Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21047
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂廷璋,鄭光成
dc.contributor.authorJin-Tong Yangen
dc.contributor.author楊金銅zh_TW
dc.date.accessioned2021-06-08T03:17:32Z-
dc.date.copyright2017-02-16
dc.date.issued2017
dc.date.submitted2017-01-13
dc.identifier.citationAgrawal, K.M.L., and Bahl, O.P. (1968). Glycosidases of phaseolus vulgaris II. isolation and general properties. J. Biol. Chem. 243, 103–111.
Akihisa, T., Hayakawa, Y., Tokuda, H., Banno, N., Shimizu, N., Suzuki, T., and Kimura, Y. (2007). Cucurbitane glycosides from the fruits of siraitia grosvenorii and their inhibitory effects on epstein−barr virus activation. J. Nat. Prod. 70, 783–788.
An, N., Zhou, C.H., Zhuang, X.Y., Tong, D.S., and Yu, W.H. (2015). Immobilization of enzymes on clay minerals for biocatalysts and biosensors. Appl. Clay Sci. 114, 283–296.
Bahl, O.P., and Agrawal, K.M.L. (1968). Glycosidases of phaseolus vulgaris I. isolation and characterization of acetylglcosaminidase. J. Biol. Chem. 243, 98–102.
Bigwood, M.P. (1986). Immobilization of enzymes by covalent binding to an oxirane bearing macroreticular acrylic resin: Factors affecting the binding process and the activity of the bound enzyme. React. Polym. Ion Exch. Sorbents 4, 179.
Blakeney, A.B., and Matheson, N.K. (1984). Some properties of the stem and pollen starches of rice. Starch - Stärke 36, 265–269.
Bornscheuer, U.T. (2003). Immobilizing enzymes: how to create more suitable biocatalysts. Angew. Chem. Int. Ed. 42, 3336–3337.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.
Budzikiewicz, H., Wilson, J.M., and Djerassi, C. (1963). Mass spectrometry in structural and stereochemical problems. J. Am. Chem. Soc. 85, 3688–3699.
Cao, L. (2005). Immobilised enzymes: science or art? Curr. Opin. Chem. Biol. 9, 217–226.
Çelik, A., Dinçer, A., and Aydemir, T. (2016). Characterization of β-glucosidase immobilized on chitosan-multiwalled carbon nanotubes (MWCNTS) and their application on tea extracts for aroma enhancement. Int. J. Biol. Macromol. 89, 406–414.
Chakraborty, S., Rusli, H., Nath, A., Sikder, J., Bhattacharjee, C., Curcio, S., and Drioli, E. (2016). Immobilized biocatalytic process development and potential application in membrane separation: a review. Crit. Rev. Biotechnol. 36, 43–58.
Chaturvedula, V.S.P., and Prakash, I. (2011). Cucurbitane glycosides from siraitia grosvenorii. J. Carbohydr. Chem. 30, 16–26.
Chen, K.-I., Lo, Y.-C., Su, N.-W., Chou, C.-C., and Cheng, K.-C. (2012). Enrichment of two isoflavone aglycones in black soymilk by immobilized β-glucosidase on solid carriers. J. Agric. Food Chem. 60, 12540–12546.
Chen, K.-I., Lo, Y.-C., Liu, C.-W., Yu, R.-C., Chou, C.-C., and Cheng, K.-C. (2013). Enrichment of two isoflavone aglycones in black soymilk by using spent coffee grounds as an immobiliser for β-glucosidase. Food Chem. 139, 79–85.
Chen, W.J., Wang, J., Qi, X.Y., and Xie, B.J. (2007). The antioxidant activities of natural sweeteners, mogrosides, from fruits of siraitia grosvenori. Int. J. Food Sci. Nutr. 58, 548–556.
Chi, H., and Ji, G.-E. (2005). Transformation of ginsenosides Rb1 and Re from panax ginseng by food microorganisms. Biotechnol. Lett. 27, 765–771.
Chi, H., Kim, D.-H., and Ji, G.-E. (2005). Transformation of ginsenosides Rb2 and Rc from panax ginseng by food microorganisms. Biol. Pharm. Bull. 28, 2102–2105.
Chiu, C.-H., Wang, R., Lee, C.-C., Lo, Y.-C., and Lu, T.-J. (2013). Biotransformation of mogrosides from siraitia grosvenorii swingle by saccharomyces cerevisiae. J. Agric. Food Chem. 61, 7127–7134.
Chyr, R., and Shiao, M.-S. (1991). Liquid chromatographic characterization of the triterpenoid patterns in ganoderma lucidum and related species. J. Chromatogr. A 542, 327–336.
Cui, M., Song, F., Liu, Z., and Liu, S. (2001). Metal ion adducts in the structural analysis of ginsenosides by electrospray ionization with multi-stage mass spectrometry. Rapid Commun. Mass Spectrom. 15, 586–595.
Dessouki, A.M., Issa, G.I., and Atia, K.S. (2001). Pullulanase immobilization on natural and synthetic polymers. J. Chem. Technol. Biotechnol. 76, 700–706.
Di, R., Huang, M.-T., and Ho, C.-T. (2011). Anti-inflammatory activities of mogrosides from momordica grosvenori in murine macrophages and a murine ear edema model. J. Agric. Food Chem. 59, 7474–7481.
Diano, N., Grimaldi, T., Bianco, M., Rossi, S., Gabrovska, K., Yordanova, G., Godjevargova, T., Grano, V., Nicolucci, C., Mita, L., et al. (2008). Apple juice clarification by immobilized pectolytic enzymes in packed or fluidized bed reactors. J. Agric. Food Chem. 56, 11471–11477.
Engelmark Cassimjee, K., Kadow, M., Wikmark, Y., Svedendahl Humble, M., Rothstein, M.L., Rothstein, D.M., and Bäckvall, J.-E. (2014). A general protein purification and immobilization method on controlled porosity glass: biocatalytic applications. Chem. Commun. 50, 9134.
Esaki, H., WATANABE, R., ONOZAKI, H., KAWAKISHI, S., and OSAWA, T. (1999). Formation mechanism for potent antioxidative o-dihydroxyisoflavones in soybeans fermented with aspergillus saitoi. Biosci. Biotechnol. Biochem. 63, 851–858.
Felgueiras, M., Chicau, G., Pereira, J.M., and Dias, A.C.P. (2006). Effects of esca disease on leaf gas exchange of cv. alvarinho in a vineyard of the portuguese vinho verde region.
Francis, G., Kerem, Z., Makkar, H.P.S., and Becker, K. (2002). The biological action of saponins in animal systems: a review. Br. J. Nutr. 88, 587–605.
Gengembre, L. (2003). ESCA and catalysts. VIDE-Sci. Tech. Appl. 58, 282–+.
González-Sáiz, J.M., and Pizarro, C. (2001). Polyacrylamide gels as support for enzyme immobilization by entrapment. Effect of polyelectrolyte carrier, pH and temperature on enzyme action and kinetics parameters. Eur. Polym. J. 37, 435–444.
Hostettmann, K., and Marston, A. (2005). Saponins (Cambridge University Press).
Kita, A., Matsui, H., Somoto, A., Kimura, A., Takata, M., and Chiba, S. (1991). Substrate specificity and subsite affinities of crystalline α-glucosidase from aspergillus niger. Agric. Biol. Chem. 55, 2327–2335.
Krajewska, B. (2004). Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb. Technol. 35, 126–139.
Kurokawa, Y., Suzuki, K., and Tamai, Y. (1998). Adsorption and enzyme (β-galactosidase and α-chymotrypsin): Immobilization properties of gel fiber prepared by the gel formation of cellulose acetate and titanium iso-propoxide. Biotechnol. Bioeng. 59, 651–656.
Leah, R., Kigel, J., Svendsen, I., and Mundy, J. (1995). Biochemical and molecular characterization of a barley seed β-glucosidase. J. Biol. Chem. 270, 15789–15797.
Lee, C.-H. (1975). Intense sweetener from lo han kuo (momordica grosvenori). Experientia 31, 533–534.
Li, D., Ikeda, T., Huang, Y., Liu, J., Nohara, T., Sakamoto, T., and Nonaka, G.-I. (2007). Seasonal variation of mogrosides in lo han kuo (siraitia grosvenori) fruits. J. Nat. Med. 61, 307–312.
Liu, C., Dai, L.-H., Dou, D.-Q., Ma, L.-Q., and Sun, Y.-X. (2016). A natural food sweetener with anti-pancreatic cancer properties. Oncogenesis 5, e217.
Liu, F.-Y., Li, J.-F., Guan, X., Luo, X.-F., Wang, Z.-L., and Dang, Q.-H. (2011). SEM study on filum terminale with tethered cord syndrome. Childs Nerv. Syst. 27, 2141–2144.
Lu, F., Li, D., Fu, C., Liu, J., Huang, Y., Chen, Y., Wen, Y., and Nohara, T. (2011). Studies on chemical fingerprints of siraitia grosvenorii fruits (luo han guo) by HPLC. J. Nat. Med. 66, 70–76.
Matsumoto, K., Kasai, R., Ohtani, K., and Tanaka, O. (1990). Minor cucurbitane-glycosides from fruits of siraitia grosvenori (cucurbitaceae). Chem. Pharm. Bull. (Tokyo) 38, 2030–2032.
McCleary, B.V., and Codd, R. (1991). Measurement of (1 → 3),(1 → 4)-β-D-glucan in barley and oats: a streamlined enzymic procedure. J. Sci. Food Agric. 55, 303–312.
Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428.
Mizushina, Y., Akihisa, T., Hayakawa, Y., Takeuchi, T., Kuriyama, I., Yonezawa, Y., Takemura, M., Kato, I., Sugawara, F., and Yoshida, H. (2006). Structural analysis of mogrol and its glycosides as inhibitors of animal DNA polymerase and human cancer cell growth. Lett. Drug Des. Discov. 3, 253–260.
Nawaz, M.A., Karim, A., Aman, A., Marchetti, R., Qader, S.A.U., and Molinaro, A. (2014). Continuous degradation of maltose: improvement in stability and catalytic properties of maltase (α-glucosidase) through immobilization using agar-agar gel as a support. Bioprocess Biosyst. Eng. 38, 631–638.
Osuna, Y., Sandoval, J., Saade, H., López, R.G., Martinez, J.L., Colunga, E.M., Cruz, G. de la, Segura, E.P., Arévalo, F.J., Zon, M.A., et al. (2015). Immobilization of aspergillus niger lipase on chitosan-coated magnetic nanoparticles using two covalent-binding methods. Bioprocess Biosyst. Eng. 38, 1437–1445.
Pawar, R.S., Krynitsky, A.J., and Rader, J.I. (2013). Sweeteners from plants—with emphasis on stevia rebaudiana (bertoni) and siraitia grosvenorii (swingle). Anal. Bioanal. Chem. 405, 4397–4407.
Qi, X.-Y., Chen, W.-J., Zhang, L.-Q., and Xie, B.-J. (2008). Mogrosides extract from siraitia grosvenori scavenges free radicals in vitro and lowers oxidative stress, serum glucose, and lipid levels in alloxan-induced diabetic mice. Nutr. Res. 28, 278–284.
Shen, Y., Lin, S., Han, C., Zhu, Z., Hou, X., Long, Z., and Xu, K. (2014). Rapid identification and quantification of five major mogrosides in siraitia grosvenorii (luo-han-guo) by high performance liquid chromatography–triple quadrupole linear ion trap tandem mass spectrometry combined with microwave-assisted extraction. Microchem. J. 116, 142–150.
Sulaiman, S., Mokhtar, M.N., Naim, M.N., Baharuddin, A.S., and Sulaiman, A. (2014). A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Appl. Biochem. Biotechnol. 175, 1817–1842.
Suzuki, Y.A., Murata, Y., Inui, H., Sugiura, M., and Nakano, Y. (2005). Triterpene Glycosides of Siraitia grosvenori Inhibit Rat Intestinal Maltase and Suppress the Rise in Blood Glucose Level after a Single Oral Administration of Maltose in Rats. J. Agric. Food Chem. 53, 2941–2946.
T, T., S, A., T, N., and M, O. (1983). [Studies on the constituents of fructus momordicae. III. structure of mogrosides]. Yakugaku Zasshi 103, 1167–1173.
Tischer, W., and Wedekind, F. (1999). Immobilized enzymes: methods and applications. In Biocatalysis - from Discovery to Application, P.D.W.-D. Fessner, A. Archelas, D.C. Demirjian, R. Furstoss, H. Griengl, K.-E. Jaeger, E. Morís-Varas, R. Öhrlein, M.T. Reetz, J.-L. Reymond, et al., eds. (Springer Berlin Heidelberg), pp. 95–126.
Tramper, J., and Scouten, W.H. (1983). Solid phase biochemistry: analytical and synthetic aspects (Wiley Interscience, New York).
Trinder, P. (1969). Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem. Int. J. Biochem. Med. 6, 24–27.
Ukiya, M., Akihisa, T., Tokuda, H., Toriumi, M., Mukainaka, T., Banno, N., Kimura, Y., Hasegawa, J., and Nishino, H. (2002). Inhibitory effects of cucurbitane glycosides and other triterpenoids from the fruit of momordica grosvenori on epstein−barr virus early antigen induced by tumor promoter 12-O-tetradecanoylphorbol-13-acetate. J. Agric. Food Chem. 50, 6710–6715.
van de Velde, F., Lourenço, N.D., Pinheiro, H.M., and Bakker, M. (2002). Carrageenan: A Food-Grade and Biocompatible Support for Immobilisation Techniques. Adv. Synth. Catal. 344, 815–835.
Woodward, J., and Wiseman, A. (1982). Fungal and other β-d-glucosidases — their properties and applications. Enzyme Microb. Technol. 4, 73–79.
Xia, Y., Rivero-Huguet, M.E., Hughes, B.H., and Marshall, W.D. (2008). Isolation of the sweet components from Siraitia grosvenorii. Food Chem. 107, 1022–1028.
Zhang, H., Yang, H., Zhang, M., Wang, Y., Wang, J., Yau, L., Jiang, Z., and Hu, P. (2012). Identification of flavonol and triterpene glycosides in luo-han-guo extract using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Food Compos. Anal. 25, 142–148.
Zhang, J., Dai, L., Yang, J., Liu, C., Men, Y., Zeng, Y., Cai, Y., Zhu, Y., and Sun, Y. (2016). Oxidation of cucurbitadienol catalyzed by CYP87D18 in the biosynthesis of mogrosides from siraitia grosvenorii. Plant Cell Physiol. pcw038.
Zhou, Y., Zheng, Y., Ebersole, J., and Huang, C.F. (2009). Insulin secretion stimulating effects of mogroside V and fruit extract of luo han kuo (siraitia grosvenori swingle) fruit extract. Yao Xue Xue Bao 44, 1252–1257.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21047-
dc.description.abstract羅漢果皂苷為一群具有高度甜味的三萜類糖苷分子,已經被證實具有廣泛的生理功能,分子結構上以帶有五個β-D-葡萄糖基的Mogroside V為主要天然羅漢果的皂苷形式。有文獻研究指出羅漢果皂苷為麥芽糖酵素抑制劑,可以有效地控制餐後血糖濃度的上升,在不同的羅漢果皂苷中,Mogroside IIIE較Mogroside V具有更好的抑制小腸麥芽糖酵素活力的功能。利用酵素催化的方法可將五醣皂苷Mogroside V轉化為Mogroside IIIE,然酵素生產成本高,酵素本身容易失活,且不能重複使用,因此在實際應用中具有一定的侷限性。本實驗利用固定化酵素的方式,將葡萄糖苷酵素固定於載體上進行Mogroside V的轉化反應,此一方法的重複利用性可克服酵素高昂生產成本的問題。實驗中利用HPLC-UV系統可以有效地分離和定量酵素反應系統中四種不同的羅漢果皂苷,進一步利用HPLC/ESI tandem MS建立對於羅漢果皂苷的定性分析方法。以此觀察到在酵素反應的實驗中Mogroside V含量逐漸下降;兩種類型的四醣皂苷Siamenoside I和Mogroside IV含量先增長後下降;而Mogroside IIIE(三個醣基)含量逐漸上升;結果顯示葡萄糖苷酵素可選擇性水解Mogroside V的β-1,6糖苷鍵結,並經由五醣皂苷到四醣皂苷,最後到三醣皂苷 (Mogroside IIIE) 的轉換過程。zh_TW
dc.description.abstractMogrosides, a group of triterpene glycosides from the fruit of Siraitia grosvenorii (Swingle), have been proved to have wide biological activities. Mogroside V (with five glucose residues) and mogroside IIIE (with three glucose residues) are the major components of mogrosides in Lo han ko fruit. It has been demonstrated that mogroside IIIE exerts anti-hypoglycemic effect by inhibiting intestinal maltase activity than mogroside V. In this study, enzymatic hydrolysis was utilized for the enrichment of mogroside IIIE by β-glucosidase from Aspergillus niger that can hydrolyze glycosidic bonds to release the non-reducing terminal glycosyl residues from glycosides and oligosaccharides. Nevertheless, suspended enzyme catalysis exhibits some limitations in practical applications by economic concerns. β-Glucosidase was then immobilized on solid carriers for the catalysis of mogroside V with reusability for reducing costs. During the enzymatic reaction, mogroside V was transformed to mogroside III E via siamenoside I and mogroside IV. The results indicated that the immobilized glucosidase system enables to selectively hydrolyze the β-1,6-glycosidic linkage of mogrosides. Moreover, we attempt to establish HPLC-ESI tandem MS analytical method for qualitative and quantitative analysis of mogrosides. The development of the immobilized enzyme system achieved the conversion of mogroside V into mogroside IIIE, which is capable of being further applied to prepare large scale of mogroside IIIE.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:17:32Z (GMT). No. of bitstreams: 1
ntu-106-R03641041-1.pdf: 9446622 bytes, checksum: 806d9107a3e78b6c3ed36706a1525c60 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents摘要 i
Abstract ii
目錄 I
圖目錄 IV
表目錄 VI
壹、 前言 1
貳、 文獻回顧 2
2.1. 皂素 (Saponins) 2
2.1.1. 定義 2
2.1.2. 分類及特徵 2
2.1.3. 羅漢果皂苷 3
2.2. 羅漢果 4
2.2.1. 羅漢果皂苷化學結構 5
2.2.2. 羅漢果皂苷含量及甜味性質 6
2.2.3. 羅漢果皂苷之生理活性 7
2.2.3.1. 抗糖尿病 8
2.2.3.2. 抗氧化 8
2.2.3.3. 抗發炎 8
2.2.3.4. 抗致癌物 8
2.2.3.5. 抗人類皰疹病毒炎症 9
2.2.4. 分析方法 9
2.3. β-葡萄糖苷酵素 12
2.3.1. β-葡萄糖苷酵素的來源 12
2.3.2. β-葡萄糖苷酵素的生化特性 12
2.3.3. p-NPG作為酵素的反應底物 13
2.4. 酵素固定化 14
2.4.1. 酵素固定化方法 14
2.4.1.1. 吸附法 15
2.4.1.2. 共價結合法 15
2.4.1.3. 交聯法 16
2.4.1.4. 酵素包埋法 16
2.4.2. 固定載體材料 17
2.4.3. 酵素固定化應用 17
參、 材料與方法 19
3.1. 實驗目的 19
3.2. 實驗架構 20
3.3. 實驗材料 21
3.3.1. 羅漢果萃取物 21
3.3.2. 實驗藥品 21
3.3.3. 儀器設備 21
3.4. 實驗方法 23
3.4.1. 載體準備和活化 23
3.4.1.1. 尼龍載體 (Nylon pellets) 23
3.4.1.2. 纖維素顆粒 (Cellulose beads) 23
3.4.1.3. 玻璃微球 (Glass spheres) 23
3.4.2. 酵素固定 (Enzyme immobilization) 23
3.4.3. 蛋白質分析 (Protein assay) 24
3.4.4. 載體表面形態電鏡掃描分析 24
3.4.5. 載體表面化學元素和共價鍵分析 24
3.4.6. 固定化酵素活性檢定 25
3.4.7. 酵素反應pH測試 25
3.4.8. 酵素反應溫度測試 26
3.4.9. 酵素溫度穩定性測試 26
3.4.10. 酵素動力學參數測定 26
3.4.11. 羅漢果萃取物水溶液酵素水解反應 27
3.4.12. 水解液中葡萄糖含量的測定 27
3.4.13. 水解液中還原糖總量的測定 27
3.4.14. HPLC-UV 對羅漢果皂苷進行定量分析 28
3.4.14.1. 羅漢果皂苷的純化 28
3.4.14.2. 線性範圍、偵測極限與定量極限: 28
3.4.14.3. PE回收率和穩定性: 29
3.4.14.4. HPLC-UV精密度和準確度: 29
3.4.15. 羅漢果酵素水解樣品分析 30
3.4.16. LC-MSn 對羅漢果皂苷進行定性分析 30
3.4.17. 統計分析 31
肆、 結果與討論 32
4.1. 固定化葡萄糖苷酵素系統的建立 32
4.1.1. 固定酵素載體表面之微觀結構 32
4.1.2. 固定化酵素載體表面元素及化學鍵結分析 37
4.1.3. 葡萄糖苷酶酵素吸光值標準曲線製作 43
4.1.4. 三種載體固定之酵素含量測試 43
4.1.5. 對硝基苯吸光值標準曲線 46
4.1.6. 固定酵素系統反應活性測試 46
4.1.7. 固定化玻璃微球酵素系統反應pH和反應溫度測試 46
4.1.8. 固定化玻璃微球酵素系統反應動力學參數 51
4.1.9. 固定化玻璃微球酵素系統溫度穩定性測試 51
4.1.10. 固定化玻璃微球酵素系統貯存穩定性測試 52
4.1.11. 固定化玻璃微球酵素系統操作重複利用穩定性測試 52
4.2. 固定化酵素系統對於羅漢果皂苷之轉化 56
4.2.1. HPLC-UV對羅漢果皂苷進行分離和定量 56
4.2.2. 羅漢果皂苷之酵素水解 58
4.2.3. 羅漢果萃取物水溶液經由酵素反應之結果分析 63
4.2.4. 固定化玻璃微球酵素系統貯存穩定性測試 64
4.2.5. 運用固定化酵素系統對於羅漢果萃取物水溶液進行連續十個批次的水解反應之結果分析 64
4.2.6. 電噴灑游離串聯質譜對羅漢果皂苷的定性分析 70
伍、 結論與展望 83
陸、 參考文獻 84
柒、 附錄 91
7.1. 個人履歷 91
7.2. Q & A 92
7.3. Paper初稿 96
dc.language.isozh-TW
dc.title固定化葡萄糖苷酵素應用於羅漢果皂苷去糖基之研究zh_TW
dc.titleImmobilized β-Glucosidase for Mogrosides Deglycosylationen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭心怡,陳宏彰,陳寬宜
dc.subject.keyword羅漢果皂?,葡萄糖?酵素,固定化酵素,電噴灑游離串聯質譜,水解反應,zh_TW
dc.subject.keywordMogrosides,β-Glucosidase,Immobilized enzyme,ESI tandem MS,Hydrolysis,en
dc.relation.page112
dc.identifier.doi10.6342/NTU201700029
dc.rights.note未授權
dc.date.accepted2017-01-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
9.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved