Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21366
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊維(Chun-Wei Chen)
dc.contributor.authorWe-Chen Keen
dc.contributor.author柯威辰zh_TW
dc.date.accessioned2021-06-08T03:32:10Z-
dc.date.copyright2019-08-18
dc.date.issued2019
dc.date.submitted2019-08-12
dc.identifier.citation1 Goldemberg, José, ed. World Energy Assessment: Energy and the challenge of sustainability. New York^ eNY NY: United Nations Development Programme, 2000.
2 Grätzel, Michael. 'Photoelectrochemical cells.' Nature 414.6861 (2001): 338.
3 Green, Martin A. 'Third generation photovoltaics: solar cells for 2020 and beyond.' Physica E: Low-dimensional Systems and Nanostructures 14.1-2 (2002): 65-70.
4 Chapin, Daryl M., C. S. Fuller, and G. L. Pearson. 'A new silicon p‐n junction photocell for converting solar radiation into electrical power.' Journal of Applied Physics 25.5 (1954): 676-677.
5 Ludin, Norasikin Ahmad, et al. 'Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review.' Renewable and Sustainable Energy Reviews 96 (2018): 11-28.
6 Christians, Jeffrey A., et al. 'Tailored interfaces of unencapsulated perovskite solar cells for> 1,000 hour operational stability.' Nature Energy 3.1 (2018): 68.
7 Cheng, Ziyong, and Jun Lin. 'Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering.' CrystEngComm 12.10 (2010): 2646-2662.
8 Cohen, Ronald E. 'Origin of ferroelectricity in perovskite oxides.' Nature 358.6382 (1992): 136.
9 Zheng, Ting, et al. 'Recent development in lead-free perovskite piezoelectric bulk materials.' Progress in Materials Science (2018).
10 Maeno, Y., et al. 'Superconductivity in a layered perovskite without copper.' Nature 372.6506 (1994): 532.
11 Chen, Qi, et al. 'Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications.' Nano Today 10.3 (2015): 355-396.
12 Rondinelli, James M., Steven J. May, and John W. Freeland. 'Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery.' MRS bulletin 37.3 (2012): 261-270.
13 Xu, Xiaoxiang, et al. 'A red metallic oxide photocatalyst.' Nature materials 11.7 (2012): 595.
14 Mitzi, David B. 'Synthesis, structure, and properties of organic‐inorganic perovskites and related materials.' Progress in inorganic chemistry (1999): 1-121.
15 Fan, Zhen, Kuan Sun, and John Wang. 'Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites.' Journal of Materials Chemistry A 3.37 (2015): 18809-18828.
16 Stoumpos, Constantinos C., et al. 'Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors.' Chemistry of Materials 28.8 (2016): 2852-2867.
17 Matsuishi, K., et al. 'Optical properties and structural phase transitions of lead‐halide based inorganic–organic 3D and 2D perovskite semiconductors under high pressure.' physica status solidi (b) 241.14 (2004): 3328-3333.
18 Noh, Jun Hong, et al. 'Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.' Nano letters 13.4 (2013): 1764-1769.
19 Stranks, Samuel D., et al. 'Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.' Science 342.6156 (2013): 341-344.
20 Kojima, Akihiro, et al. 'Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.' Journal of the American Chemical Society 131.17 (2009): 6050-6051.
21 Im, Jeong-Hyeok, et al. '6.5% efficient perovskite quantum-dot-sensitized solar cell.' Nanoscale 3.10 (2011): 4088-4093.
22 Lee, Michael M., et al. 'Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.' Science 338.6107 (2012): 643-647.
23 Zhou, Huanping, et al. 'Interface engineering of highly efficient perovskite solar cells.' Science 345.6196 (2014): 542-546.
24 Yang, Woon Seok, et al. 'High-performance photovoltaic perovskite layers fabricated through intramolecular exchange.' Science 348.6240 (2015): 1234-1237.
25 Saliba, Michael, et al. 'Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency.' Energy & environmental science 9.6 (2016): 1989-1997.
26 Sum, Tze Chien, and Nripan Mathews. 'Advancements in perovskite solar cells: photophysics behind the photovoltaics.' Energy & Environmental Science 7.8 (2014): 2518-2534.
27 Marchioro, Arianna, et al. 'Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells.' Nature photonics 8.3 (2014): 250.
28 Sun, Shuangyong, et al. 'The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells.' Energy & Environmental Science 7.1 (2014): 399-407.
29 https://www.pveducation.org/pvcdrom/solar-cell-operation/shunt-resistance
30 Zhao, Yixin, and Kai Zhu. 'Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications.' Chemical Society Reviews 45.3 (2016): 655-689.
31 Burschka, Julian, et al. 'Sequential deposition as a route to high-performance perovskite-sensitized solar cells.' Nature 499.7458 (2013): 316.
32 Liu, Mingzhen, Michael B. Johnston, and Henry J. Snaith. 'Efficient planar heterojunction perovskite solar cells by vapour deposition.' Nature 501.7467 (2013): 395.
33 You, Jingbi, et al. 'Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility.' ACS nano 8.2 (2014): 1674-1680.
34 Yang, Guang, et al. 'Recent progress in electron transport layers for efficient perovskite solar cells.' Journal of Materials Chemistry A 4.11 (2016): 3970-3990.
35 Chen, Tzu‐Pei, et al. 'Self‐Assembly Atomic Stacking Transport Layer of 2D Layered Titania for Perovskite Solar Cells with Extended UV Stability.' Advanced Energy Materials 8.2 (2018): 1701722.
36 Wang, Qi, et al. 'Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process.' Energy & Environmental Science 7.7 (2014): 2359-2365.
37 You, Jingbi, et al. 'Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers.' Nature nanotechnology 11.1 (2016): 75.
38 Upama, Mushfika Baishakhi, et al. 'Role of fullerene electron transport layer on the morphology and optoelectronic properties of perovskite solar cells.' Organic Electronics 50 (2017): 279-289.
39 Jeon, Nam Joong, et al. 'Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells.' Nature materials 13.9 (2014): 897.
40 Guo, Yunlong, et al. 'Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer.' Journal of Materials Chemistry A 2.34 (2014): 13827-13830.
41 Zardetto, V., et al. 'Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges.' Sustainable Energy & Fuels 1.1 (2017): 30-55.
42 Zhang, Peng, et al. 'Perovskite solar cells with ZnO electron‐transporting materials.' Advanced Materials 30.3 (2018): 1703737.
43 Yang, Jinli, et al. 'Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO.' Chemistry of Materials 27.12 (2015): 4229-4236.
44 Lee, Kun-Mu, et al. 'Thickness effects of ZnO thin film on the performance of tri-iodide perovskite absorber based photovoltaics.' Solar Energy 120 (2015): 117-122.
45 Tseng, Zong-Liang, Chien-Hung Chiang, and Chun-Guey Wu. 'Surface engineering of ZnO thin film for high efficiency planar perovskite solar cells.' Scientific reports 5 (2015): 13211.
46 Liu, Dianyi, and Timothy L. Kelly. 'Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques.' Nature photonics 8.2 (2014): 133.
47 Xiong, Liangbin, et al. 'Review on the application of SnO2 in perovskite solar cells.' Advanced Functional Materials 28.35 (2018): 1802757.
48 Baena, Juan Pablo Correa, et al. 'Highly efficient planar perovskite solar cells through band alignment engineering.' Energy & Environmental Science 8.10 (2015): 2928-2934.
49 Ke, Weijun, et al. 'Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells.' Journal of the American Chemical Society 137.21 (2015): 6730-6733.
50 Jiang, Qi, et al. 'Enhanced electron extraction using SnO 2 for high-efficiency planar-structure HC (NH 2) 2 PbI 3-based perovskite solar cells.' Nature Energy 2.1 (2017): 16177.
51 Wang, Kai, et al. 'Low-temperature and solution-processed amorphous WO X as electron-selective layer for perovskite solar cells.' The journal of physical chemistry letters 6.5 (2015): 755-759.
52 Kogo, Atsushi, et al. 'Nb2O5 blocking layer for high open-circuit voltage perovskite solar cells.' Chemistry Letters 44.6 (2015): 829-830.
53 Qin, Minchao, et al. 'Perovskite solar cells based on low-temperature processed indium oxide electron selective layers.' ACS applied materials & interfaces 8.13 (2016): 8460-8466.
54 Wang, Xin, et al. 'Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature.' Journal of Materials Chemistry A 5.4 (2017): 1706-1712.
55 Yeom, Eun Joo, et al. 'Controllable synthesis of single crystalline Sn-based oxides and their application in perovskite solar cells.' Journal of Materials Chemistry A 5.1 (2017): 79-86.
56 Bera, Ashok, et al. 'Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells.' The Journal of Physical Chemistry C 118.49 (2014): 28494-28501.
57 Shin, Seong Sik, et al. 'Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells.' Science 356.6334 (2017): 167-171.
58 Xiong, Liangbin, et al. 'Performance enhancement of high temperature SnO 2-based planar perovskite solar cells: electrical characterization and understanding of the mechanism.' Journal of Materials Chemistry A 4.21 (2016): 8374-8383.
59 Abate, Antonio, et al. 'Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells.' Physical Chemistry Chemical Physics 15.7 (2013): 2572-2579.
60 Park, Minwoo, et al. 'Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells.' Nano Energy 26 (2016): 208-215.
61 Ren, Xiaodong, et al. 'Solution-processed Nb: SnO2 electron transport layer for efficient planar perovskite solar cells.' ACS applied materials & interfaces 9.3 (2017): 2421-2429.
62 Roose, Bart, et al. 'A Ga-doped SnO 2 mesoporous contact for UV stable highly efficient perovskite solar cells.' Journal of Materials Chemistry A 6.4 (2018): 1850-1857.
63 Rao, Hua‐Shang, et al. 'Improving the extraction of photogenerated electrons with SnO2 nanocolloids for efficient planar perovskite solar cells.' Advanced Functional Materials 25.46 (2015): 7200-7207.
64 Hou, Yu, et al. 'A Band‐Edge Potential Gradient Heterostructure to Enhance Electron Extraction Efficiency of the Electron Transport Layer in High‐Performance Perovskite Solar Cells.' Advanced Functional Materials 27.27 (2017): 1700878.
65 Zuo, Lijian, et al. 'Tailoring the interfacial chemical interaction for high-efficiency perovskite solar cells.' Nano letters 17.1 (2016): 269-275.
66 Wu, Wu‐Qiang, et al. 'Thin Films of Tin Oxide Nanosheets Used as the Electron Transporting Layer for Improved Performance and Ambient Stability of Perovskite Photovoltaics.' Solar Rrl 1.11 (2017): 1700117.
67 Ke, Weijun, et al. 'Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells.' Journal of Materials Chemistry A 4.37 (2016): 14276-14283.
68 Wang, Ying‐Chiao, et al. 'Efficient and Hysteresis‐Free Perovskite Solar Cells Based on a Solution Processable Polar Fullerene Electron Transport Layer.' Advanced Energy Materials 7.21 (2017): 1701144.
69 Wang, Ying‐Chiao, et al. 'Electron‐Transport‐Layer‐Assisted Crystallization of Perovskite Films for High‐Efficiency Planar Heterojunction Solar Cells.' Advanced Functional Materials 28.9 (2018): 1706317.
70 Liu, Kuan, et al. 'Fullerene derivative anchored SnO 2 for high-performance perovskite solar cells.' Energy & Environmental Science 11.12 (2018): 3463-3471.
71 Yu, Hui, et al. 'The Role of Chlorine in the Formation Process of “CH3NH3PbI3‐xClx” Perovskite.' Advanced Functional Materials 24.45 (2014): 7102-7108.
72 Lee, Jin-Wook, Hui-Seon Kim, and Nam-Gyu Park. 'Lewis acid–base adduct approach for high efficiency perovskite solar cells.' Accounts of chemical research 49.2 (2016): 311-319.
73 Krautscheid, Harald, and Frieder Vielsack. 'Discrete and polymeric iodoplumbates with Pb3I10 building blocks:[Pb3I10] 4–,[Pb7I22] 8–,[Pb10I28] 8–, 1∞[Pb3I10] 4–and 2∞[Pb7I18] 4–.' Journal of the Chemical Society, Dalton Transactions 16 (1999): 2731-2735.
74 Wharf, Ivor, et al. 'Synthesis and vibrational spectra of some lead (II) halide adducts with O-, S-, and N-donor atom ligands.' Canadian Journal of Chemistry 54.21 (1976): 3430-3438.
75 Ahn, Namyoung, et al. 'Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide.' Journal of the American Chemical Society 137.27 (2015): 8696-8699.
76 Colthup, Norman. Introduction to infrared and Raman spectroscopy. Elsevier, 2012.
77 Lee, Jin-Wook, et al. 'A bifunctional lewis base additive for microscopic homogeneity in perovskite solar cells.' Chem 3.2 (2017): 290-302.
78 Noel, Nakita K., et al. 'Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites.' ACS nano 8.10 (2014): 9815-9821.
79 Hsieh, Cheng-Ming, et al. 'Low-temperature, simple and efficient preparation of perovskite solar cells using Lewis bases urea and thiourea as additives: stimulating large grain growth and providing a PCE up to 18.8%.' RSC Advances 8.35 (2018): 19610-19615.
80 Sima, Cornelia, Constantin Grigoriu, and Stefan Antohe. 'Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO.' Thin Solid Films 519.2 (2010): 595-597.
81 Ono, Luis K., et al. 'Air-exposure-induced gas-molecule incorporation into spiro-MeOTAD films.' The journal of physical chemistry letters 5.8 (2014): 1374-1379.
82 Cappel, Ute B., Torben Daeneke, and Udo Bach. 'Oxygen-induced doping of spiro-MeOTAD in solid-state dye-sensitized solar cells and its impact on device performance.' Nano letters 12.9 (2012): 4925-4931.
83 Wang, Shen, Wen Yuan, and Ying Shirley Meng. 'Spectrum-dependent spiro-OMeTAD oxidization mechanism in perovskite solar cells.' ACS applied materials & interfaces 7.44 (2015): 24791-24798.
84 Han, Guifang, et al. 'Towards high efficiency thin film solar cells.' Progress in Materials Science 87 (2017): 246-291.
85 https://www.laserfocusworld.com/lasers-sources/article/16566681/photovoltaics-measuring-the-sun
86 Moliton, André, and Jean‐Michel Nunzi. 'How to model the behaviour of organic photovoltaic cells.' Polymer International 55.6 (2006): 583-600.
87 https://en.wikipedia.org/wiki/Quantum_efficiency
88 Chen, Zhebo, et al. 'Incident photon-to-current efficiency and photocurrent spectroscopy.' Photoelectrochemical Water Splitting. Springer, New York, NY, 2013. 87-97.
89 http://ned.ipac.caltech.edu/level5/Sept03/Li/Li4.html
90 http://www.mpip-mainz.mpg.de/65134/Time_Resolved_Photoluminescence_Spectroscopy
91 Guo, Xin, et al. 'Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI 3 perovskite.' Dalton Transactions 45.9 (2016): 3806-3813.
92 Zhu, Lifeng, et al. 'Investigation on the role of Lewis bases in the ripening process of perovskite films for highly efficient perovskite solar cells.' Journal of Materials Chemistry A 5.39 (2017): 20874-20881.
93 Fei, Chengbin, et al. 'Highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 film.' Advanced Energy Materials 7.9 (2017): 1602017.
94 Shkir, Mohd, et al. 'Facile synthesis of lead iodide nanostructures by microwave irradiation technique and their structural, morphological, photoluminescence and dielectric studies.' Journal of Molecular Structure 1110 (2016): 83-90.
95 Zhu, X. H., et al. 'Synthesis and characterization of PbI2 polycrystals.' Crystal Research and Technology: Journal of Experimental and Industrial Crystallography 41.3 (2006): 239-242.
96 Kim, Young Chan, et al. 'Beneficial effects of PbI2 incorporated in organo‐lead halide perovskite solar cells.' Advanced Energy Materials 6.4 (2016): 1502104.
97 Mahmood, Khalid, Saad Sarwar, and Muhammad Taqi Mehran. 'Current status of electron transport layers in perovskite solar cells: materials and properties.' RSC Advances 7.28 (2017): 17044-17062.
98 Green, Martin A., Anita Ho-Baillie, and Henry J. Snaith. 'The emergence of perovskite solar cells.' Nature photonics 8.7 (2014): 506.
99 Bi, Cheng, et al. 'Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells.' Nature communications 6 (2015): 7747.
100 Kalonga, Given, et al. 'Characterization and optimization of poly (3-hexylthiophene-2, 5-diyl)(P3HT) and [6, 6] phenyl-C61-butyric acid methyl ester (PCBM) blends for optical absorption.' Journal of Chemical Engineering and Materials Science 4.7 (2013): 93-102.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21366-
dc.description.abstract鈣鈦礦太陽電池在短短十年間快速發展將光電轉換效率提升至20%以上。其卓越的優點包含在可見光波段裡具有良好吸收率、微米等級的載子擴散距離,和透過結構離子的更換即可擁有不同大小之能階變化等,可看出其為一極具潛力的太陽能轉換材料。然而,為了提高元件載子傳輸效能,如何藉由其他層材料的輔助,提高汲取載子之能力是為現今重要研究內容之一。
首先,鈣鈦礦混合路易士鹼添加劑在傳統氧化鈦傳輸層太陽能元件中,被證明可有效提升電池轉換效率,因此本實驗選用尿素成功降低鈣鈦礦吸光層中的缺陷,並提升元件效率。然而,經由文獻回顧得知氧化鋅和氧化錫具有較高的電子遷移率及更適合之能帶結構,所以被視為可取代氧化鈦之電子傳輸層,但在後續表面形貌、X光繞射和載子汲取效率分析可知氧化鋅與鈣鈦礦在空氣中相當不穩定,會使材料快速降解。此外,比較三者光穿透率氧化錫為其中最佳,因此選擇此項氧化物作為後續表面改質之電子傳輸層材料。
接著,界面改質材料的引入是為了使鈣鈦礦產生之激子更快速分離為載子,並經由傳輸層導離,本實驗將碳60-吡咯烷三羧酸(CPTA)和[6,6]-苯基-碳61-丁酸甲酯(PCBM)分別披覆於氧化錫表面進行比較。過去PCBM被人們單純運用在鈣鈦礦反式太陽能元件結構中,作為有機電子傳輸層,近期被發現也可用於界面改質,但觀察表面結構、X光繞射和光致螢光分析,發現CPTA擁有更佳的載子傳導效果。進一步以FTIR了解,CPTA是由氫氧官能基和氧化錫中含有氧空缺缺陷之錫原子進行鍵結,也因為此化學鍵效果相對PCBM單純披覆上達到更好的傳輸能力,所以更適合用於界面改質提升太陽能元件之光電轉換效率。
zh_TW
dc.description.abstractPerovskite solar cells (PSCs) have drawn enormous attention in recent years owing to their high power conversion efficiency over 20%. Some of its exceptional properties such as remarkably high absorption over the visible spectrum, long charge carrier diffusion lengths in the μm range, and tunable band gap by interchanging various structure ions reveal its great potential in solar conversion. Nevertheless, in order to promote carrier transmission efficiency of devices, how to elevate the ability to quench carriers aiding with other material layers’ aiding is an important issue nowadays.
In the beginning, perovskite added Louis base is proofed to facilitate power conversion efficiency of perovskite solar cells; therefore, urea is adopted and successfully promotes efficiencies of devices. However, it is confirmed by papers that zinc oxide (ZnO) and tin oxide (SnO2) possess higher electron mobility and more suitable band structure, which are considered to be the replacements of TiO2 ETL. After analyzing surface morphology, X-ray diffraction, and carrier quenching efficiency, it is understood that ZnO coated perovskite is quite unstable and quickly degrades in atmosphere. Besides, tin oxide demonstrates the best transmission rate in three of them, so this metal oxide electron transport material is chose to do the next step of surface modification.
The second is introducing the surface modification material to effectively separate excitons into carriers and for them to be quenched by ETL. Here, C60 pyrrolidine tris-acid (CPTA) and [6,6]-phenyl- C61-butyric acid methyl ester (PCBM) are separately passivated on SnO2 for comparison. In the past, PCBM was usually adopted in inverted perovskite solar cell as an organic electron transport layer, and it has been found that it could be used in surface as well modification in recent years. However, surface morphology, X-ray diffraction and photoluminescence (PL) show that CPTA transfers carrier more efficiently. In FTIR data analysis, the further study comprehends that the hydroxyl terminal groups on CPTA are coordinated with oxygen-vacancy-related defects of Sn in SnO2, and chemical bonding with interface modification brings better transfer ability than PCBM with non-bonding passivation on SnO2, forasmuch it is more advisable to be applied in facilitating performance of perovskite solar cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:32:10Z (GMT). No. of bitstreams: 1
ntu-108-R06527043-1.pdf: 5229276 bytes, checksum: f90c422fcf337efbb19b94e510812fbb (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xvi
Chapter 1 Introduction 1
1.1 The solution of energy crisis - solar cells 1
1.2 Perovskite solar cells 4
1.2.1 Structure and properties of perovskite 4
1.2.2 The development of perovskite solar cells 6
1.3 Heterojunction of perovskite solar cells 9
1.3.1 Charge dynamics in perovskite solar cells 9
1.3.2 The architecture of perovskite solar cells 10
1.3.3 Transport materials in perovskite solar cells 12
1.4 Motivation 17
Chapter 2 Literature Review 18
2.1 The variety of electron transport materials 18
2.1.1 The most common metal oxide electron transport layers 18
2.1.2 Other types of metal oxide electron transport layers 22
2.2 Charge transport improvement by surface modification 24
2.2.1 The variety of surface modifiers 24
2.2.2 Fullerene derivative surface passivation 27
2.3 Perovskite light absorption layer 30
2.3.1 Deposition of perovskite thin film 30
2.3.2 The addition in perovskite layer 32
Chapter 3 Experimental section 37
3.1 Preparation of materials in perovskite solar cells 37
3.2 Fabrication of perovskite solar cells 40
3.3 Photovoltaic characteristic 42
3.3.1 Solar energy 42
3.3.2 Current versus voltage characteristics of photovoltaic devices 44
3.3.3 Equivalent circuit to a solar cell 45
3.3.4 Quantum efficiency of solar cells 47
3.4 Experiment and analysis instruments 49
3.4.1 Atomic force microscopy 49
3.4.2 Scanning electron microscope 49
3.4.3 X-ray powder diffraction 50
3.4.4 Photoluminescence and time-resolved photoluminescence 51
Chapter 4 ETL Selection and Surface Modification 54
4.1 Improved efficiency of hybrid perovskite solar cells via controlling each functional layer 54
4.1.1 Morphology control by incorporating with urea 54
4.1.2 Enhanced electron extraction with suitable ETL 60
4.2 Surface modification on SnO2 electron transport layer 67
4.2.1 Morphology improvement by fullerene derivative modifying 67
4.2.2 Charge transfer and chemical bonding on fullerene derivative modified SnO2 ETL 71
Chapter 5 Conclusion 76
REFERENCE 77
dc.language.isoen
dc.title利用電子傳輸層表面改質提升鈣鈦礦太陽能元件效能zh_TW
dc.titleInterface Modification on Electron Transport Layer to Improve Power Conversion Efficiency of Perovskite Solar Cellsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅志偉(Chih-Wei Luo),王迪彥(Di-Yan Wang)
dc.subject.keyword鈣鈦礦太陽電池,尿素添加劑,氧化錫,界面改質,CPTA,zh_TW
dc.subject.keywordPerovskite solar cell,Tin oxide,Urea additive,Surface modification,CPTA,en
dc.relation.page87
dc.identifier.doi10.6342/NTU201902840
dc.rights.note未授權
dc.date.accepted2019-08-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
5.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved