Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18999
標題: 廣義線性模型下之距離相關係數篩選模型平均法
Distance Correlation Screening-based Model Averaging for Generalized Linear Models
作者: RUI-YU HSU
許睿育
指導教授: 洪弘(Hung Hung)
關鍵字: 模型平均法,距離相關係數篩選法,隨機切割,模型權重,Kullback-Leibler損失函數,
model averaging,distance correlation screening,random-partition,model weights,Kullback-Leibler loss,
出版年 : 2020
學位: 碩士
摘要: 這篇文章主要在探討廣義線性模型中,變數數量相當多且樣本數相當少的資料(大p小n資料)該如何處理。然而,我們並非關注於模型中變數的顯著性與否,我們更著重於結果的精確度。因此,我們採用了模型平均法基於 Kullback-Leibler 損失函數 (KL loss) 加上一個特別的懲罰項。緊接著,我們透過配合隨機切割與距離相關係數兩種方法來做為模型的篩選的方法。所以,我們的方法大致有兩個步驟。第一步 : 先透過隨機切割與距離相關係數法來篩選模型。第二步 : 將第一步篩選出的模型運用模型平均法得出最佳的平均模型。總而言之,在大p小n資料中,這個方法有較穩定的精確度且花費較少的時間。
This article sorts out the problem of high-dimension generalized linear regression
models (GLM), especially for the number of predictors far more than the sample size
(large-p-small-n problem). However, our method does not focus on seeking those true
predictors, we concentrates on the accuracy of the results. Therefore, the Model Averaging method based on the Kullback-Leibler loss (KL loss) with a penalty term is constructed. Moreover, we apply random-partition and distance correlation method in order to obtain the comparatively outstanding candidate model set which does not produce a heavy computational burden as traditional model screening method. Our method consists of two steps. Firstly, we can obtain the candidate model set by using random-partition and distance correlation method. Secondly, compute the optimal weights of those models in candidate set above, and finally gain the best averaging model. To sum up, this method is good at better accuracy with comparatively less time for us to solve large-p-small-n GLM problems.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18999
DOI: 10.6342/NTU202003886
全文授權: 未授權
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-1708202023162600.pdf
  未授權公開取用
1.78 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved