Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18999
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪弘(Hung Hung)
dc.contributor.authorRUI-YU HSUen
dc.contributor.author許睿育zh_TW
dc.date.accessioned2021-06-08T01:41:58Z-
dc.date.copyright2020-08-27
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citationAkaike, H. (1973), Information theory and an extension of the maximum likelihood principal. IEEE Transactions on Automatic Control, 19 (6): 716–723, doi:10.1109/TAC.1974.1100705, MR 0423716.
Hung, H., Huang, S.. Sufficient dimension reduction via random-partitions for the largep-small-n problem. Biometrics. 2019;75(1):245-255. doi:10.1111/biom.12926.
Lan, W., Ma, Y., Zhao, J., Wang, H. and Tsai, C., Sequential Model Averaging for High
Dimensional Linear Regression Models (January 9, 2017).
Li, R., Zhong, W., and Zhu, L. (2012). Feature screening via distance correlation learning. Journal of the American Statistical Association 107, 1129–1139.
Santosa, Fadil; Symes, William W. (1986), Linear inversion of band-limited reflection
seismograms. SIAM Journal on Scientific and Statistical Computing. SIAM. 7 (4):
1307–1330. doi:10.1137/0907087.
Schwarz, Gideon E. (1978), Estimating the dimension of a model, Annals of Statistics, 6(2): 461–464, doi:10.1214/aos/1176344136, MR 0468014.
Sz´ekely, G., Rizzo, M., and Bakirov, N. (2007). Measuring and testing dependence by
correlation of distances. The Annals of Statistics 35, 2769–2794.
Mallows, C. L. (1973), Some Comments on CP. Technometrics. 15 (4): 661–675.
doi:10.2307/1267380. JSTOR 1267380.
Yuan, Z. and Yang, Y.. (2005). Combining Linear Regression Models: When and How?.
Journal of the American Statistical Association. 100. 1202-1214. 10.1198/016214505000000088.
Zhang, X., Yu, D., Zou G. and Liang, H. (2016), Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models,
Journal of the American Statistical Association, 111:516, 1775-1790.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18999-
dc.description.abstract這篇文章主要在探討廣義線性模型中,變數數量相當多且樣本數相當少的資料(大p小n資料)該如何處理。然而,我們並非關注於模型中變數的顯著性與否,我們更著重於結果的精確度。因此,我們採用了模型平均法基於 Kullback-Leibler 損失函數 (KL loss) 加上一個特別的懲罰項。緊接著,我們透過配合隨機切割與距離相關係數兩種方法來做為模型的篩選的方法。所以,我們的方法大致有兩個步驟。第一步 : 先透過隨機切割與距離相關係數法來篩選模型。第二步 : 將第一步篩選出的模型運用模型平均法得出最佳的平均模型。總而言之,在大p小n資料中,這個方法有較穩定的精確度且花費較少的時間。zh_TW
dc.description.abstractThis article sorts out the problem of high-dimension generalized linear regression
models (GLM), especially for the number of predictors far more than the sample size
(large-p-small-n problem). However, our method does not focus on seeking those true
predictors, we concentrates on the accuracy of the results. Therefore, the Model Averaging method based on the Kullback-Leibler loss (KL loss) with a penalty term is constructed. Moreover, we apply random-partition and distance correlation method in order to obtain the comparatively outstanding candidate model set which does not produce a heavy computational burden as traditional model screening method. Our method consists of two steps. Firstly, we can obtain the candidate model set by using random-partition and distance correlation method. Secondly, compute the optimal weights of those models in candidate set above, and finally gain the best averaging model. To sum up, this method is good at better accuracy with comparatively less time for us to solve large-p-small-n GLM problems.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:41:58Z (GMT). No. of bitstreams: 1
U0001-1708202023162600.pdf: 1821390 bytes, checksum: 815bcb1608487599bcac6468c1f453d1 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書……………………………………………………………… i
誌謝………………………………………………………………………………. ii
中文摘要………………………………………………………………………… iii
英文摘要…………………………………………………………………………. iv
第一章 Introduction………………………………………………………………3
第二章 Distance correlation screening-based model averaging via random-
partition method…………………………………………………………7
2.1 Distance correlation (DC)……………………………………………… 7
2.2 Distance correlation screening-based model averaging (DCSMA)………….8
2.3 DCSMA via random-partition (RP-DCSMA)……………………………….9
2.4 Implement of RP-DCSMA………………………………………………….10
2.5 Tuning parameters…………………………………………………………..11
第三章 Simulation studies...………..……………………….……...……………..12
3.1 Setting………………………………………………………………………12
3.2 Simulation results…………………………………………………………...13
第四章 The EEG data analysis…..………………………………………………16
第五章 Discussion……………..…………………………………………………18
參考文獻…………………………………………………………………….…… 19
dc.language.isozh-TW
dc.subject隨機切割zh_TW
dc.subject模型平均法zh_TW
dc.subject距離相關係數篩選法zh_TW
dc.subject模型權重zh_TW
dc.subjectKullback-Leibler損失函數zh_TW
dc.subjectmodel weightsen
dc.subjectmodel averagingen
dc.subjectKullback-Leibler lossen
dc.subjectdistance correlation screeningen
dc.subjectrandom-partitionen
dc.title廣義線性模型下之距離相關係數篩選模型平均法zh_TW
dc.titleDistance Correlation Screening-based Model Averaging for Generalized Linear Modelsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李文宗(Wen-Chung Lee), 盧子彬(Tzu-Pin Lu),林菀俞(Wan-Yu Lin)
dc.subject.keyword模型平均法,距離相關係數篩選法,隨機切割,模型權重,Kullback-Leibler損失函數,zh_TW
dc.subject.keywordmodel averaging,distance correlation screening,random-partition,model weights,Kullback-Leibler loss,en
dc.relation.page19
dc.identifier.doi10.6342/NTU202003886
dc.rights.note未授權
dc.date.accepted2020-08-19
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-1708202023162600.pdf
  未授權公開取用
1.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved