請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18999完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪弘(Hung Hung) | |
| dc.contributor.author | RUI-YU HSU | en |
| dc.contributor.author | 許睿育 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:41:58Z | - |
| dc.date.copyright | 2020-08-27 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | Akaike, H. (1973), Information theory and an extension of the maximum likelihood principal. IEEE Transactions on Automatic Control, 19 (6): 716–723, doi:10.1109/TAC.1974.1100705, MR 0423716. Hung, H., Huang, S.. Sufficient dimension reduction via random-partitions for the largep-small-n problem. Biometrics. 2019;75(1):245-255. doi:10.1111/biom.12926. Lan, W., Ma, Y., Zhao, J., Wang, H. and Tsai, C., Sequential Model Averaging for High Dimensional Linear Regression Models (January 9, 2017). Li, R., Zhong, W., and Zhu, L. (2012). Feature screening via distance correlation learning. Journal of the American Statistical Association 107, 1129–1139. Santosa, Fadil; Symes, William W. (1986), Linear inversion of band-limited reflection seismograms. SIAM Journal on Scientific and Statistical Computing. SIAM. 7 (4): 1307–1330. doi:10.1137/0907087. Schwarz, Gideon E. (1978), Estimating the dimension of a model, Annals of Statistics, 6(2): 461–464, doi:10.1214/aos/1176344136, MR 0468014. Sz´ekely, G., Rizzo, M., and Bakirov, N. (2007). Measuring and testing dependence by correlation of distances. The Annals of Statistics 35, 2769–2794. Mallows, C. L. (1973), Some Comments on CP. Technometrics. 15 (4): 661–675. doi:10.2307/1267380. JSTOR 1267380. Yuan, Z. and Yang, Y.. (2005). Combining Linear Regression Models: When and How?. Journal of the American Statistical Association. 100. 1202-1214. 10.1198/016214505000000088. Zhang, X., Yu, D., Zou G. and Liang, H. (2016), Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models, Journal of the American Statistical Association, 111:516, 1775-1790. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18999 | - |
| dc.description.abstract | 這篇文章主要在探討廣義線性模型中,變數數量相當多且樣本數相當少的資料(大p小n資料)該如何處理。然而,我們並非關注於模型中變數的顯著性與否,我們更著重於結果的精確度。因此,我們採用了模型平均法基於 Kullback-Leibler 損失函數 (KL loss) 加上一個特別的懲罰項。緊接著,我們透過配合隨機切割與距離相關係數兩種方法來做為模型的篩選的方法。所以,我們的方法大致有兩個步驟。第一步 : 先透過隨機切割與距離相關係數法來篩選模型。第二步 : 將第一步篩選出的模型運用模型平均法得出最佳的平均模型。總而言之,在大p小n資料中,這個方法有較穩定的精確度且花費較少的時間。 | zh_TW |
| dc.description.abstract | This article sorts out the problem of high-dimension generalized linear regression models (GLM), especially for the number of predictors far more than the sample size (large-p-small-n problem). However, our method does not focus on seeking those true predictors, we concentrates on the accuracy of the results. Therefore, the Model Averaging method based on the Kullback-Leibler loss (KL loss) with a penalty term is constructed. Moreover, we apply random-partition and distance correlation method in order to obtain the comparatively outstanding candidate model set which does not produce a heavy computational burden as traditional model screening method. Our method consists of two steps. Firstly, we can obtain the candidate model set by using random-partition and distance correlation method. Secondly, compute the optimal weights of those models in candidate set above, and finally gain the best averaging model. To sum up, this method is good at better accuracy with comparatively less time for us to solve large-p-small-n GLM problems. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:41:58Z (GMT). No. of bitstreams: 1 U0001-1708202023162600.pdf: 1821390 bytes, checksum: 815bcb1608487599bcac6468c1f453d1 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………………… i 誌謝………………………………………………………………………………. ii 中文摘要………………………………………………………………………… iii 英文摘要…………………………………………………………………………. iv 第一章 Introduction………………………………………………………………3 第二章 Distance correlation screening-based model averaging via random- partition method…………………………………………………………7 2.1 Distance correlation (DC)……………………………………………… 7 2.2 Distance correlation screening-based model averaging (DCSMA)………….8 2.3 DCSMA via random-partition (RP-DCSMA)……………………………….9 2.4 Implement of RP-DCSMA………………………………………………….10 2.5 Tuning parameters…………………………………………………………..11 第三章 Simulation studies...………..……………………….……...……………..12 3.1 Setting………………………………………………………………………12 3.2 Simulation results…………………………………………………………...13 第四章 The EEG data analysis…..………………………………………………16 第五章 Discussion……………..…………………………………………………18 參考文獻…………………………………………………………………….…… 19 | |
| dc.language.iso | zh-TW | |
| dc.subject | 隨機切割 | zh_TW |
| dc.subject | 模型平均法 | zh_TW |
| dc.subject | 距離相關係數篩選法 | zh_TW |
| dc.subject | 模型權重 | zh_TW |
| dc.subject | Kullback-Leibler損失函數 | zh_TW |
| dc.subject | model weights | en |
| dc.subject | model averaging | en |
| dc.subject | Kullback-Leibler loss | en |
| dc.subject | distance correlation screening | en |
| dc.subject | random-partition | en |
| dc.title | 廣義線性模型下之距離相關係數篩選模型平均法 | zh_TW |
| dc.title | Distance Correlation Screening-based Model Averaging for Generalized Linear Models | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李文宗(Wen-Chung Lee), 盧子彬(Tzu-Pin Lu),林菀俞(Wan-Yu Lin) | |
| dc.subject.keyword | 模型平均法,距離相關係數篩選法,隨機切割,模型權重,Kullback-Leibler損失函數, | zh_TW |
| dc.subject.keyword | model averaging,distance correlation screening,random-partition,model weights,Kullback-Leibler loss, | en |
| dc.relation.page | 19 | |
| dc.identifier.doi | 10.6342/NTU202003886 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202023162600.pdf 未授權公開取用 | 1.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
