Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20249
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周文堅
dc.contributor.authorYueh-Chwen Hsuen
dc.contributor.author徐悅淳zh_TW
dc.date.accessioned2021-06-08T02:43:14Z-
dc.date.copyright2018-02-22
dc.date.issued2018
dc.date.submitted2018-01-29
dc.identifier.citation1. Fisher, C.L., et al., Additional sex combs-like 1 belongs to the enhancer of trithorax and polycomb group and genetically interacts with Cbx2 in mice. Dev Biol, 2010. 337(1): p. 9-15.
2. White, R.A.H. and R. Lehmann, A gap gene, hunchback, regulates the spatial expression of Ultrabithorax. Cell, 1986. 47(2): p. 311-321.
3. Harding, K. and M. Levine, Gap genes define the limits of antennapedia and bithorax gene expression during early development in Drosophila. EMBO J, 1988. 7(1): p. 205-214.
4. Irish, V.F., A. Martinez-Arias, and M. Akam, Spatial regulation of the Antennapedia and Ultrabithorax homeotic genes during Drosophila early development. EMBO J, 1989. 8(5): p. 1527-1537.
5. Sinclair, D.A., et al., The Additional sex combs gene of Drosophila encodes a chromatin protein that binds to shared and unique Polycomb group sites on polytene chromosomes. Development, 1998. 125(7): p. 1207-1216.
6. Fisher, C., et al., A human homolog of Additional sex combs, ADDITIONAL SEX COMBS-LIKE 1, maps to chromosome 20q11. Gene, 2003. 306: p. 115-126.
7. Masuko Katoh, M.K., Identification and characterization of ASXL2 gene in silico. Int J Oncol, 2003. 23(3): p. 845-850.
8. Masuko Katoh, M.K., Identification and characterization of ASXL3 gene in silico. Int J Oncol, 2004. 24(6): p. 1617-1622.
9. Scheuermann, J.C., et al., Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature, 2010. 465(7295): p. 243-247.
10. Sanchez, R. and M.-M. Zhou, The PHD finger: a versatile epigenome reader. Trends Biochem Sci, 2011. 36(7): p. 364-372.
11. Liu, L., et al., Solution structure of an atypical PHD finger in BRPF2 and its interaction with DNA. J Struct Biol, 2012. 180(1): p. 165-173.
12. Abdel-Wahab, O., et al., ASXL1 mutation promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell, 2012. 22: p. 180-193.
13. Sahtoe, D.D., et al., BAP1/ASXL1 recruitment and activation for H2A deubiquitination. Nat Commun, 2016. 7: 10292.
14. Balasubramani, A., et al., Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complex. Nat Commun, 2015. 6: 7307.
15. Dey, A., et al., Loss of the tumor suppressor BAP1 causes myeloid transformation. Science, 2012. 337: p. 1541-1546.
16. Wu, X., Jens V. Johansen, and K. Helin, Fbxl10/Kdm2b Recruits Polycomb Repressive Complex 1 to CpG Islands and Regulates H2A Ubiquitylation. Mol Cell, 2013. 49(6): p. 1134-1146.
17. Sashida, G. and A. Iwama, Multifaceted role of the polycomb-group gene EZH2 in hematological malignancies. Int J Hematol, 2017. 105(1): p. 23-30.
18. Simon, J.A. and R.E. Kingston, Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol cell, 2013. 49(5): p. 808-824.
19. Klose, R.J., et al., Chromatin Sampling—An Emerging Perspective on Targeting Polycomb Repressor Proteins. PLoS Genet, 2013. 9(8): e1003717.
20. Ogawa, H., et al., A Complex with Chromatin Modifiers That Occupies E2F- and Myc-Responsive Genes in G0 Cells. Science, 2002. 296(5570): p. 1132-6.
21. Okamoto, I., et al., Epigenetic Dynamics of Imprinted X Inactivation During Early Mouse Development. Science, 2004. 303(5658): p. 644-649.
22. Plath, K., et al., Role of Histone H3 Lysine 27 Methylation in X Inactivation. Science, 2003. 300(5616): p. 131-135.
23. Deaton, A.M. and A. Bird, CpG islands and the regulation of transcription. Genes Dev, 2011. 25(10): p. 1010-1022.
24. Blackledge, N.P. and R.J. Klose, CpG island chromatin: A platform for gene regulation. Epigenetics, 2011. 6(2): p. 147-152.
25. Li, G., et al., Jarid2 and PRC2, partners in regulating gene expression. Genes Dev, 2010. 24(4): p. 368-380.
26. Min, J., Y. Zhang, and R.-M. Xu, Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev, 2003. 17(15): p. 1823-1828.
27. Wang, L., et al., Hierarchical Recruitment of Polycomb Group Silencing Complexes. Mol Cell, 2004. 14(5): p. 637-646.
28. Tavares, L., et al., RYBP-PRC1 Complexes Mediate H2A Ubiquitylation at Polycomb Target Sites Independently of PRC2 and H3K27me3. Cell, 2012. 148(4): p. 664-678.
29. Blackledge, Neil P., et al., Variant PRC1 Complex-Dependent H2A Ubiquitylation Drives PRC2 Recruitment and Polycomb Domain Formation. Cell, 2014. 157(6): p. 1445-1459.
30. Kalb, R., et al., Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat Struct Mol Biol, 2014. 21(6): p. 569-571.
31. Vidal, M. and K. Starowicz, Polycomb complexes PRC1 and their function in hematopoiesis. Exp Hematol, 2017. 48: p. 12-31.
32. Park, I.-k., et al., Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 2003. 423(6937): p. 302-305.
33. Andricovich, J., et al., Histone demethylase KDM2B regulates lineage commitment in normal and malignant hematopoiesis. J Clin Invest, 2016. 126(3): p. 905-920.
34. Kajiume, T., et al., Polycomb group gene mel-18 modulates the self-renewal activity and cell cycle status of hematopoietic stem cells. Exp Hematol, 2004. 32(6): p. 571-578.
35. Calés, C., et al., Inactivation of the Polycomb Group Protein Ring1B Unveils an Antiproliferative Role in Hematopoietic Cell Expansion and Cooperation with Tumorigenesis Associated with Ink4a Deletion. Mol Cell Biol, 2008. 28(3): p. 1018-1028.
36. Boukarabila, H., et al., The PRC1 Polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation. Genes Dev, 2009. 23(10): p. 1195-1206.
37. van den Boom, V., et al., Non-canonical PRC1.1 Targets Active Genes Independent of H3K27me3 and Is Essential for Leukemogenesis. Cell Rep, 2016. 14(2): p. 332-346.
38. Takamatsu-Ichihara, E. and I. Kitabayashi, The roles of Polycomb group proteins in hematopoietic stem cells and hematological malignancies. Int J Hematol, 2016. 103(6): p. 634-642.
39. Comet, I., et al., Maintaining cell identity: PRC2-mediated regulation of transcription and cancer. Nat Rev Cancer, 2016. 16: p. 803-810.
40. Iliopoulos, D., et al., Loss of miR-200 Inhibition of Suz12 Leads to Polycomb-Mediated Repression Required for the Formation and Maintenance of Cancer Stem Cells. Mol Cell, 2010. 39(5): p. 761-772.
41. Kim, W., et al., Targeted disruption of the EZH2–EED complex inhibits EZH2-dependent cancer. Nat Chem Biol, 2013. 9: p. 643-650.
42. Min, J., et al., An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-B. Nat Med, 2010. 16(3): p. 286-294.
43. Kleer, C.G., et al., EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A, 2003. 100(20): p. 11606-11611.
44. Kamminga, L.M., et al., The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood, 2006. 107(5): p. 2170-2179.
45. Béguelin, W., et al., EZH2 Is Required for Germinal Center Formation and Somatic EZH2 Mutations Promote Lymphoid Transformation. Cancer Cell, 23(5): p. 677-692.
46. Berg, T., et al., A transgenic mouse model demonstrating the oncogenic role of mutations in the polycomb-group gene EZH2 in lymphomagenesis. Blood, 2014. 123(25): p. 3914-3924.
47. Lee, S.C.W., et al., Polycomb repressive complex 2 (PRC2) suppresses Eμ-myc lymphoma. Blood, 2013. 122(15): p. 2654-2663.
48. Sashida, G., et al., Ezh2 loss promotes development of myelodysplastic syndrome but attenuates its predisposition to leukaemic transformation. Nat Commun, 2014. 5: 4177.
49. Schindler, U., H. Beckmann, and A.R. Cashmore, HAT3.1, a novel Arabidopsis homeodomain protein containing a conserved cysteine-rich region. Plant J, 1993. 4(1): p. 137-150.
50. Ogryzko, V.V., et al., The Transcriptional Coactivators p300 and CBP Are Histone Acetyltransferases. Cell, 1996. 87(5): p. 953-959.
51. Tefferi , A. and J.W. Vardiman Myelodysplastic Syndromes. N Engl J Med, 2009. 361(19): p. 1872-1885.
52. Eberharter, A., et al., ACF1 improves the effectiveness of nucleosome mobilization by ISWI through PHD–histone contacts. EMBO J, 2004. 23(20): p. 4029-4039.
53. Aasland, R., T.J. Gibson, and A.F. Stewart, The PHD finger: Implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci, 1995. 20(2): p. 56-59.
54. Papaemmanuil, E., et al., Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med, 2016. 374(23): p. 2209-2221.
55. Gelsi-Boyer, V., et al., Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol, 2009. 145(6): p. 788-800.
56. Inoue, D., et al., Truncation mutants of ASXL1 observed in myeloid malignancies are expressed at detectable protein levels. Exp Hematol, 2016. 44(3): p. 172-176.e1.
57. Chou, W.-C., et al., Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations. Blood, 2010. 116(20): p. 4086-4094.
58. Boultwood, J., et al., Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia. Leukemia, 2010. 24(5): p. 1062-1065.
59. Abdel-Wahab, O., et al., Genetic Analysis of Transforming Events That Convert Chronic Myeloproliferative Neoplasms to Leukemias. Cancer Res, 2010. 70(2): p. 447-452.
60. Thol, F., et al., Prognostic Significance of ASXL1 Mutations in Patients With Myelodysplastic Syndromes. J Clin Oncol, 2011. 29(18): p. 2499-2506.
61. Schnittger, S., et al., ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia, 2013. 27(1): p. 82-91.
62. Pratcorona, M., et al., Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value. Haematologica, 2012. 97(3): p. 388-392.
63. Hirsch, P., et al., Genetic hierarchy and temporal variegation in the clonal history of acute myeloid leukaemia. Nat Commun, 2016. 7: 12475.
64. Hoischen, A., et al., De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat Genet, 2011. 43: p. 729-731.
65. Inoue, D., et al., The stability of epigenetic factor ASXL1 is regulated through ubiquitination and USP7-mediated deubiquitination. Leukemia, 2015. 29(11): p. 2257-2260.
66. Abdel-Wahab, O., et al., Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. J Exp Med, 2013: p. 2641-2659.
67. Inoue, D., et al., Myelodysplastic syndromes are induced by histone methylation-altering ASXL1 mutations. J Clin Invest, 2013. 123(11): p. 4627-4640.
68. Daou, S., et al., The BAP1/ASXL2 Histone H2A Deubiquitinase Complex Regulates Cell Proliferation and Is Disrupted in Cancer. J Biol Chem, 2015. 290(48): p. 28643-28663.
69. Wu, X., et al., Tumor suppressor ASXL1 is essential for the activation of INK4B expression in response to oncogene activity and anti-proliferative signals. Cell Res, 2015. 25: p. 1205-1218.
70. Inoue, D., et al., SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS. Leukemia, 2015. 29(4): p. 847-857.
71. Fisher, C.L., et al., Loss-of-function additional sex comb like 1 mutations disrupt hematopoiesis but do not cause severe myelodysplasia or leukemia. Blood, 2010. 115: p. 38-46.
72. Morita, S., T. Kojima, and T. Kitamura, Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther, 2000. 7(12): p. 1063-1066.
73. Hu, Y. and G.K. Smyth, ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods, 2009. 347(1): p. 70-78.
74. Quinlan, A.R. and I.M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 2010. 26(6): p. 841-842.
75. Huang, W., et al., PAVIS: a tool for Peak Annotation and Visualization. Bioinformatics, 2013. 29(23): p. 3097-3099.
76. Huang, D.W., B.T. Sherman, and R.A. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 2009. 37(1): p. 1-13.
77. Huang, D.W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2008. 4: p. 44-57.
78. Ma, W., W.S. Noble, and T.L. Bailey, Motif-based analysis of large nucleotide data sets using MEME-ChIP. Nat Protoc, 2014. 9: p. 1428-1450.
79. Bailey, T.L., et al., MEME Suite: tools for motif discovery and searching. Nucleic Acids Res, 2009. 37(Web Server issue): p. W202-W208.
80. Robinson, J.T., et al., Integrative Genomics Viewer. Nature biotechnol, 2011. 29(1): p. 24-26.
81. Thorvaldsdóttir, H., J.T. Robinson, and J.P. Mesirov, Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform, 2013. 14(2): p. 178-192.
82. Chen, T.C., et al., Dynamics of ASXL1 mutation and other associated genetic alterations during disease progression in patients with primary myelodysplastic syndrome. Blood Cancer J, 2014. 4(1): e177.
83. Chuang, M.K., et al., A 3-microRNA scoring system for prognostication in de novo acute myeloid leukemia patients. Leukemia, 2015. 29(5): p. 1051-1059.
84. Chiu, Y.C., et al., Prognostic significance of NPM1 mutation-modulated microRNA−mRNA regulation in acute myeloid leukemia. Leukemia, 2015. 30: p. 274-284.
85. Heuser, M., et al., MN1 overexpression induces acute myeloid leukemia in mice and predicts ATRA resistance in patients with AML. Blood, 2007. 110(5): p. 1639-1647.
86. Losman, J.-A., et al., (R)-2-Hydroxyglutarate Is Sufficient to Promote Leukemogenesis and Its Effects Are Reversible. Science, 2013. 339(6127): p. 1621-1625.
87. Deynoux, M., et al., Hypoxia and Hypoxia-Inducible Factors in Leukemias. Front Oncol, 2016. 6: 41.
88. Spangrude, G., D. Brooks, and D. Tumas, Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood, 1995. 85(4): p. 1006-1016.
89. Kamminga, L.M., et al., Impaired Hematopoietic Stem Cell Functioning After Serial Transplantation and During Normal Aging. Stem Cells, 2005. 23(1): p. 82-92.
90. Heuser, M., et al., Cell of Origin in AML: Susceptibility to MN1-Induced Transformation Is Regulated by the MEIS1/AbdB-like HOX Protein Complex. Cancer Cell, 2011. 20(1): p. 39-52.
91. Tang, J.-L., et al., AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood, 2009. 114(26): p. 5352-5361.
92. Watanabe-Okochi, N., et al., AML1 mutations induced MDS and MDS/AML in a mouse BMT model. Blood, 2008. 111(8): p. 4297-4308.
93. Matsuura, S., et al., Expression of the runt homology domain of RUNX1 disrupts homeostasis of hematopoietic stem cells and induces progression to myelodysplastic syndrome. Blood, 2012. 120(19): p. 4028-4037.
94. Niebuhr, B., et al., Runx1 is essential at two stages of early murine B-cell development. Blood, 2013. 122(3): p. 413-423.
95. Jacob, B., et al., Stem cell exhaustion due to Runx1 deficiency is prevented by Evi5 activation in leukemogenesis. Blood, 2010. 115(8): p. 1610-1620.
96. Ichikawa, M., et al., AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med, 2004. 10(3): p. 299-304.
97. Cai, X., et al., Runx1 Loss Minimally Impacts Long-Term Hematopoietic Stem Cells. PLoS One, 2011. 6(12): e28430.
98. Beekman, R., et al., Sequential gain of mutations in severe congenital neutropenia progressing to acute myeloid leukemia. Blood, 2012. 119(22): p. 5071-5077.
99. Cazzola, M., M.G. Della Porta, and L. Malcovati, The genetic basis of myelodysplasia and its clinical relevance. Blood, 2013. 122(25): p. 4021-4034.
100. Engle, E.K., et al., Clonal evolution revealed by whole genome sequencing in a case of primary myelofibrosis transformed to secondary acute myeloid leukemia. Leukemia, 2015. 29(4): p. 869-876.
101. Makishima, H., et al., CBL, CBLB, TET2, ASXL1, and IDH1/2 mutations and additional chromosomal aberrations constitute molecular events in chronic myelogenous leukemia. Blood, 2011. 117(21): p. e198-e206.
102. Gordon, J.W., et al., Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A, 1980. 77(12): p. 7380-7384.
103. Kistner, A., et al., Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc Natl Acad Sci U S A, 1996. 93(20): p. 10933-10938.
104. Baron, U. and H. Bujard, Tet repressor-based system for regulated gene expression in eukaryotic cells: Principles and advances, in Methods in Enzymology, J. Thorner, S.D. Emr, and J.N. Abelson, Editors. 2000, Academic Press. p. 401-421.
105. Busch, K., et al., Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature, 2015. 518(7540): p. 542-546.
106. Testa, U., et al., Oxidative stress and hypoxia in normal and leukemic stem cells. Exp Hematol, 2016. 44(7): p. 540-560.
107. Braun, B.S. and K. Shannon, Targeting Ras in Myeloid Leukemias. Clinical Cancer Res, 2008. 14(8): p. 2249-2252.
108. Grossmann, V., et al., High incidence of RAS signalling pathway mutations in MLL-rearranged acute myeloid leukemia. Leukemia, 2013. 27(9): p. 1933-1936.
109. Kong, G., et al., Loss of wild-type Kras promotes activation of all Ras isoforms in oncogenic Kras-induced leukemogenesis. Leukemia, 2016. 30(7): p. 1542-1551.
110. Geest, C.R. and P.J. Coffer, MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol, 2009. 86(2): p. 237-250.
111. Caye, A., et al., Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat Genet, 2015. 47(11): p. 1334-1340.
112. Patel , J.P., et al., Prognostic Relevance of Integrated Genetic Profiling in Acute Myeloid Leukemia. N Engl J Med, 2012. 366(12): p. 1079-1089.
113. Young Iii, W.S., et al., Deficiency in Mouse Oxytocin Prevents Milk Ejection,but not Fertility or Parturition. J Neuroendocrinol, 1996. 8(11): p. 847-853.
114. Young, L.J., et al., Gene Targeting Approaches to Neuroendocrinology: Oxytocin, Maternal Behavior, and Affiliation. Horm Behav, 1997. 31(3): p. 221-231.
115. Sala, M., et al., Mice Heterozygous for the Oxytocin Receptor Gene (Oxtr+/−) Show Impaired Social Behaviour but not Increased Aggression or Cognitive Inflexibility: Evidence of a Selective Haploinsufficiency Gene Effect. J Neuroendocrinol, 2013. 25(2): p. 107-118.
116. Rich, M.E., et al., Impairments in the Initiation of Maternal Behavior in Oxytocin Receptor Knockout Mice. PLoS One, 2014. 9(6): e98839.
117. Harrison, N., P.C. Lopes, and B. König, Oxytocin and Social Preference in Female House Mice (Mus musculus domesticus). Ethology, 2016. 122(7): p. 571-581.
118. Zhang, P., et al., Loss of Asxl1 Alters Self-Renewal and Cell Fate of Bone Marrow Stromal Cell, Leading to Bohring-Opitz-like Syndrome in Mice. Stem Cell Reports, 2016. 14(6): p. 1-12.
119. Carbuccia, N., et al., Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia, 2009. 23(11): p. 2183-2186.
120. Wang, J., et al., Loss of Asxl1 leads to myelodysplastic syndrome–like disease in mice. Blood, 2014. 123(4): p. 541-553.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20249-
dc.description.abstractAdditional sex combs-like 1(ASXL1)基因突變常發生在骨髓性惡性血液腫瘤患者。近期小鼠模式研究發現,針對血液系統剔除Asxl1或過量表現突變型ASXL1皆可在小鼠身上造成類似骨髓化生不良症候群之疾病。然而符合「生理劑量」之突變型ASXL1對實際生理之影響目前仍不清楚。為了探討此一問題,我們依最常在病人身上見到的ASXL1突變型式產製一帶有Asxl1突變的基因剔入鼠,並探討其對小鼠造血系統的病理生理作用機轉之影響。
經由鵝卵石區域形成細胞分析及聚落形成細胞分析我們發現帶突變型Asxl1之異型合子骨髓細胞具有較高的體外增殖能力。另一方面,在骨髓移植試驗中帶突變型Asxl1之異型合子小鼠的捐贈細胞在骨髓中所佔之比例在受贈者小鼠體內下降得比較快,顯示其長期體內再生能力受到損害。終其一生,帶有Asxl1突變之小鼠沒有明顯傾向會發生任何形式的血液病,這說明單獨只有Asx1突變不足引發白血病或其它惡性血液疾病。然而在帶有此突變之骨髓細胞中過量表現MN1可增加異體骨髓中增殖的能力,這揭示了Asxl1突變在疾病進程中可能扮演輔助的角色。經由分析ASXL1突變型及野生型人類白血病細胞以及帶有或不帶有MN1過量表現之Asxl1突變型及野生型小鼠造血幹細胞及造血前驅細胞之基因表現圖譜,我們發現Asxl1突變與缺氧、多潛能前驅細胞、造血幹細胞、KRAS及MEK基因組有關聯,ChIP-Seq分析並揭示了骨髓前趨細胞中受Asxl1突變調控之3甲基化組蛋白3離胺酸27(H3K27me3)圖譜。
在本研究中我們提出了第一個Asxl1突變基因剔入鼠模式,儘管此突變不足以導致惡性血液疾病,但是我們的研究結果顯示突變Asxl1降低了帶MN1過量表現骨髓細胞之移植門檻,並且在正常生理及血液疾病狀況下展現出特有的生物功能。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-08T02:43:14Z (GMT). No. of bitstreams: 1
ntu-107-D99421005-1.pdf: 3634079 bytes, checksum: 73d260f8e29bb7035a7265febb6b8b28 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
Acknowledgements iii
目錄 iv
圖表目錄 vii
中英文及縮寫對照表 x
摘要 xiii
Abstract xiv
第1章:緒論 1
1.1 Additional sex combs-like 1 (ASXL1)簡介 1
1.2 多梳抑制蛋白家族(Polycomb repressor complex,PRC)之功能 2
1.3 植物同源異型功能區塊(Plant homeodomain,PHD) 5
1.4 急性骨髓性白血病(Acute myeloid leukemia)簡介 5
1.5 ASXL1突變和急性骨髓性白血病之關係 7
1.6 ASXL1功能相關之研究 9
1.7 前人研究之爭議及侷限 12
1.8 本研究之目標及研究成果 13
第2章:材料與方法 15
2.1 產製帶Asxl1突變之基因剔入鼠 15
2.2 帶Asxl1突變基因剔入鼠之繁殖計劃 15
2.3 鵝卵石區域形成細胞分析(CAFC) 15
2.4 聚落形成細胞分析(CFC) 16
2.5 小鼠骨髓移植實驗及競爭性再生單位分析(Competitive repopulating unit assay,CRU) 16
2.6 流式細胞分析及細胞分選 17
2.7 細胞週期分析 17
2.8 體外BrdU攝入分析 18
2.9 利用反轉錄病毒(Retrovirus)將過量表現MN1載體轉導至小鼠骨髓細胞中 19
2.10 長期培養起始細胞分析(Long-term culture initiating cell assay,LTC-IC) 19
2.11 以序列稀釋分析具MN1過量表現骨髓細胞在活體內重組再生之能力 19
2.12 微陣列(Microarray)分析 20
2.13 以組蛋白萃取及西方墨點法分析小鼠骨髓細胞中H3K27me3之含量 20
2.14 ChIP-Seq數據分析 20
第3章:實驗結果 22
3.1 產製Asxl1 G643WfsX12基因剔入鼠 22
3.2 Asxl1 G643WfxX12在小鼠中作用之區域 22
3.4 Asxl1 G643WfsX12異型合子之骨髓細胞有較野生型強的體外增生能力 22
3.5 Asxl1 G643WfsX12異型合子骨髓細胞在體內再生能力較野生型差 23
3.6 Asxl1 G643WfsX12異型合子骨髓細胞自我更新能力較野生型差 24
3.7 Asxl1 G643WfsX12異型合子骨髓中造血幹細胞及造血前驅細胞組成和野生型無顯著差異 24
3.8 單獨Asxl1 G643WfsX12不足以在小鼠引起血液疾病 25
3.9 Asxl1 G643WfxX12同型合子對小鼠不致命唯存活率不符合遺傳定律 26
3.10 Asxl1 G643WfsX12加上喪失功能Runx1突變無法在小鼠身上引發血液疾病 27
3.11 Asxl1 G643WfsX12降低具MN1過量表現之骨髓細胞被移植進入受贈者體內之門檻 29
3.12 微陣列分析顯示Asxl1突變及MN1過量表現之協同作用情形 31
3.13 GSEA顯示了Asxl1突變與MN1過量表現間交互作用所致的致癌基因功能 32
3.14 經由分析ChIP-Seq資料可發現Asxl1突變會改變H3K27me3的鍵結模式 32
第4章:討論 35
4.1 Asxl1 G643WfsX12基因剔入小鼠模式之臨床意義 35
4.2 體內和體外實驗結果差異的可能原因 35
4.3 總結異型合子Asx11突變與MN1過量表現間的關係 36
4.4 結合異型合子Asxl1突變及第二擊之其它基因突變 37
4.5 獲得突變型Asxl1 G643WfsX12同型合子之困難處 38
4.6 編輯小鼠基因表現之方法及實務上之侷限 40
4.7 Asxl1 G643WfsX12基因剔入鼠之基因表現圖譜 44
4.8 突變型Asxl1異型合子改變了H3K27me3的DNA結合圖譜 46
第5章:展望 47
5.1 Asxl1 G643WfsX12基因剔入鼠在白血病致病機轉可進行之後續研究 47
5.2 Asxl1 G643WfsX12基因剔入鼠在藥物篩選之可能應用 47
5.3 突變型Asxl1同型合子比例偏差之分析 48
5.4 造成突變型Asxl1仔鼠死亡原因之可能分析計劃 48
5.5 Asxl1 G643WfsX12突變對小鼠正常生理或/及行為之影響 50
Summary 52
參 考 文 獻 61
表1. 在Asxl1 G643WfsX12異型合子互配之繁殖計劃下同型合子仔鼠離乳數目及各基因型仔數所佔之百分比 70
表2. 在皆有MN1過量表現之背景下,移植異型合子 Asxl1突變型或野生型骨髓細胞之受贈者總數及移植成功之受贈者數目。 71
表3. H3K27me3峰值所在位置表現量有下降之基因列表。 72
圖1. 產製Asxl1 G643WfsX12基因剔入鼠。 74
圖2. 在異型合子互配之條件下胎兒的基因型分佈分析。 75
圖3. 鵝卵石區域形成細胞分析(CAFC)分析顯示帶異型合子突變型Asxl1之骨髓細胞形成鵝卵石區域的能力較野生型細胞更強。 76
圖4. 利用聚落形成細胞分析(CFC)分析異型合子Asxl1突變型骨髓細胞形成各形態成熟血球細胞細胞聚茖之能力。 77
圖5. 小鼠骨髓移植實驗及競爭性再生單位分析(competitive repopulation unit assays)。 78
圖6. 利用流式細胞儀分析受贈者骨髓中衍生自異型合子Asxl1突變型或野生型細胞之組成情形。 79
圖7. 以序列骨髓移植試驗分析異型合子Asxl1突變對造血幹細胞自我再生能力之影響。 80
圖8. 利用流式細胞儀分析異型合子Asxl1突變型及野生型小鼠骨髓中造血幹細胞及造血前驅細胞之組成情形。 81
圖9. 以流式細胞儀分析異型合子Asxl1突變型及野生型小鼠骨髓中造血幹細胞及造血前驅細胞之細胞週期。 82
圖10. 野生型及異型合子突變型Asxl1小鼠之體重記錄。 83
圖11. 年老(18個月)且帶異型合子Asxl1突變之公鼠其白血球(左圖)及紅血球(右圖)讀數會較同年齡之野生型公鼠來得高。 84
圖12. 利用流式細胞儀分析年老小鼠之骨髓組成。 85
圖13. 利用流式細胞儀分析年老異型合子Asxl1突變型及野生型小鼠骨髓、脾臟及週邊血之組成情形。 86
圖14. 利用流式細胞儀分析年老異型合子Asxl1突變型及野生型小鼠骨髓中造血幹細胞及造血前驅細胞所占之比率。 87
圖15. 年老Asxl1同型合子小鼠之全血計數讀值。 88
圖16. 年老Asxl1同型合子小鼠週邊血之全血計數讀值。 89
圖17. 年老Asxl1同型合子小鼠之體重、骨髓及脾臟之組成。 90
圖18. 利用流式細胞儀分析年老Asxl1同型合子小鼠骨髓中造血幹細胞及造血前驅細胞之組成形。 91
圖19. 產製喪失功能Runx1突變異型合子基因剔入鼠之示意圖。 92
圖20. 三個月齡Asxl1突變Runx1突變雙重異型合子剔入鼠之全血球計數讀。 93
圖21. 利用流式細胞儀分析Asxl1突變Runx1突變雙重異型合子剔入鼠之骨髓組成。 94
圖22. 以CFC分析Asxl1突變Runx1突變雙重異型合子剔入鼠之骨髓組成。 95
圖23. 序列骨髓移植試驗分析Asxl1突變Runx1突變雙重異型合子剔入鼠骨髓細胞之自我更新能力。 96
圖24. 十八個月齡Asxl1突變Runx1突變雙重異型合子剔入鼠全血球計數分析。 97
圖25. 年老Asxl1突變Runx1突變雙重剔入鼠之血液器官及體型分析。 98
圖26. 突變型ASXL1及MN1高表現之交互作用情形。 99
圖27. 體外分析帶MN1過量表現之突變型Asxl1骨髓細胞活性。 100
圖28. 序列稀釋骨髓移植實驗顯示在MN1過量表現之Asxl1突變骨髓細胞有較高比例之細胞具有在受贈者身上進行骨髓重建之能力。 101
圖29. ASXL1突變與MN1過量表現間之交互作用的基因表達圖譜及基因組分析。 102
圖30. 小鼠骨髓細胞及AML患者樣本間皆有富集之基因組GSEA圖。 103
圖31. 異型合子Asxl1突變無法在骨髓細胞中顯著改變H3K27me3的量。 104
圖32. 將異型合子突變型及野生型Asxl1專屬H3K27me3峰值利用IGV視覺化之結果。 105
圖33. 在扣除兩者皆有的讀取峰值後異型合子突變型及野生型Asxl1之專屬峰值在基因體中分佈之情形。 106
圖34. 利用MEME-ChIP web tool所分析出來異型合子突變型及野生型Asxl1專屬峰值所涵蓋區域最常見之DNA序列。 107
圖35. 微陣列分析中所發現表現量下降的基因和H3K27me3讀取峰值之關聯情形。 108
附錄: 109
一. 個人在碩博士班修業期間發表之相關論文: 109
二. 抗體列表: 110
dc.language.isozh-TW
dc.title探討ASXL1突變在惡性血液腫瘤所扮演的角色zh_TW
dc.titleExploring the role of ASXL1 mutation in myeloid malignanciesen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.coadvisor陳佑宗
dc.contributor.oralexamcommittee楊偉勛,黃凱文,林亮音,林淑華,張原翊
dc.subject.keywordAsxl1,MN1,造血幹細胞,異體骨髓增殖,生理劑量,zh_TW
dc.subject.keywordAsxl1,MN1,hematopoietic stem cell,engraftment,physiological dose,en
dc.relation.page111
dc.identifier.doi10.6342/NTU201800229
dc.rights.note未授權
dc.date.accepted2018-01-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved