請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20310完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈立言(Lee-Yan Sheen) | |
| dc.contributor.author | Pei-Chen Chen | en |
| dc.contributor.author | 陳珮溱 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:44:48Z | - |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | Anderson MJ. A new method for non-parametric multivariate analysis of variance.Austral Ecol. 2001;26:32-46. doi: 10.1111/j.1442-9993.2001.01070.pp.x. Brown JM, Hazen SL. Microbial modulation of cardiovascular disease. Nat Rev Microbiol. 2018;16:171-181. doi:10.1038/nrmicro.2017.149. Chen ML, Yi L, Zhang Y, Zhou X, Ran L, Yang J, Zhu JD, Zhang QY, Mi MT. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio. 2016;7:e02210-15. doi:10.1128/mBio.02210-15. Chiu TH, Huang HY, Chen KJ, Wu YR, Chiu JP, Li YH, Chiu BC, Lin CL, Lin MN. Relative validity and reproducibility of a quantitative FFQ for assessing nutrient intakes of vegetarians in Taiwan. Public Health Nutr. 2014;17:1459-66. doi:10.1017/S1368980013001560. Comeau AM, Douglas GM, Langille MG. Microbiome helper: a custom and streamlined workflow for microbiome research. mSystems. 2017;2. doi:10.1128/mSystems.00127-16. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335-6. doi:10.1038/nmeth.f.303. Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF, Yan J, Sutter JL, Caudill MA. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial. Mol Nutr Food Res. 2017;61. doi:10.1002/mnfr.201600324.Craciun S, Balskus EP. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci USA. 2012;109:21307-12. doi:10.1073/pnas.1215689109. do Rosario VA, Fernandes R, Trindade EBSD. Vegetarian diets and gut microbiota: important shifts in markers of metabolism and cardiovascular disease. Nutr Rev. 2016;74:444-454. doi:10.1093/nutrit/nuw012. Evans AM, Fornasini G. Pharmacokinetics of L-carnitine. Clin Pharmacokinet. 2003;42:941-67. doi:10.2165/00003088-200342110-00002. Flanagan JL, Simmons PA, Vehige J, Willcox MD, Garrett Q. Role of carnitine in disease. Nutr Metab (Lond). 2010;7:30. doi:10.1186/1743-7075-7-30. Gregory JC, Buffa JA, Org E, Wang Z, Levison BS, Zhu W, Wagner MA, Bennett BJ, Li L, DiDonato JA, Lusis AJ, Hazen SL. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2015;290:5647-60. doi:10.1074/jbc.M114.618249. Jonsson AL, Backhed F. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol. 2017;14:79-87. doi:10.1038/nrcardio.2016.183. Koeth RA, Wang ZE, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu XM, Wu YP, Li L, Smith JD, DiDonato JA, Chen J, Li HZ, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WHW, Bushman FD, Lusis AJ, Hazen SL. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576-585. doi:10.1038/nm.3145. Li XSM, Obeid S, Klingenberg R, Gencer B, Mach F, Raber L, Windecker S, RodondiN, Nanchen D, Muller O, Miranda MX, Matter CM, Wu YP, Li L, Wang ZN, Alamri HS, Gogonea V, Chung YM, Tang WHW, Hazen SL, Luscher TF. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J. 2017;38:814-824. doi:10.1093/eurheartj/ehw582. Micha R, Michas G, Mozaffarian D. Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes - an updated review of the evidence. Curr Atheroscler Rep. 2012;14:515-524. doi:10.1007/s11883-012-0282-8. Mente A, Chalcraft K, Ak H, Davis AD, Lonn E, Miller R, Potter MA, Yusuf S, Anand SS, McQueen MJ. The relationship between trimethylamine-N-oxide and prevalent cardiovascular disease in a multiethnic population living in Canada. Can J Cardiol. 2015;31:1189-1194. doi:10.1016/j.cjca.2015.06.016. Ozcelik AT, Demirdogen BC, Demirkaya S, Adali O. Flavin containing monooxygenase 3 genetic polymorphisms Glu158Lys and Glu308Gly and their relation to ischemic stroke. Gene. 2013;521:116-121. doi:10.1016/j.gene.2013.03.010. Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535:56-64. doi:10.1038/nature18846. Senthong V, Wang ZN, Fan YY, Wu YP, Hazen SL, Tang WHW. Trimethylamine N-oxide and mortality risk in patients with peripheral artery disease. J Am Heart Assoc. 2016;5. doi:ARTN e00423710.1161/JAHA.116.004237. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12. doi:ARTN R6010.1186/gb-2011-12-6-r60. Suraphan P, Wu W.K, Ho C.T, Lu K.H, Liu C.T, Chu Y.L, Lai Y.S, Chen W.C, Lin S.H, Sheen L.Y Diet Supplementation with Allicin Protects against Alcoholic Fatty Liver Disease in Mice by Improving Anti-inflammation and Antioxidative Functions. J. Agric. Food Chem. 2016, 64, 38, 7104–7113 Tang WHW, Wang ZE, Levison BS, Koeth RA, Britt EB, Fu XM, Wu YP, Hazen SL. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New Engl J Med. 2013;368:1575-1584. doi:10.1056/NEJMoa1109400. Tang WHW, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. J Clin Invest. 2014;124:4204-4211. doi:10.1172/Jci72331. Tilg H. A gut feeling about thrombosis. New Engl J Med. 2016;374:2494-2496. doi:10.1056/NEJMcibr1604458. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242-249. doi:10.1038/nature11552. Wang ZN, Roberts AB, Buffa JA, Levison BS, Zhu WF, Org E, Gu XD, Huang Y, Zamanian-Daryoush M, Culley MK, DiDonato AJ, Fu XM, Hazen JE, Krajcik D, DiDonato JA, Lusis AJ, Hazen SL. Non-lethal Inhibition of Gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163:1585-1595. doi:10.1016/j.cell.2015.11.055. Wu WK, Panyod S, Ho CT, Kuo CH, Wu MS, Sheen LY. Dietary allicin reduces transformation of L-carnitine to TMAO through impact on gut microbiota. J Funct Foods. 2015;15:408-417. doi:10.1016/j.jff.2015.04.001. Zeisel SH, Warrier M. Trimethylamine N-oxide, the microbiome, and heart and kidney disease. Annu Rev Nutr. 2017;37:157-181. doi:10.1146/annurev-nutr-071816-064732. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20310 | - |
| dc.description.abstract | 根據衛生福利部106年十大死因統計指出心臟疾病死因位居第二,僅次於癌症,綜觀前十大死因和心血管相關的疾病總死亡人數與癌症不相上下。此外,世界衛生組織 (World Health Organization, WHO) 早在2015年即公告CVD (cardiovascular disease) 為全球死因第一位,可見預防心血管疾病之重要性。心血管疾病的發生多與動脈粥狀硬化有關,其為一種慢性疾病,是血管內皮脂肪沉積形成斑塊進而造成血管失去彈性、管腔阻塞甚至引發血栓導致心肌梗塞、腦中風等急症發生。然而致病的進程是可以預防的,其中飲食因子與其息息相關。近年來研究發現,紅肉、蛋類等富含choline和carnitine之飲食來源,會透過腸道菌轉換生成TMA (Trimethylamine),再經宿主肝臟酵素FMO3 (Flavin-containing monooxygenases) 代謝生成TMAO (Trimethylamine N-oxide) 進而促進動脈粥狀硬化 (Atherosclerosis) 形成。大蒜於中醫典籍當中記載其有解滯氣、暖脾胃、解毒殺蟲等作用,在許多研究亦證實具有殺菌、抗氧化、降低膽固醇等功能,其中大蒜素 (Allicin) 為其重要生物活性分子亦是香味來源。本研究欲透過大蒜素來抑制需經腸道菌作用生成TMAO的路徑,觀察長期以carnitine誘導促進ApoE(-/-) 小鼠斑塊生成模式下,大蒜素延緩動脈粥狀硬化之功效。實驗分組如下:(1) 控制組 (2) 1.3% 肉鹼組 (3) 大蒜素組 (10 mg/kg BW) (4) 1.3% 肉鹼搭配大蒜素組。結果顯示相較於單純給予carnitine組,在搭配大蒜素處理下主動脈斑塊生成減少。於短期試驗發現大蒜素搭配carnitine組別與carnitine組相比,血中TMAO濃度明顯下降。另外,利用主坐標分析 (Principal coordinates analysis, PCoA) 作圖觀察各組之間糞便菌相分佈具有顯著差異。由本實驗結果進一步了解大蒜素於調節腸道菌代謝生成TMAO以延緩動脈粥狀硬化之效用,更進一步說明了心¬-腸軸線之關聯性。 | zh_TW |
| dc.description.abstract | Red meat consumption can promote atherosclerosis since the gut microbiota can metabolize L-carnitine from meat into trimethylamine N-oxide (TMAO) which is a causative risk for cardiovascular disease. Garlic has long been associated with health benefits. Allicin is a major bioactive compound typically found in blend fresh garlic. It possesses the antibacterial, anti-oxidant, and cholesterol-lowering effects. The aim of this study is to investigate the effect allicin on the gut microbiota and its metabolites on cardiovascular disease by using the long-term carnitine treatment ApoE(-/-) mice model. 8-week old male ApoE(-/-) mice were divided into 4 groups: (1) Control, (2) 1.3% Carnitine, (3) Allicin (10mg/kg BW), and (4) 1.3% Carnitine + Allicin (10 mg/kg BW). After 15 weeks, we performed the carnitine challenge test by oral gavage of D9-carnitine to evaluate the TMAO production ability of the gut microbiota. The serum was analyzed for carnitine, trimethylamine (TMA) and TMAO levels by using LC-MS/MS. Morphological changes of aortic plaque formation were observed using oil red staining. The gut microbiome was analyzed by using 16S rDNA amplicon sequencing in Illumina Miseq platform. The results showed that allicin supplementation in the carnitine group exhibited the reduction of aortic lesion up to 34.2% as compared with carnitine group without allicin supplementation (p < 0.0001). The carnitine challenge test indicated the D9-TMAO level of carnitine with allicin supplementation group tend to be reduced compared with carnitine-fed mice. Principal coordinate analysis of the feces microbiota composition was significantly different (ADONIS: P < 0.001) for each group. Notably, in 2-week short-term animal study, we found that allicin could significantly reduce TMAO level on carnitine diet; the effect is superior than that of 15-week treatment. Allicin may exhibit the cardiovascular disease protective effect through modulation of gut microbiota-TMAO-atherosclerosis pathway. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:44:48Z (GMT). No. of bitstreams: 1 U0001-1408202004051600.pdf: 4379903 bytes, checksum: cc272145ec2f06c4838abebebc1b1bd2 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書i 序言ii 中文摘要iii 英文摘要iv 第一章、文獻回顧11 1.1 心臟與循環系統11 1.1.1 心血管結構及其生理功能11 1.1.2 心血管疾病14 1.1.3 動脈粥狀硬化15 1.1.4 常見臨床治療方法17 1.2 腸道菌與疾病20 1.2.1 腸道菌20 1.2.2 腸道菌與代謝性疾病21 1.3 心腸軸線 (Gut-heart axis)21 1.3.1 大蒜及其生理活性26 第二章、研究目的與實驗架構29 第三章、實驗材料與方法34 3.1 實驗材料34 3.2 實驗方法38 3.3 統計分析方法44 第四章、實驗結果與討論45 4.1 實驗結果45 4.1.1 運用開放式管柱填充矽膠進行初步純化之結果45 4.1.2 使用高效液相層析儀進一步純化大蒜素樣品結果45 4.1.3 大蒜素保存與降解時間46 4.1.4 各組動脈粥狀硬化生成結果46 4.1.5 運用 LC/MS/MS 分析長期實驗各組血液代謝物變化47 4.1.6 透過肉鹼耐量試驗觀察血液代謝物各組間之變化47 4.1.7 肉鹼飲食及大蒜素對於腸道菌相之影響48 4.1.8 各組重要器官之病理切片結果53 4.1.9 運用 LC/MS/MS 分析短期實驗各組血液代謝物變化54 4.2 討論.55 第五章、結論58 第六章、圖表59 第七章、參考資料92 | |
| dc.language.iso | zh-TW | |
| dc.title | 探討大蒜素透過調節腸道菌以達到延緩動脈粥狀硬化之研究 | zh_TW |
| dc.title | Investigation on Cardiovascular Protection Effect of Allicin through Modulation of Gut Microbiota | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 高憲立(Hsien-Li Kao),莊曉莉(Hsiao-Li Chuang),朱永麟(Yung-Lin Chu) | |
| dc.subject.keyword | 肉鹼,腸道菌,大蒜素,氧化三甲胺,動脈粥狀硬化, | zh_TW |
| dc.subject.keyword | Carnitine,Microbiota,Allicin,TMAO,Atherosclerosis, | en |
| dc.relation.page | 106 | |
| dc.identifier.doi | 10.6342/NTU202003367 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1408202004051600.pdf 未授權公開取用 | 4.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
