請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20210完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林唯芳(Wei-Fang Su) | |
| dc.contributor.author | Hung-Che Huang | en |
| dc.contributor.author | 黃宏哲 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:42:19Z | - |
| dc.date.copyright | 2020-09-29 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-09-24 | |
| dc.identifier.citation | 1. Kojima, A., K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131 (2009) 6050-6051. 2. NREL. Best Research-Cell Efficiencies. 2020; Available from: https://www.nrel.gov/pv/cell-efficiency.html. 3. Marchioro, A., J. Teuscher, D. Friedrich, M. Kunst, R. Van De Krol, T. Moehl, M. Grätzel, and J.-E. Moser, Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nature photonics, 8 (2014) 250-255. 4. Ren, X., Z. Yang, D. Yang, X. Zhang, D. Cui, Y. Liu, Q. Wei, H. Fan, and S.F. Liu, Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature. Nanoscale, 8 (2016) 3816-3822. 5. Shi, D., V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, and K. Katsiev, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 347 (2015) 519-522. 6. Burschka, J., N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499 (2013) 316-319. 7. Sun, S., T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, and Y.M. Lam, The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environmental Science, 7 (2014) 399-407. 8. Zhou, J. and J. Huang, Photodetectors based on organic–inorganic hybrid lead halide perovskites. Advanced Science, 5 (2018) 1700256. 9. Goldschmidt, V.M., Die gesetze der krystallochemie. Naturwissenschaften, 14 (1926) 477-485. 10. Hendon, C.H., R.X. Yang, L.A. Burton, and A. Walsh, Assessment of polyanion (BF 4− and PF 6−) substitutions in hybrid halide perovskites. Journal of Materials Chemistry A, 3 (2015) 9067-9070. 11. Eperon, G.E., S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, and H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environmental Science, 7 (2014) 982-988. 12. Wu, S., Z. Li, J. Zhang, T. Liu, Z. Zhu, and A.K.-Y. Jen, Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses. Chemical Communications, 55 (2019) 4315-4318. 13. Kim, H.-S., C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J.E. Moser, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2 (2012) 1-7. 14. Lee, M.M., J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338 (2012) 643-647. 15. Jung, Y.S., K. Hwang, Y.J. Heo, J.E. Kim, D. Vak, and D.Y. Kim, Progress in Scalable Coating and Roll‐to‐Roll Compatible Printing Processes of Perovskite Solar Cells toward Realization of Commercialization. Advanced Optical Materials, 6 (2018) 1701182. 16. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501 (2013) 395-398. 17. Jeng, J.Y., Y.F. Chiang, M.H. Lee, S.R. Peng, T.F. Guo, P. Chen, and T.C. Wen, CH3NH3PbI3 perovskite/fullerene planar‐heterojunction hybrid solar cells. Advanced Materials, 25 (2013) 3727-3732. 18. Zheng, X., Y. Hou, C. Bao, J. Yin, F. Yuan, Z. Huang, K. Song, J. Liu, J. Troughton, and N. Gasparini, Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nature Energy, 5 (2020) 131-140. 19. Christians, J.A., P. Schulz, J.S. Tinkham, T.H. Schloemer, S.P. Harvey, B.J.T. de Villers, A. Sellinger, J.J. Berry, and J.M. Luther, Tailored interfaces of unencapsulated perovskite solar cells for> 1,000 hour operational stability. Nature Energy, 3 (2018) 68-74. 20. Peng, X., J. Yuan, S. Shen, M. Gao, A.S. Chesman, H. Yin, J. Cheng, Q. Zhang, and D. Angmo, Perovskite and organic solar cells fabricated by inkjet printing: progress and prospects. Advanced Functional Materials, 27 (2017) 1703704. 21. Wei, Z., H. Chen, K. Yan, and S. Yang, Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angewandte Chemie International Edition, 53 (2014) 13239-13243. 22. Mathies, F., H. Eggers, B.S. Richards, G. Hernandez-Sosa, U. Lemmer, and U.W. Paetzold, Inkjet-printed triple cation perovskite solar cells. ACS Applied Energy Materials, 1 (2018) 1834-1839. 23. Deng, Y., Q. Wang, Y. Yuan, and J. Huang, Vividly colorful hybrid perovskite solar cells by doctor-blade coating with perovskite photonic nanostructures. Materials Horizons, 2 (2015) 578-583. 24. Vak, D., K. Hwang, A. Faulks, Y.S. Jung, N. Clark, D.Y. Kim, G.J. Wilson, and S.E. Watkins, 3D printer based slot‐die coater as a lab‐to‐fab translation tool for solution‐processed solar cells. Advanced energy materials, 5 (2015) 1401539. 25. Di Giacomo, F., S. Shanmugam, H. Fledderus, B.J. Bruijnaers, W.J. Verhees, M.S. Dorenkamper, S.C. Veenstra, W. Qiu, R. Gehlhaar, and T. Merckx, Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Solar Energy Materials and Solar Cells, 181 (2018) 53-59. 26. Barrows, A.T., A.J. Pearson, C.K. Kwak, A.D. Dunbar, A.R. Buckley, and D.G. Lidzey, Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environmental Science, 7 (2014) 2944-2950. 27. Deng, Y., E. Peng, Y. Shao, Z. Xiao, Q. Dong, and J. Huang, Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environmental Science, 8 (2015) 1544-1550. 28. Hwang, K., Y.S. Jung, Y.J. Heo, F.H. Scholes, S.E. Watkins, J. Subbiah, D.J. Jones, D.Y. Kim, and D. Vak, Toward large scale roll‐to‐roll production of fully printed perovskite solar cells. Advanced materials, 27 (2015) 1241-1247. 29. Das, S., B. Yang, G. Gu, P.C. Joshi, I.N. Ivanov, C.M. Rouleau, T. Aytug, D.B. Geohegan, and K. Xiao, High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. Acs Photonics, 2 (2015) 680-686. 30. Hoth, C.N., P. Schilinsky, S.A. Choulis, S. Balasubramanian, and C.J. Brabec, Solution-processed organic photovoltaics, in Applications of Organic and Printed Electronics. 2013, Springer. p. 27-56. 31. Cotella, G., J. Baker, D. Worsley, F. De Rossi, C. Pleydell-Pearce, M. Carnie, and T. Watson, One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications. Solar Energy Materials and Solar Cells, 159 (2017) 362-369. 32. Kim, J.-E., Y.-S. Jung, Y.-J. Heo, K. Hwang, T. Qin, D.-Y. Kim, and D. Vak, Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition. Solar Energy Materials and Solar Cells, 179 (2018) 80-86. 33. Ciro, J., M.A. Mejía-Escobar, and F. Jaramillo, Slot-die processing of flexible perovskite solar cells in ambient conditions. Solar Energy, 150 (2017) 570-576. 34. Lee, D., Y.-S. Jung, Y.-J. Heo, S. Lee, K. Hwang, Y.-J. Jeon, J.-E. Kim, J. Park, G.Y. Jung, and D.-Y. Kim, Slot-die coated perovskite films using mixed lead precursors for highly reproducible and large-area solar cells. ACS applied materials interfaces, 10 (2018) 16133-16139. 35. Kim, Y.Y., E.Y. Park, T.-Y. Yang, J.H. Noh, T.J. Shin, N.J. Jeon, and J. Seo, Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells. Journal of Materials Chemistry A, 6 (2018) 12447-12454. 36. Noel, N.K., S.N. Habisreutinger, B. Wenger, M.T. Klug, M.T. Hörantner, M.B. Johnston, R.J. Nicholas, D.T. Moore, and H.J. Snaith, A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films. Energy Environmental Science, 10 (2017) 145-152. 37. Dou, B., J.B. Whitaker, K. Bruening, D.T. Moore, L.M. Wheeler, J. Ryter, N.J. Breslin, J.J. Berry, S.M. Garner, and F.S. Barnes, Roll-to-roll printing of perovskite solar cells. ACS Energy Letters, 3 (2018) 2558-2565. 38. Galagan, Y., F. Di Giacomo, H. Gorter, G. Kirchner, I. de Vries, R. Andriessen, and P. Groen, Roll‐to‐roll slot die coated perovskite for efficient flexible solar cells. Advanced Energy Materials, 8 (2018) 1801935. 39. Li, T., Y. Pan, Z. Wang, Y. Xia, Y. Chen, and W. Huang, Additive engineering for highly efficient organic–inorganic halide perovskite solar cells: recent advances and perspectives. Journal of Materials Chemistry A, 5 (2017) 12602-12652. 40. Zuo, C., D. Vak, D. Angmo, L. Ding, and M. Gao, One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy, 46 (2018) 185-192. 41. Kim, J.E., S.S. Kim, C. Zuo, M. Gao, D. Vak, and D.Y. Kim, Humidity‐Tolerant Roll‐to‐Roll Fabrication of Perovskite Solar Cells via Polymer‐Additive‐Assisted Hot Slot Die Deposition. Advanced Functional Materials, 29 (2019) 1809194. 42. Jiang, Q., X. Zhang, and J. You, SnO2: a wonderful electron transport layer for perovskite solar cells. Small, 14 (2018) 1801154. 43. Murugadoss, G., H. Kanda, S. Tanaka, H. Nishino, S. Ito, H. Imahori, and T. Umeyama, An efficient electron transport material of tin oxide for planar structure perovskite solar cells. Journal of Power Sources, 307 (2016) 891-897. 44. Søndergaard, R.R., M. Hösel, and F.C. Krebs, Roll‐to‐Roll fabrication of large area functional organic materials. Journal of Polymer Science Part B: Polymer Physics, 51 (2013) 16-34. 45. Zhang, P., J. Wu, T. Zhang, Y. Wang, D. Liu, H. Chen, L. Ji, C. Liu, W. Ahmad, and Z.D. Chen, Perovskite solar cells with ZnO electron‐transporting materials. Advanced Materials, 30 (2018) 1703737. 46. Burkitt, D., J. Searle, and T. Watson, Perovskite solar cells in NIP structure with four slot-die-coated layers. Royal Society open science, 5 (2018) 172158. 47. Hossain, I.M., D. Hudry, F. Mathies, T. Abzieher, S. Moghadamzadeh, D. Rueda-Delgado, F. Schackmar, M. Bruns, R. Andriessen, and T. Aernouts, Scalable processing of low-temperature TiO2 nanoparticles for high-efficiency perovskite solar cells. ACS Applied Energy Materials, 2 (2018) 47-58. 48. Zuo, C. and L. Ding, Modified PEDOT layer makes a 1.52 V Voc for perovskite/PCBM solar cells. Advanced Energy Materials, 7 (2017) 1601193. 49. Di Giacomo, F., H. Fledderus, H. Gorter, G. Kirchner, I. de Vries, I. Dogan, W. Verhees, V. Zardetto, M. Najafi, and D. Zhang. Large area> 140 cm 2 perovskite solar modules made by sheet to sheet and roll to roll fabrication with 14.5% efficiency. in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC). 2018. IEEE. 50. Qin, T., W. Huang, J.-E. Kim, D. Vak, C. Forsyth, C.R. McNeill, and Y.-B. Cheng, Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy, 31 (2017) 210-217. 51. Heo, Y.-J., J.-E. Kim, H. Weerasinghe, D. Angmo, T. Qin, K. Sears, K. Hwang, Y.-S. Jung, J. Subbiah, and D.J. Jones, Printing-friendly sequential deposition via intra-additive approach for roll-to-roll process of perovskite solar cells. Nano Energy, 41 (2017) 443-451. 52. Whitaker, J.B., D.H. Kim, B.W. Larson, F. Zhang, J.J. Berry, M.F. van Hest, and K. Zhu, Scalable slot-die coating of high performance perovskite solar cells. Sustainable Energy Fuels, 2 (2018) 2442-2449. 53. Zuo, C., A.D. Scully, D. Vak, W. Tan, X. Jiao, C.R. McNeill, D. Angmo, L. Ding, and M. Gao, Self‐assembled 2D perovskite layers for efficient printable solar cells. Advanced Energy Materials, 9 (2019) 1803258. 54. Huang, Y.-C., C.-F. Li, Z.-H. Huang, P.-H. Liu, and C.-S. Tsao, Rapid and sheet-to-sheet slot-die coating manufacture of highly efficient perovskite solar cells processed under ambient air. Solar Energy, 177 (2019) 255-261. 55. Jung, Y.-S., K. Hwang, Y.-J. Heo, J.-E. Kim, D. Lee, C.-H. Lee, H.-I. Joh, J.-S. Yeo, and D.-Y. Kim, One-step printable perovskite films fabricated under ambient conditions for efficient and reproducible solar cells. ACS Applied Materials Interfaces, 9 (2017) 27832-27838. 56. Kamaraki, C., A. Zachariadis, C. Kapnopoulos, E. Mekeridis, C. Gravalidis, A. Laskarakis, and S. Logothetidis, Efficient flexible printed perovskite solar cells based on lead acetate precursor. Solar Energy, 176 (2018) 406-411. 57. Gu, Z., L. Zuo, T.T. Larsen-Olsen, T. Ye, G. Wu, F.C. Krebs, and H. Chen, Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates. Journal of Materials Chemistry A, 3 (2015) 24254-24260. 58. Chen, W., Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, and M. Grätzel, Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, 350 (2015) 944-948. 59. Jeon, N.J., J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517 (2015) 476-80. 60. Guo, Q., H. Liu, Z. Shi, F. Wang, E. Zhou, X. Bian, B. Zhang, A. Alsaedi, T. Hayat, and Z.a. Tan, Efficient perovskite/organic integrated solar cells with extended photoresponse to 930 nm and enhanced near-infrared external quantum efficiency of over 50%. Nanoscale, 10 (2018) 3245-3253. 61. Zhu, Z., Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, and S. Yang, High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angew Chem Int Ed Engl, 53 (2014) 12571-5. 62. Yin, X., M. Que, Y. Xing, and W. Que, High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer. J. Mater. Chem. A, 3 (2015) 24495-24503. 63. Lee, J.-W., H.-S. Kim, and N.-G. Park, Lewis acid–base adduct approach for high efficiency perovskite solar cells. Accounts of chemical research, 49 (2016) 311-319. 64. Lv, M., X. Dong, X. Fang, B. Lin, S. Zhang, J. Ding, and N. Yuan, A promising alternative solvent of perovskite to induce rapid crystallization for high-efficiency photovoltaic devices. RSC Advances, 5 (2015) 20521-20529. 65. Gardner, K.L., J.G. Tait, T. Merckx, W. Qiu, U.W. Paetzold, L. Kootstra, M. Jaysankar, R. Gehlhaar, D. Cheyns, P. Heremans, and J. Poortmans, Nonhazardous Solvent Systems for Processing Perovskite Photovoltaics. Advanced Energy Materials, 6 (2016). 66. Ahn, N., D.Y. Son, I.H. Jang, S.M. Kang, M. Choi, and N.G. Park, Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. J Am Chem Soc, 137 (2015) 8696-9. 67. Henderson, R.K., C. Jiménez-González, D.J. Constable, S.R. Alston, G.G. Inglis, G. Fisher, J. Sherwood, S.P. Binks, and A.D. Curzons, Expanding GSK's solvent selection guide–embedding sustainability into solvent selection starting at medicinal chemistry. Green Chemistry, 13 (2011) 854-862. 68. Wu, Y., A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, and L. Han, Retarding the crystallization of PbI 2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environmental Science, 7 (2014) 2934-2938. 69. Wang, J., F. Di Giacomo, J. Brüls, H. Gorter, I. Katsouras, P. Groen, R.A.J. Janssen, R. Andriessen, and Y. Galagan, Highly Efficient Perovskite Solar Cells Using Non-Toxic Industry Compatible Solvent System. Solar RRL, 1 (2017). 70. Liang, P.W., C.Y. Liao, C.C. Chueh, F. Zuo, S.T. Williams, X.K. Xin, J. Lin, and A.K.Y. Jen, Additive enhanced crystallization of solution‐processed perovskite for highly efficient planar‐heterojunction solar cells. Advanced materials, 26 (2014) 3748-3754. 71. Heo, J.H., M.S. You, M.H. Chang, W. Yin, T.K. Ahn, S.-J. Lee, S.-J. Sung, D.H. Kim, and S.H. Im, Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode. Nano Energy, 15 (2015) 530-539. 72. Hsiao, K.-C., M.-H. Jao, B.-T. Li, T.-H. Lin, S.H.-C. Liao, M.-C. Wu, and W.-F. Su, Enhancing Efficiency and Stability of Hot Casting p–i–n Perovskite Solar Cell via Dipolar Ion Passivation. ACS Applied Energy Materials, 2 (2019) 4821-4832. 73. Wang, K., C. Liu, P. Du, L. Chen, J. Zhu, A. Karim, and X. Gong, Efficiencies of perovskite hybrid solar cells influenced by film thickness and morphology of CH3NH3PbI3− xClx layer. Organic Electronics, 21 (2015) 19-26. 74. Wu, W.-Q., Q. Wang, Y. Fang, Y. Shao, S. Tang, Y. Deng, H. Lu, Y. Liu, T. Li, and Z. Yang, Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells. Nature communications, 9 (2018) 1-8. 75. Deng, Y., X. Zheng, Y. Bai, Q. Wang, J. Zhao, and J. Huang, Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy, 3 (2018) 560-566. 76. Deng, Y., Q. Dong, C. Bi, Y. Yuan, and J. Huang, Air‐stable, efficient mixed‐cation perovskite solar cells with Cu electrode by scalable fabrication of active layer. Advanced Energy Materials, 6 (2016) 1600372. 77. Zhong, Y., R. Munir, J. Li, M.-C. Tang, M.R. Niazi, D.-M. Smilgies, K. Zhao, and A. Amassian, Blade-coated hybrid perovskite solar cells with efficiency> 17%: an in situ investigation. ACS Energy Letters, 3 (2018) 1078-1085. 78. Stoumpos, C.C., C.D. Malliakas, and M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic chemistry, 52 (2013) 9019-9038. 79. Cho, N., F. Li, B. Turedi, L. Sinatra, S.P. Sarmah, M.R. Parida, M.I. Saidaminov, B. Murali, V.M. Burlakov, and A. Goriely, Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films. Nature communications, 7 (2016) 1-11. 80. Dai, X., Y. Deng, C.H. Van Brackle, and J. Huang, Meniscus fabrication of halide perovskite thin films at high throughput for large area and low-cost solar panels. International Journal of Extreme Manufacturing, 1 (2019) 022004. 81. Isabelli, F., F. Di Giacomo, H. Gorter, F. Brunetti, P. Groen, R. Andriessen, and Y. Galagan, Solvent Systems for Industrial-Scale Processing of Spiro-OMeTAD Hole Transport Layer in Perovskite Solar Sells. ACS Applied Energy Materials, 1 (2018) 6056-6063. 82. Le Berre, M., Y. Chen, and D. Baigl, From convective assembly to Landau− Levich deposition of multilayered phospholipid films of controlled thickness. Langmuir, 25 (2009) 2554-2557. 83. Seo, J., S. Park, Y.C. Kim, N.J. Jeon, J.H. Noh, S.C. Yoon, and S.I. Seok, Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy Environmental Science, 7 (2014) 2642-2646. 84. Marinova, N., W. Tress, R. Humphry-Baker, M.I. Dar, V. Bojinov, S.M. Zakeeruddin, M.K. Nazeeruddin, and M. Grätzel, Light harvesting and charge recombination in CH3NH3PbI3 perovskite solar cells studied by hole transport layer thickness variation. ACS nano, 9 (2015) 4200-4209. 85. Chen, C., S. Zhang, S. Wu, W. Zhang, H. Zhu, Z. Xiong, Y. Zhang, and W. Chen, Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. RSC advances, 7 (2017) 35819-35826. 86. Wang, N., J. Yu, Y. Zang, J. Huang, and Y. Jiang, Effect of buffer layers on the performance of organic photovoltaic cells based on copper phthalocyanine and C60. Solar Energy Materials and Solar Cells, 94 (2010) 263-266. 87. Wang, J., X. Ren, S. Shi, C. Leung, and P.K. Chan, Charge accumulation induced S-shape J–V curves in bilayer heterojunction organic solar cells. Organic electronics, 12 (2011) 880-885. 88. Udum, Y., P. Denk, G. Adam, D.H. Apaydin, A. Nevosad, C. Teichert, M.S. White, N.S. Sariciftci, and M.C. Scharber, Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer. Organic electronics, 15 (2014) 997-1001. 89. Kang, H., J. Lee, S. Jung, K. Yu, S. Kwon, S. Hong, S. Kee, S. Lee, D. Kim, and K. Lee, Self-assembly of interfacial and photoactive layers via one-step solution processing for efficient inverted organic solar cells. Nanoscale, 5 (2013) 11587-11591. 90. Zhou, Y., T.M. Khan, J.W. Shim, A. Dindar, C. Fuentes-Hernandez, and B. Kippelen, All-plastic solar cells with a high photovoltaic dynamic range. Journal of Materials Chemistry A, 2 (2014) 3492-3497. 91. Lee, J., H. Back, J. Kong, H. Kang, S. Song, H. Suh, S.-O. Kang, and K. Lee, Seamless polymer solar cell module architecture built upon self-aligned alternating interfacial layers. Energy Environmental Science, 6 (2013) 1152-1157. 92. Kang, H., S. Hong, J. Lee, and K. Lee, Electrostatically self‐assembled nonconjugated polyelectrolytes as an ideal interfacial layer for inverted polymer solar cells. Advanced Materials, 24 (2012) 3005-3009. 93. Zhou, Y., C. Fuentes-Hernandez, J.W. Shim, T.M. Khan, and B. Kippelen, High performance polymeric charge recombination layer for organic tandem solar cells. Energy Environmental Science, 5 (2012) 9827-9832. 94. Yan, L., Y. Song, Y. Zhou, B. Song, and Y. Li, Effect of PEI cathode interlayer on work function and interface resistance of ITO electrode in the inverted polymer solar cells. Organic Electronics, 17 (2015) 94-101. 95. Le, Q.T., F. Nüesch, L. Rothberg, E. Forsythe, and Y. Gao, Photoemission study of the interface between phenyl diamine and treated indium–tin–oxide. Applied physics letters, 75 (1999) 1357-1359. 96. Yue, S., S. Lu, K. Ren, K. Liu, M. Azam, D. Cao, Z. Wang, Y. Lei, S. Qu, and Z. Wang, Insights into the influence of work functions of cathodes on efficiencies of perovskite solar cells. Small, 13 (2017) 1700007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20210 | - |
| dc.description.abstract | 高效率鈣鈦礦太陽能電池因為可以使用溶液製程,因此很有潛力成為下個世代低成本太陽能電池的主流。然而,目前最高效率25.2 %所使用的製程為不適合大面積連續量產與高材料浪費率的旋轉塗佈法。狹縫式塗佈法製程能夠達到與旋轉塗佈相同的薄膜品質與低材料浪費率。目前在文獻中以狹縫式塗佈法所製備的P-I-N鈣鈦礦太陽能電池最高效率為15.5 %,其中只有鈣鈦礦主動層是以狹縫式塗佈法所製備,載子傳輸層與界面修飾層皆還是以不利於量產的製程所製備。此外這個結果,需要在量產時會增加氣氛控制成本的手套箱製備。另外他們的製程配方中含有像是二甲基甲醯胺 (DMF)與氯苯 (CB)等不適合於工業量產的有毒溶劑。因此本研究的目標是使用無毒的溶液配方,在大氣下以狹縫式塗佈法製備高效率P-I-N鈣鈦礦太陽能電池。 我們有系統地研究以狹縫式塗佈法製備除了電極外四層的溶液配方與最佳的製程參數。透過分析每一層薄膜其光學性質、電性、表面形貌與結晶度,來最佳化溶液配方以及製程參數。本研究所使用的電池元件結構為FTO/NiOX/MAPbI3/PCBM/ TBAOH/Ag。在以狹縫式塗佈法製備NiOX電洞傳導層中,能夠達到與旋轉塗佈法接近的效率15.43 %。使用無毒溶劑配方二甲基亞碸 (DMSO)與2-甲基吡嗪 (2-MP)取代二甲基甲醯胺,在體積比7:3的條件以狹縫式塗佈法製備的鈣鈦礦薄膜,最高效率達到16.09 %。使用鄰二甲苯 (o-Xylene)取代氯苯的最高效率可以達到15.95 %。藉由TBAOH取代PEI可以避免鈣鈦礦層被破壞且最高效率可以達到13.85 %。 最後結合了我們所建立以狹縫式塗佈法製備除了電極外四層的技術,在有效面積0.09 cm2 與0.75 cm2下分別達到13.85 %及13.52%的效率,且元件沒有出現任何遲滯現象。根據文獻,我們所達到的效率在以狹縫式塗佈法製備除了電極外每一層的鈣鈦礦太陽能電池中是最高的。總結來說,我們能夠在大氣下以可量產的狹縫式塗佈法製備鈣鈦礦太陽能電池,展現了未來能夠商業化的潛力。 | zh_TW |
| dc.description.abstract | High power conversion efficiency (PCE)perovskite solar cell has emerged as a next generation low cost solar cell due to it can be fabricated from solution process. However, the reported high PCE of 25.2 % was using spin coating method which cannot scale up for large area continuous production process and waste material. The slot-die coating process can reach the film quality of spin coating but no material waste. The state of the art of PCE of 15.5 % was reached when the solar cell was fabricated using slot-die coated perovskite, spin coated charge transport layer and work function modified layer. Futhermore, this result was obtained from the process operated in the inert atmosphere which will add the production cost. The solution formulations contain toxic solvents such as dimethylformamide (DMF), chlorobenzene (CB) that are undesirable for industrial manufacturing. It is our goal to develop adequate solution formulations and process parameters for all four layers of P-I-N perovskite solar cell using slot-die technique operating in ambient environment. We systematically carried out all the experimental parameters for solution formulations and coating process of each layer. The results films were carefully examined for their electronic and optical properties; morphology and crystallinity in order to optimize the solution formulations and process parameters. The device has the structure of FTO/NiOX/MAPbI3/PCBM/TBAOH/Ag. The slot-die coated hole transport layer of NiOX reached similar device PCE of 15.43 % and the spin coated film. The slot-die coated perovskite film can reach a PCE of 16.09 % using the non-toxic solution formulation of dimethyl sulfoxide (DMSO) and 2-methylpyrazine (2-MP) at volume ratio of 7:3 instead of toxic DMF. The slot-die coated electron transport layer PCBM can obtain a PCE of 15.95 % using non-toxic o-xylene instead of toxic CB. By replacing work function modifier polyethylenimine (PEI) by terabutylammonium (TBAOH), a PCE of 13.85 % was reached without damaging the peovskite layer. By combining all four layer slot-die coating technique to fabricated solar cell except the electrode, the PCE of 13.85 % and 13.52 % have been reached for solar cell size of 0.09 cm2 and 0.75 cm2, respectively. The devices exhibit no hysteresis. According to the best of our knowledge, the rsults are the highest in the slot-die fabricated perovskite solar cells. In conclusion, we have demonstrated a scalable slot-die process for the fabrication of perovskite solar cell in ambient environment which has potential to be commercialized. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:42:19Z (GMT). No. of bitstreams: 1 U0001-2009202011144300.pdf: 4725833 bytes, checksum: b85d8aba40e694ac4385a2820a037753 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 I 摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 XII 第一章 前言與文獻回顧 1 1.1 太陽能電池簡介 1 1.2 可量產的鈣鈦礦太陽能電池 3 1.2.1 鈣鈦礦太陽能電池介紹 3 1.2.2 大面積鈣鈦礦溶液製程技術介紹 8 1.3 近期以狹縫式塗佈法製備鈣鈦礦太陽能電池的發展 11 1.3.1 近期以狹縫式塗佈法製備鈣鈦礦層的發展 11 1.3.2 近期以狹縫式塗佈法製備載子傳輸層的發展 15 1.4 研究動機 19 第二章 實驗方法 20 2.1 實驗用化學物質列表 20 2.2 實驗用儀器與分析方法 22 2.2.1 實驗用儀器 22 2.2.2 分析方法 23 2.3 狹縫式塗佈鈣鈦礦電池之材料準備 25 2.3.1 電洞傳輸層溶液 25 2.3.2 鈣鈦礦前驅物溶液 25 2.3.3 電子傳輸層溶液 25 2.3.4 界面修飾層溶液 26 2.4 太陽能電池與模組製備與量測 27 2.4.1 旋轉塗佈鈣鈦礦太陽能電池製備 27 2.4.2 狹縫式塗佈電洞傳輸層鈣鈦礦太陽能電池製備 28 2.4.3 狹縫式塗佈主動層鈣鈦礦太陽能電池製備 29 2.4.4 狹縫式塗佈電子傳輸層鈣鈦礦太陽能電池製備 29 2.4.5 全狹縫式塗佈鈣鈦礦太陽能電池製備 30 2.4.6 太陽能電池量測條件 31 第三章 結果與討論 32 3.1 以狹縫式塗佈法製備氧化鎳 (NiOX)電洞傳導層 32 3.2 無毒溶劑系統狹縫式塗佈鈣鈦礦層 40 3.2.1 鈣鈦礦溶劑比例對於鈣鈦礦太陽能電池元件表現之影響 41 3.2.2 鈣鈦礦厚度對於鈣鈦礦太陽能電池元件表現之影響 48 3.2.3 鈣鈦礦基板溫度對於鈣鈦礦太陽能電池元件表現之影響 51 3.3 無毒溶劑狹縫式塗佈碳60富勒烯衍生物 (PCBM)電子傳導層 57 3.3.1 PCBM溶劑對於鈣鈦礦太陽能電池元件表現之影響 57 3.3.2 PCBM厚度對於鈣鈦礦太陽能電池元件表現之影響 62 3.4 狹縫式塗佈界面修飾層 70 第四章 結論 79 第五章 建議 81 第六章 參考文獻 82 | |
| dc.language.iso | zh-TW | |
| dc.title | 使用無毒溶劑系統以狹縫式法製備高效率鈣鈦礦太陽能電池 | zh_TW |
| dc.title | High-Efficiency Perovskite Solar cell Fabricated by Slot-Die Coating with Non-Toxic Solvent System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳明忠(Ming-Chung Wu),黃裕清(Yu-Ching Huang),廖學中(Hsueh-Chung Liao) | |
| dc.subject.keyword | 鈣鈦礦,太陽能電池,狹縫式塗佈法,無毒,溶劑,反式平面異質結構, | zh_TW |
| dc.subject.keyword | perovskite,solar cell,slot-die,non-toxic,solvent,planar heterojunction,P-I-N, | en |
| dc.relation.page | 91 | |
| dc.identifier.doi | 10.6342/NTU202004221 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-09-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2009202011144300.pdf 未授權公開取用 | 4.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
