Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 臺大-復旦EMBA境外專班
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21694
Title: 大數據在金融業中的應用:
以TB銀行為案例分析
The Application of Big Data in Financial Industry: the Case of TB Bank
Authors: Chih-Wei Chen
陳志瑋
Advisor: 李存修
Keyword: 大數據,程式交易,理財機器人,馬可夫鏈,金融業,
Big Data,Program Trade,Robot financing,Markov chain,FinanciaI Industry,
Publication Year : 2019
Degree: 碩士
Abstract: 大數據(Big Data)在金融方面一般分成二大應用:(1)金融業本身的數據管理;(2)程式交易或自動化交易系統。
金融業本身的數據管理:屬於內部數據的分類與分析管理,這方面最常見的應用是客戶管理。在對單一客戶提出理財建議時,可以先透過集團內部所有客戶資料先分析,例如銀行交易、保險、證券交易、其他金融資產交易,以及個人資料分析,如年齡、家庭等,來對掌權客戶,提供理財服務或風險管理服務。
程式交易或自動化交易系統:透過歷史資料、實時市場監控等,可以對投資組合自動化管理,以達到交易目的。同樣是以報酬率最大化為目標,但投資組合可以是高風險組合,也可以是低風險組合,程式或自動化交易的重點,在於訓練軟件自動建立投資部位、調整、紀錄,擬定最大風險、停損、分散交易等策略,再透過不斷自我回測,以隨時應對市場變化,最終達到報酬率最大化並打敗市場平均的成果。
本研究從以上兩個方面分別做文獻回顧,再從實際事務數據來分析,在建立自動交易系統時的策略與限制,來分析個案。
Big Data is generally divided into two major applications in finance: (1) data management in the financial industry itself; (2) program trading or automated trading systems. Data-management in the financial industry itself: Classification and analysis management of internal data. The most common application in this area is customer management. When making financial advice to a single customer, you can first analyze all customer data in the group, such as banking transactions, insurance, securities trading, other financial asset transactions, and personal data analysis, such as age, family, etc. Provide financial services or risk management services.
Program trading or automated trading system: Through historical data, real-time market monitoring, etc., the portfolio can be automatically managed to achieve trading purposes. The same is to maximize the rate of return, but the portfolio can be a high-risk combination, or a low-risk combination, the focus of the program or automated trading, is that the training software automatically establish investment positions, adjustments, records, formulate the maximum risk, stop Loss, decentralized trading and other strategies, through continuous self-testing, to respond to market changes at any time, and ultimately achieve maximum return and defeat the average market results.
This study reviews the literature from the above two aspects, and then analyzes the actual transaction data, and analyzes the cases when establishing the automatic trading system.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21694
DOI: 10.6342/NTU201900850
Fulltext Rights: 未授權
Appears in Collections:臺大-復旦EMBA境外專班

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
1.47 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved