請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19319
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林江珍 | |
dc.contributor.author | Yi-Chen Lee | en |
dc.contributor.author | 李俋箴 | zh_TW |
dc.date.accessioned | 2021-06-08T01:53:31Z | - |
dc.date.copyright | 2016-07-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-18 | |
dc.identifier.citation | 1. Kreyling, W. G.; Semmler-Behnke, M.; Chaudhry, Q., A complementary definition of nanomaterial. Nano Today 2010, 5 (3), 165-168.
2. Nel, A.; Xia, T.; Madler, L.; Li, N., Toxic potential of materials at the nanolevel. Science 2006, 311 (5761), 622-7. 3. Rai, M.; Yadav, A.; Gade, A., Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009, 27 (1), 76-83. 4. El-Nour, K. M. A.; Eftaiha, A. a.; Al-Warthan, A.; Ammar, R. A., Synthesis and applications of silver nanoparticles. Arabian journal of chemistry 2010, 3 (3), 135-140. 5. Huang, S.; Dai, L.; Mau, A. W., Patterned growth and contact transfer of well-aligned carbon nanotube films. The Journal of Physical Chemistry B 1999, 103 (21), 4223-4227. 6. Ray, S. S.; Okamoto, M., Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in polymer science 2003, 28 (11), 1539-1641. 7. Goodman, T. T.; Ng, C. P.; Pun, S. H., 3-D tissue culture systems for the evaluation and optimization of nanoparticle-based drug carriers. Bioconjugate chemistry 2008, 19 (10), 1951-1959. 8. Su, S.; Wu, W.; Gao, J.; Lu, J.; Fan, C., Nanomaterials-based sensors for applications in environmental monitoring. Journal of Materials Chemistry 2012, 22 (35), 18101-18110. 9. Leary, R.; Westwood, A., Carbonaceous nanomaterials for the enhancement of TiO 2 photocatalysis. Carbon 2011, 49 (3), 741-772. 10. Wei, J.-C.; Yen, Y.-T.; Wang, Y.-T.; Hsu, S.-h.; Lin, J.-J., Enhancing silver nanoparticle and antimicrobial efficacy by the exfoliated clay nanoplatelets. RSC Advances 2013, 3 (20), 7392-7397. 11. Shipway, A. N.; Katz, E.; Willner, I., Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 2000, 1 (1), 18-52. 12. Tomalia, D. A., The dendritic state. Materials Today 2005, 8 (3), 34-46. 13. Xiao, Y.; Li, C. M., Nanocomposites: from fabrications to electrochemical bioapplications. Electroanalysis 2008, 20 (6), 648-662. 14. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P., Hybrid nanorod-polymer solar cells. science 2002, 295 (5564), 2425-2427. 15. Chu, C.-C.; Chiang, M.-L.; Tsai, C.-M.; Lin, J.-J., Exfoliation of montmorillonite clay by mannich polyamines with multiple quaternary salts. Macromolecules 2005, 15 (38), 6240-6243. 16. Lin, J.-J.; Chu, C.-C.; Chiang, M.-L.; Tsai, W.-C., First isolation of individual silicate platelets from clay exfoliation and their unique self-assembly into fibrous arrays. The Journal of Physical Chemistry B 2006, 110 (37), 18115-18120. 17. Hsu, S.-h.; Tseng, H.-J.; Hung, H.-S.; Wang, M.-C.; Hung, C.-H.; Li, P.-R.; Lin, J.-J., Antimicrobial activities and cellular responses to natural silicate clays and derivatives modified by cationic alkylamine salts. ACS applied materials & interfaces 2009, 1 (11), 2556-2564. 18. Alexandre, M.; Dubois, P., Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports 2000, 28 (1), 1-63. 19. Wei, J.-C.; Yen, Y.-T.; Su, H.-L.; Lin, J.-J., Inhibition of bacterial growth by the exfoliated clays and observation of physical capturing mechanism. The Journal of Physical Chemistry C 2011, 115 (38), 18770-18775. 20. Liang, J.-J.; Wei, J.-C.; Lee, Y.-L.; Hsu, S.-h.; Lin, J.-J.; Lin, Y.-L., Surfactant-modified nanoclay exhibits an antiviral activity with high potency and broad spectrum. Journal of virology 2014, 88 (8), 4218-4228. 21. Huang, Y.-J.; Chang, P.-F. L.; Huang, J.-W.; Lin, J.-J.; Chung, W.-H., Effect of Nanoscale Silicate Platelets on Azoxystrobin-resistant Isolates of Botrytis cinerea from Strawberry In Vitro and In Vivo. Journal of Plant Pathology & Microbiology 2016, 2016. 22. Rai, M.; Deshmukh, S.; Ingle, A.; Gade, A., Silver nanoparticles: the powerful nanoweapon against multidrug‐resistant bacteria. Journal of applied microbiology 2012, 112 (5), 841-852. 23. Kim, J. S.; Kuk, E.; Yu, K. N.; Kim, J.-H.; Park, S. J.; Lee, H. J.; Kim, S. H.; Park, Y. K.; Park, Y. H.; Hwang, C.-Y., Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 2007, 3 (1), 95-101. 24. Lara, H. H.; Garza-Treviño, E. N.; Ixtepan-Turrent, L.; Singh, D. K., Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. Journal of nanobiotechnology 2011, 9 (1), 1. 25. Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A., Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts of chemical research 2008, 41 (12), 1578-1586. 26. Nie, S.; Emory, S. R., Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. science 1997, 275 (5303), 1102-1106. 27. Matejka, P.; Vlckova, B.; Vohlidal, J.; Pancoska, P.; Baumruk, V., The role of triton X-100 as an adsorbate and a molecular spacer on the surface of silver colloid: a surface-enhanced Raman scattering study. The Journal of Physical Chemistry 1992, 96 (3), 1361-1366. 28. Mallick, K.; Witcomb, M.; Scurrell, M., Silver nanoparticle catalysed redox reaction: an electron relay effect. Materials Chemistry and Physics 2006, 97 (2), 283-287. 29. Rai, M.; Yadav, A.; Gade, A., Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances 2009, 27 (1), 76-83. 30. AshaRani, P.; Low Kah Mun, G.; Hande, M. P.; Valiyaveettil, S., Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS nano 2008, 3 (2), 279-290. 31. Lin, J.-J.; Dong, R.-X.; Tsai, W.-C., High Surface Clay-Supported Silver Nanohybrids. 2010. 32. Hornebecq, V.; Antonietti, M.; Cardinal, T.; Treguer-Delapierre, M., Stable silver nanoparticles immobilized in mesoporous silica. Chemistry of materials 2003, 15 (10), 1993-1999. 33. Choi, S.-H.; Lee, S.-H.; Hwang, Y.-M.; Lee, K.-P.; Kang, H.-D., Interaction between the surface of the silver nanoparticles prepared by γ-irradiation and organic molecules containing thiol group. Radiation Physics and Chemistry 2003, 67 (3), 517-521. 34. Mafuné, F.; Kohno, J.-y.; Takeda, Y.; Kondow, T.; Sawabe, H., Formation and size control of silver nanoparticles by laser ablation in aqueous solution. The Journal of Physical Chemistry B 2000, 104 (39), 9111-9117. 35. Chen, X.; Zheng, Z.; Ke, X.; Jaatinen, E.; Xie, T.; Wang, D.; Guo, C.; Zhao, J.; Zhu, H., Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Green Chemistry 2010, 12 (3), 414-419. 36. Pillai, Z. S.; Kamat, P. V., What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? The Journal of Physical Chemistry B 2004, 108 (3), 945-951. 37. Li, H.; Xia, H.; Ding, W.; Li, Y.; Shi, Q.; Wang, D.; Tao, X., Synthesis of monodisperse, quasi-spherical silver nanoparticles with sizes defined by the nature of silver precursors. Langmuir 2014, 30 (9), 2498-2504. 38. Panáček, A.; Kvítek, L.; Prucek, R.; Kolar, M.; Vecerova, R.; Pizurova, N.; Sharma, V. K.; Nevečná, T. j.; Zboril, R., Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B 2006, 110 (33), 16248-16253. 39. Tatarchuk, V. V.; Sergievskaya, A. P.; Korda, T. M.; Druzhinina, I. A.; Zaikovsky, V. I., Kinetic Factors in the Synthesis of Silver Nanoparticles by Reduction of Ag+ with Hydrazine in Reverse Micelles of Triton N-42. Chemistry of Materials 2013, 25 (18), 3570-3579. 40. Toshima, N.; Kanemaru, M.; Shiraishi, Y.; Koga, Y., Spontaneous formation of core/shell bimetallic nanoparticles: a calorimetric study. The Journal of Physical Chemistry B 2005, 109 (34), 16326-16331. 41. Yu, D.-G., Formation of colloidal silver nanoparticles stabilized by Na+–poly (γ-glutamic acid)–silver nitrate complex via chemical reduction process. Colloids and Surfaces B: Biointerfaces 2007, 59 (2), 171-178. 42. Kvitek, L.; Panáček, A.; Soukupova, J.; Kolar, M.; Vecerova, R.; Prucek, R.; Holecova, M.; Zboril, R., Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). The Journal of Physical Chemistry C 2008, 112 (15), 5825-5834. 43. Li, X.; Lenhart, J. J., Aggregation and dissolution of silver nanoparticles in natural surface water. Environmental science & technology 2012, 46 (10), 5378-5386. 44. Tolaymat, T. M.; El Badawy, A. M.; Genaidy, A.; Scheckel, K. G.; Luxton, T. P.; Suidan, M., An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Science of the Total Environment 2010, 408 (5), 999-1006. 45. Noritomi, H.; Igari, N.; Kagitani, K.; Umezawa, Y.; Muratsubaki, Y.; Kato, S., Synthesis and size control of silver nanoparticles using reverse micelles of sucrose fatty acid esters. Colloid and Polymer Science 2010, 288 (8), 887-891. 46. Miyoshi, H.; Ohno, H.; Sakai, K.; Okamura, N.; Kourai, H., Characterization and photochemical and antibacterial properties of highly stable silver nanoparticles prepared on montmorillonite clay in n-hexanol. Journal of colloid and interface science 2010, 345 (2), 433-441. 47. Luo, L.-B.; Yu, S.-H.; Qian, H.-S.; Zhou, T., Large-scale fabrication of flexible silver/cross-linked poly (vinyl alcohol) coaxial nanocables by a facile solution approach. Journal of the American Chemical Society 2005, 127 (9), 2822-2823. 48. Cheng, Y.; Yin, L.; Lin, S.; Wiesner, M.; Bernhardt, E.; Liu, J., Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. The Journal of Physical Chemistry C 2011, 115 (11), 4425-4432. 49. Dong, R.-X.; Chou, C.-C.; Lin, J.-J., Synthesis of immobilized silver nanoparticles on ionic silicate clay and observed low-temperature melting. Journal of Materials Chemistry 2009, 19 (15), 2184-2188. 50. Moyer, C. A.; BRENTANO, L.; GRAVENS, D. L.; MARGRAF, H. W.; MONAFO, W. W., Treatment of large human burns with 0.5% silver nitrate solution. Archives of surgery 1965, 90 (6), 812-867. 51. Su, H.-L.; Lin, S.-H.; Wei, J.-C.; Pao, I.-C.; Chiao, S.-H.; Huang, C.-C.; Lin, S.-Z.; Lin, J.-J., Novel nanohybrids of silver particles on clay platelets for inhibiting silver-resistant bacteria. PLoS One 2011, 6 (6), e21125. 52. Chu, C.-Y.; Peng, F.-C.; Chiu, Y.-F.; Lee, H.-C.; Chen, C.-W.; Wei, J.-C.; Lin, J.-J., Nanohybrids of silver particles immobilized on silicate platelet for infected wound healing. PloS one 2012, 7 (6), e38360. 53. Lin, J.-J.; Lin, W.-C.; Li, S.-D.; Lin, C.-Y.; Hsu, S.-h., Evaluation of the antibacterial activity and biocompatibility for silver nanoparticles immobilized on nano silicate platelets. ACS applied materials & interfaces 2013, 5 (2), 433-443. 54. Huang, Y.-H.; Chen, M. H.-C.; Lee, B.-H.; Hsieh, K.-H.; Tu, Y.-K.; Lin, J.-J.; Chang, C.-H., Evenly distributed thin-film Ag coating on stainless plate by tricomponent Ag/silicate/PU with antimicrobial and biocompatible properties. ACS applied materials & interfaces 2014, 6 (22), 20324-20333. 55. Gao, J.; Gu, H.; Xu, B., Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Accounts of chemical research 2009, 42 (8), 1097-1107. 56. Huang, Y.-F.; Wang, Y.-F.; Yan, X.-P., Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. Environmental science & technology 2010, 44 (20), 7908-7913. 57. Wu, W.; He, Q.; Jiang, C., Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Research Letters 2008, 3 (11), 397. 58. Kell, A. J.; Stewart, G.; Ryan, S.; Peytavi, R.; Boissinot, M.; Huletsky, A.; Bergeron, M. G.; Simard, B., Vancomycin-modified nanoparticles for efficient targeting and preconcentration of Gram-positive and Gram-negative bacteria. Acs Nano 2008, 2 (9), 1777-1788. 59. Behra, M.; Azzouz, N.; Schmidt, S.; Volodkin, D. V.; Mosca, S.; Chanana, M.; Seeberger, P. H.; Hartmann, L., Magnetic porous sugar-functionalized PEG microgels for efficient isolation and removal of bacteria from solution. Biomacromolecules 2013, 14 (6), 1927-1935. 60. Oliveira, L. C.; Rios, R. V.; Fabris, J. D.; Sapag, K.; Garg, V. K.; Lago, R. M., Clay–iron oxide magnetic composites for the adsorption of contaminants in water. Applied Clay Science 2003, 22 (4), 169-177. 61. Liu, T.-Y.; Chen, C.-L.; Lee, Y.-C.; Chan, T.-Y.; Wang, Y.-L.; Lin, J.-J., First Observation of Physically Capturing and Maneuvering Bacteria using Magnetic Clays. ACS applied materials & interfaces 2015, 8 (1), 411-418. 62. Hajipour, M. J.; Fromm, K. M.; Ashkarran, A. A.; de Aberasturi, D. J.; de Larramendi, I. R.; Rojo, T.; Serpooshan, V.; Parak, W. J.; Mahmoudi, M., Antibacterial properties of nanoparticles. Trends in biotechnology 2012, 30 (10), 499-511. 63. Booshehri, A. Y.; Wang, R.; Xu, R., Simple method of deposition of CuO nanoparticles on a cellulose paper and its antibacterial activity. Chemical Engineering Journal 2015, 262, 999-1008. 64. Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N. H. M.; Ann, L. C.; Bakhori, S. K. M.; Hasan, H.; Mohamad, D., Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters 2015, 7 (3), 219-242. 65. Janaki, A. C.; Sailatha, E.; Gunasekaran, S., Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015, 144, 17-22. 66. Wahid, F.; Yin, J.-J.; Xue, D.-D.; Xue, H.; Lu, Y.-S.; Zhong, C.; Chu, L.-Q., Synthesis and characterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels. International journal of biological macromolecules 2016, 88, 273-279. 67. Zhang, Q.; Zhang, K.; Xu, D.; Yang, G.; Huang, H.; Nie, F.; Liu, C.; Yang, S., CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Progress in Materials Science 2014, 60, 208-337. 68. Xie, J.; Li, P.; Li, Y.; Wang, Y.; Wei, Y., Morphology control of ZnO particles via aqueous solution route at low temperature. Materials Chemistry and Physics 2009, 114 (2), 943-947. 69. Moezzi, A.; McDonagh, A. M.; Cortie, M. B., Zinc oxide particles: Synthesis, properties and applications. Chemical Engineering Journal 2012, 185, 1-22. 70. Moezzi, A.; Cortie, M.; McDonagh, A., Aqueous pathways for the formation of zinc oxide nanoparticles. Dalton Transactions 2011, 40 (18), 4871-4878. 71. Sonia, S.; Jayram, N. D.; Kumar, P. S.; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C., Effect of NaOH concentration on structural, surface and antibacterial activity of CuO nanorods synthesized by direct sonochemical method. Superlattices and Microstructures 2014, 66, 1-9. 72. Applerot, G.; Lellouche, J.; Lipovsky, A.; Nitzan, Y.; Lubart, R.; Gedanken, A.; Banin, E., Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 2012, 8 (21), 3326-3337. 73. Lan, Y.-F.; Lin, J.-J., Observation of carbon nanotube and clay micellelike microstructures with dual dispersion property. The Journal of Physical Chemistry A 2009, 113 (30), 8654-8659. 74. Pai, Y.-H.; Ke, J.-H.; Chou, C.-C.; Lin, J.-J.; Zen, J.-M.; Shieu, F.-S., Clay as a dispersion agent in anode catalyst layer for PEMFC. Journal of power sources 2006, 163 (1), 398-402. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19319 | - |
dc.description.abstract | 本研究利用片狀矽酸鹽黏土(NSP)來使奈米氧化鋅粒子(ZnO)、奈米氧化銅粒子(CuO)以及奈米銀粒子(Ag)穩定生成於矽片上,並合成奈米矽片氧化鋅(ZnO/NSP)、奈米矽片氧化銅(CuO/NSP)以及奈米矽片(Ag/NSP),並利用紫外光−可見光光譜、X-ray粉末繞射儀以及穿透式電子顯微鏡(TEM)觀察奈米粒子的生成、粒子大小以及粒徑分佈。從實驗檢測結果發現,脫層的奈米矽片(NSP) 可承載以及穩定奈米粒子。奈米粒子/矽片之複合材料可成功地被合成出來,並可免除使用常見的有機分散劑所造成的過度包覆奈米粒子,使得奈米粒子的表面功能降低,而透過矽片可使奈米粒子表面露出,並達到提升奈米粒子功能的效果。奈米矽片擁有特殊的表面特性,例如:高比表面積以及高表面電荷,使得奈米矽片可以承載奈米粒子以及穩定分散奈米粒子。
我們進一步研究奈米複合物(奈米矽片氧化鋅(ZnO/NSP)、奈米矽片氧化銅(CuO/NSP))的殺菌效果,並和實驗室先前合成的奈米矽片銀(Ag/NSP)做比較。抗菌實驗採用大腸桿菌(E. coli)以及金黃色葡萄球菌(S. aureus) 作為試驗菌種。此外,我們合成奈米矽片銀/氧化鋅(Ag/ZnO/NSP),其中奈米氧化鋅粒子視為奈米矽片銀的抗菌促進劑,並比較奈米矽片銀(Ag/NSP)以及奈米矽片銀/氧化鋅(Ag/ZnO/NSP)的抗菌性能。從抗菌結果發現到奈米矽片氧化銅(CuO/NSP)相較於奈米氧化鋅粒子(ZnO)以及奈米銀粒子(Ag)對金黃色葡萄球菌有較佳的抗菌效果。另外,含銀粒子的複合材料(Ag/NSP以及Ag/ZnO/NSP)則是對大腸桿菌有較佳的抗菌效果。另外,從菌數減低動態圖發現,奈米矽片銀/氧化鋅(Ag/ZnO/NSP)中的氧化鋅粒子可有效提升奈米矽片銀的抗菌效能。 | zh_TW |
dc.description.abstract | The hybrids of zinc oxide, copper (II) oxide, silver oxide nanoparticles on the nanoscale silicate platelets (NSP) are synthesized and characterized by UV-visible spectroscopy, X-ray powder diffraction, and TEM. We employ the exfoliated silicate platelets to support and stabilize the nanoparticles. The particles-on-platelet nanohybrids are successfully synthesized and the naked nanoparticles associated with the NSPs are formed without organics contamination. It is suggested that the NSPs are suitable for supporting nanoparticles owing to their high aspect–ratio and high surface ionic charges.
We further investigate the bactericidal efficacy of ZnO/NSP and CuO/NSP as compared with the home-made Ag/NSP at the weight ratio of 15/85. The antimicrobial tests are performed on Escherichia coli and Staphylococcus aureus. Additionally, we synthesize the Ag/ZnO/NSP that ZnO is regarded as a promoter in the hybrids in antibacterial uses. Also, the differences of antibacterial activities between Ag/NSP and Ag/ZnO/NSP are investigated. And, it is found that CuO/NSP (15/85, w/w) show better antibacterial efficacy against S. aureus as compared with ZnO/NSP and Ag/NSP. And the Ag-contained nanohybrids (Ag/NSP and Ag/ZnO/NSP) are excellent antibacterial agents for E. coli. Among the Ag/ZnO/NSP, ZnO promote the antibacterial activity of Ag/NSP. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:53:31Z (GMT). No. of bitstreams: 1 ntu-105-R03549011-1.pdf: 1785847 bytes, checksum: ea84de3a666cf030416f37a5ca42abcb (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | Acknowledgements I
Abstract IV Index VI List of Figures VIII List of Tables XI List of Schemes XII Chapter 1 Introduction and Literature Review 1 1.1 Introduction of Nanomaterials 1 1.2 Introduction of Nanoscale Silicate Platelets (NSP) 3 1.3 Introduction of silver nanoparticles (AgNP) 5 1.3.1. Methods of Preparing AgNP 5 1.3.2. NSP as supports to preparing Ag/NSP 8 1.3.3. Ag/NSP as antibacterial materials 9 1.4 Introduction of Magnetic Iron Oxide nanoparticles (IONP) 10 1.4.1. NSP as supports to preparing IO/NSP 11 1.4.2. Fe3O4/NSP physically capturing and removing microbes 12 1.5 Introduction of Zinc Oxide nanoparticles (ZnO) and Copper Oxide nanoparticles (CuO) 14 1.5.1. Zinc oxide nanoparticles as antibacterial materials 14 1.5.2. Copper oxide nanoparticles as antibacterial materials 16 1.6. Research Objectives 17 Chapter 2 Experimental Section 19 2.1. Materials 19 2.2. Synthesis of ZnO/NSP Nanohybrids 20 2.3. Synthesis of CuO/NSP Nanohybrids 20 2.4. Synthesis of Ag/NSP Nanohybrids 21 2.5. Synthesis of Ag/ZnO/NSP Nanohybrids 22 2.6. Antibacterial Experiments 23 2.7. Instrumentation and Analyses 24 Chapter 3 Results and Discussion 26 3.1. Synthesis of ZnO/NSP Nanohybrids 26 3.2. Synthesis of CuO/NSP Nanohybrids 35 3.3. Synthesis of Ag/NSP Nanohybrids 41 3.4. Synthesis of Ag/ZnO/NSP Nanohybrids 44 3.5. Antibacterial efficacies of Nanohybrids 48 3.6. Improvement of dispersity by in situ synthesizing nanoparticles on NSP 53 Chapter 4 Conclusion 55 Chapter 5 References 56 | |
dc.language.iso | en | |
dc.title | 天然矽片擔體奈米級氧化銅及氧化鋅粒子及其抗菌應用 | zh_TW |
dc.title | Silicate Platelets Supporting Copper Oxide and Zinc Oxide Particles for Antimicrobial Uses | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝國煌,張志豪,吳震裕,蘇鴻麟 | |
dc.subject.keyword | 奈米複合材料,黏土,奈米矽片,奈米氧化鋅,奈米氧化銅,奈米銀,抗菌, | zh_TW |
dc.subject.keyword | nanohybrids,clay,nanoscale silicate platelets (NSP),silver nanoparticles (Ag),zinc oxide nanoparticles (ZnO),copper (II) oxide nanoparticles (CuO),antibacterial, | en |
dc.relation.page | 67 | |
dc.identifier.doi | 10.6342/NTU201601026 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-07-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 1.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。