. Park, M.J. Chung, C.K. Park, W.S. Moon, Expression and role of epithelial cell adhesion molecule in dysplastic nodule and hepatocellular carcinoma, International journal of oncology 41(6) (2012) 2150-2158. [75] J. Ji, T. Yamashita, X.W. Wang, Wnt/beta-catenin signaling activates microRNA-181 expression in hepatocellular carcinoma, Cell & bioscience 1(1) (2011) 4. [76] T. Yamashita, A. Budhu, M. Forgues, X.W. Wang, Activation of hepatic stem cell marker EpCAM by Wnt–β-catenin signaling in hepatocellular carcinoma, Cancer research 67(22) (2007) 10831-10839. [77] M. Kumar, X. Zhao, X.W. Wang, Molecular carcinogenesis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: one step closer to personalized medicine?, Cell & bioscience 1(1) (2011) 5. [78] S.P.S. Monga, Role of Wnt/β-catenin signaling in liver metabolism and cancer, The international journal of biochemistry & cell biology 43(7) (2011) 1021-1029. [79] H.-F. Chen, C.-Y. Chuang, W.-C. Lee, H.-P. Huang, H.-C. Wu, H.-N. Ho, Y.-J. Chen, H.-C. Kuo, Surface marker epithelial cell adhesion molecule and E-cadherin facilitate the identification and selection of induced pluripotent stem cells, Stem Cell Reviews and Reports 7(3) (2011) 722-735. [80] S. Diehl, J. Anguita, A. Hoffmeyer, T. Zapton, J.N. Ihle, E. Fikrig, M. Rincón, Inhibition of Th1 differentiation by IL-6 is mediated by SOCS1, Immunity 13(6) (2000) 805-815. [81] F. De Vita, M. Orditura, A. Auriemma, S. Infusino, A. Roscigno, G. Catalano, Serum levels of interleukin-6 as a prognostic factor in advanced non-small cell lung cancer, Oncology reports 5(3) (1998) 649-701. [82] G. Scambia, U. Testa, P.B. Panici, E. Foti, R. Martucci, A. Gadducci, A. Perillo, V. Facchini, C. Peschle, S. Mancuso, Prognostic significance of interleukin 6 serum levels in patients with ovarian cancer, British journal of cancer 71(2) (1995) 354-356. [83] M. Plante, S.C. Rubin, G.Y. Wong, M.G. Federici, C.L. Finstad, G.A. Gastl, Interleukin‐6 level in serum and ascites as a prognostic factor in patients with epithelial ovarian cancer, Cancer 73(7) (1994) 1882-1888. [84] J.-Y. Blay, S. Negrier, V. Combaret, S. Attali, E. Goillot, Y. Merrouche, A. Mercatello, A. Ravault, J.-M. Tourani, J.-F. Moskovtchenko, Serum level of interleukin 6 as a prognosis factor in metastatic renal cell carcinoma, Cancer Research 52(12) (1992) 3317-3322. [85] S.-J. Park, T. Nakagawa, H. Kitamura, T. Atsumi, H. Kamon, S.-i. Sawa, D. Kamimura, N. Ueda, Y. Iwakura, K. Ishihara, IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation, The Journal of Immunology 173(6) (2004) 3844-3854. [86] H. Yu, M. Kortylewski, D. Pardoll, Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment, Nature Reviews Immunology 7(1) (2007). [87] J. Zhou, D. Zhang, B. Chen, Q. Li, L. Zhou, F. Liu, K.Y. Chou, L. Tao, L.M. Lu, Association of interleukin‑10 promoter polymorphisms and corresponding plasma levels with susceptibility to laryngeal squamous cell carcinoma, Oncology letters 7(5) (2014) 1721-1727. [88] C. Seifart, A. Plagens, A. Dempfle, U. Clostermann, C. Vogelmeier, P. von Wichert, U. Seifart, TNF-α, TNF-β, IL-6, and IL-10 polymorphisms in patients with lung cancer, Disease markers 21(3) (2005) 157-165. [89] M. Erdogan, M. Karadeniz, M. Ozbek, A. Ozgen, A. Berdeli, Interleukin-10 gene polymorphism in patients with papillary thyroid cancer in Turkish population, Journal of endocrinological investigation 31(9) (2008) 750-754. [90] K. Spelman, J. Burns, D. Nichols, N. Winters, S. Ottersberg, M. Tenborg, Modulation of cytokine expression by traditional medicines: a review of herbal immunomodulators, Alternative medicine review 11(2) (2006) 128. [91] S. Katayama, T. Kukita, E. Ishikawa, S. Nakashima, S. Masuda, T. Kanda, H. Akiyama, R. Teshima, S. Nakamura, Apple polyphenols suppress antigen presentation of ovalbumin by THP-1-derived dendritic cells, Food chemistry 138(2) (2013) 757-761. [92] G.G. dos Santos, J. Reinders, K. Ouwehand, T. Rustemeyer, R. Scheper, S. Gibbs, Progress on the development of human in vitro dendritic cell based assays for assessment of the sensitizing potential of a compound, Toxicology and applied pharmacology 236(3) (2009) 372-382. [93] W.K. Chan, C.C.H. Cheung, H.K.W. Law, Y.L. Lau, G.C.F. Chan, Ganoderma lucidum polysaccharides can induce human monocytic leukemia cells into dendritic cells with immuno-stimulatory function, Journal of hematology & oncology 1(1) (2008) 9. [94] A. Stift, J. Friedl, P. Dubsky, T. Bachleitner-Hofmann, G. Schueller, T. Zontsich, T. Benkoe, K. Radelbauer, C. Brostjan, R. Jakesz, Dendritic cell-based vaccination in solid cancer, Journal of clinical oncology 21(1) (2003) 135-142. [95] J.A. Cintolo, J. Datta, S.J. Mathew, B.J. Czerniecki, Dendritic cell-based vaccines: barriers and opportunities, Future Oncology 8(10) (2012) 1273-1299. [96] O.A.W. Haabeth, A.A. Tveita, M. Fauskanger, F. Schjesvold, K.B. Lorvik, P.O. Hofgaard, H. Omholt, L.A. Munthe, Z. Dembic, A. Corthay, How do CD4+ T cells detect and eliminate tumor cells that either lack or express MHC class II molecules?, Frontiers in immunology 5 (2014). [97] C.A. Thaiss, V. Semmling, L. Franken, H. Wagner, C. Kurts, Chemokines: a new dendritic cell signal for T cell activation, Frontiers in immunology 2 (2011). [98] J. Pan, M. Zhang, J. Wang, Q. Wang, D. Xia, W. Sun, L. Zhang, H. Yu, Y. Liu, X. Cao, Interferon-γ is an autocrine mediator for dendritic cell maturation, Immunology letters 94(1) (2004) 141-151. [99] T. He, C. Tang, S. Xu, T. Moyana, J. Xiang, Interferon gamma stimulates cellular maturation of dendritic cell line DC2. 4 leading to induction of efficient cytotoxic T cell responses and antitumor immunity, Cell Mol Immunol 4(2) (2007) 105-111. [100] M. Ebrahimi, Z.M. Hassan, J. Hadjati, P. Hayat, S.M. Moazzeni, Immediate Exposure to TNF-α Activates Dendritic Cells Derived from Non-Purified Cord Blood Mononuclear Cells, Iranian Journal of Immunology 6(3) (2009) 107. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21775 | - |
dc.description.abstract | 牛樟芝以護肝聞名,本研究室過去發現其菌絲體萃取之泛醌類衍生物4-acetylantroquinonol B(4-AAQB)具有抑制肝癌細胞HepG2良好功效,IC50 為0.1 ppm (μg/mL),但在4-AAQB對於肝癌幹細胞與免疫系統的影響仍不清楚。免疫系統為腫瘤發展上必需克服的難題,腫瘤可藉由分泌免疫逃避激素、馴化免疫系統、隱蔽抗原辨識部位等方式,來躲避免疫系統的攻擊,甚至利用免疫系統協助其發展。有許多癌症幹細胞已被定義為腫瘤起始細胞(tumor-initiating cell),被視為發展腫瘤免疫抑制(tumor- derived immunosuppression)的重要因素。另外,在腫瘤免疫中,樹突細胞為扮演抗原呈現連結非特異性與特異性毒殺腫瘤的重要角色,針對癌症幹細胞研究的樹突疫苗可望作為腫瘤治療發展的重要目標。因此,本研究為探討牛樟芝機能性成分4-AAQB對肝癌幹細胞與免疫機能的影響。研究結果顯示,4-AAQB可以抑制HepG2肝癌幹細胞標誌EpCAM與AFP,且相較於類似的活性化合物antroquinonol ( AQ ) 具有更好的效果。4-AAQB能顯著使EpCAM及β-catenin表現量下降,抑制腫瘤細胞的成瘤性與免疫逃避細胞激素的分泌,顯示4-AAQB具有防制肝癌幹細胞發展與免疫逃避的潛力。在免疫活性評估方面,4-AAQB可促進單核球與巨噬細胞的增生,相較於AQ可顯著的提升未成熟樹突細胞的吞噬作用並促進相關免疫激素IFN-γ、IL-2、TNF-α的分泌,在共培養肝癌幹細胞與未成熟樹突細胞下,4-AAQB可以促進EpCAM+ HepG2肝癌幹細胞與未成熟態樹突細胞彼此的MHC class I與II表現,以及增強偕同刺激分子CD80和刺激免疫活化細胞激素IFN-γ和TNF-α的分泌,顯示出良好的抗原呈現作用。綜合以上結果,本研究證實了4-AAQB相對於AQ擁有更好的腫瘤幹細胞抑制和免疫促進能力,並可以提升樹突細胞對於肝癌幹細胞的辨識力,因此我們可以結論,牛樟芝菌絲體萃取物4-AAQB具有活化免疫系統與預防肝癌發生與發展的潛力。 | zh_TW |
dc.description.abstract | Antrodia cinnamomea is famous for its liver protection function. In our laboratory, 4-acetylantroquinonol B (4-AAQB), a ubiquinone derivative extracted from the mycelium of Antrodia cinnamomea, was found to be able to inhibit the growth of HepG2 cells with IC50 of 0.1 μg/mL. However, its impact on liver cancer stem cells and the immune system remains unclear. The immune system is a hurdle factor for tumor development. The cancer cells must develop immune escape ability in order to grow continuously. Cancer cells can secrete a variety of immune escape cytokines, domesticate immune system and hidden antigen recognition sites to evade the attack of the immune system and even use the immune system to help their development. Many cancer stem cells are defined as tumor-initiating cells, which are considered as an important factor for multi-potential development of tumor-derived immune-suppression. In tumor immunity, dendritic cells play an important role in the link between nonspecific and specific tumor poisoning. Therefore, this study aimed to investigate the effects of 4-AAQB on immune responses of hepatoma stem cells and dendritic cells. The results showed that 4-AAQB can inhibit EpCAM, AFP and related pathways of hepatocellular carcinoma stem cells, and has more potent activity than the analogous active compound antroquinonol (AQ). 4-AAQB can significantly decrease the expression of β-catenin, inhibit the tumorigenicity and decrease the secretion of immune escape related cytokines, indicating that 4-AAQB has the potential to inhibit the immune escape of hepatocellular carcinoma stem cells. Moreover, 4-AAQB can stimulate the proliferation of immune cells and promote the endocytosis and the secretion of IFN-γ、IL-2、TNF-α of immature dendritic cells. When the immature dendritic cells were co-cultured with EpCAM+ HepG2 cells, 4-AAQB enhanced the expression of MHC class I and II on the surface of liver cancer stem cells and dendritic cells, increased the expression of costimulatory molecules CD80 of dendritic cells and cytokines related to immune activation. The aforementioned results show that 4-AAQB has the potential to activate the immune system thus prevent the development of liver cancer stem cells. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:46:16Z (GMT). No. of bitstreams: 1 ntu-108-D01641002-1.pdf: 4321175 bytes, checksum: 972d5951b2b866646c98ef92217221b0 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝II
目錄III 中文摘要VI 英文摘要VII 圖目錄IX 表目錄XI 第一章 文獻回顧1 第一節 腫瘤發展1 1. 腫瘤發展與預防1 2. 發炎反應與腫瘤發展的關係1 第二節 肝癌3 1. 肝癌與治療3 2. 肝癌幹細胞,腫瘤起始細胞5 3. 肝癌幹細胞與表面標誌6 第三節 腫瘤免疫學10 1. 腫瘤免疫學10 2. 腫瘤抗原10 3. 腫瘤的免疫反應11 4. 腫瘤的免疫抑制微環境13 5. 腫瘤的免疫治療16 6. 樹突細胞為腫瘤免疫的關鍵16 7. 腫瘤幹細胞可能為免疫逃逸的元兇19 8. 開發具有針對肝腫瘤幹細胞的腫瘤免疫模式21 第四節 牛樟芝22 1. 牛樟芝22 2. 牛樟芝的免疫調節作用22 3. 牛樟芝泛醌類衍生物33 第二章 研究目的與實驗架構25 第一節 研究目的26 第二節 實驗架構27 第三章 材料與方法28 第一節 實驗材料28 第二節 實驗方法30 1. 樣品配製30 2. 細胞培養30 3. 細胞存活率31 4. 流式細胞儀32 a. 表面標誌物染色技術32 b. 細胞激素染色技術32 c. 吞噬細胞活性33 5. 細胞/組織螢光免疫染色法33 6. 細胞群落性實驗34 7. 單核球分化為樹突細胞35 8. 癌症幹細胞磁珠分選法36 9. 共培養法37 10. HPLC/ICP-MS分析實驗37 11. 統計方法38 第四章 實驗結果與討論39 第一部分 4-AAQB抑制肝癌與肝癌幹細胞、免疫抑制激素分泌的結果39 1. 4-AAQB能夠抑制EpCAM與AFP的表現量39 2. 4-AAQB使細胞核濃縮、EpCAM與β-catenin表現量下降43 3. 4-AAQB對HepG2 colony formation(成瘤性評估)46 4. EpCAM+與EpCAM- HepG2肝癌幹細胞型態47 5. 4-AAQB對EpCAM+ HepG2存活率的影響48 6. 4-AAQB對EpCAM+ HepG2細胞激素IL-6分泌的評估49 7. 4-AAQB對EpCAM+ HepG2細胞激素IL-10分泌的評估51 第二部分 4-AAQB 對免疫細胞活化與增值評估54 1. 4-AAQB 對小鼠巨噬細胞Raw264.7之影響55 2. 4-AAQB 對單核球細胞THP-1之影響57 3. 單核球分化為樹突細胞程序59 4. 4-AAQB 能促進未成熟樹突細胞吞噬活性61 5. 4-AAQB 對於未成熟樹突細胞IFN-γ分泌之影響63 6. 4-AAQB 對於未成熟樹突細胞IL-2分泌之影響65 7. 4-AAQB 對於未成熟樹突細胞TNF-α分泌之影響67 第三部分 共培養未成熟樹突細胞作用於肝癌幹細胞表現69 1. 共培養後肝癌幹細胞MHC class I, II表現量70 2. 共培養後未成熟樹突細胞MHC class I, II表現量73 3. 共培養後未成熟樹突細胞共刺激分子CD80表現量76 4. 共培養下胞外分泌免疫促進激素IFN-γ的評估77 5. 共培養下胞外分泌免疫促進激素TNF-α的評估79 6. 4-AAQB活化樹突細胞對於肝癌幹細胞的辨識作用81 第五章 結論82 縮寫對照表85 參考文獻87 | |
dc.language.iso | zh-TW | |
dc.title | 牛樟芝菌絲體中4-Acetylantroquinonol B提升抑制肝癌幹細胞之免疫機制 | zh_TW |
dc.title | 4-Acetylantroquinonol B from Antrodia cinnamomea enhances immune function against liver cancer stem cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林育蔚(Yu-Wei Lin),潘敏雄(Min?Hsiung Pan),莊榮輝(Rong-Huay Juang),陳健生(Chien-Sheng Chen),陳錦樹(Chin-Shuh Chen) | |
dc.subject.keyword | 4-AAQB,EpCAM,AFP,未成熟樹突細胞,共培養, | zh_TW |
dc.subject.keyword | 4-AAQB,EpCAM,AFP,immature dendritic cells,co-culture, | en |
dc.relation.page | 95 | |
dc.identifier.doi | 10.6342/NTU201900425 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-02-12 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 4.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。