Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18946
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝淑貞(Shu-Chen Hsieh)
dc.contributor.authorYing-Chen Linen
dc.contributor.author林映辰zh_TW
dc.date.accessioned2021-06-08T01:40:26Z-
dc.date.copyright2016-08-25
dc.date.issued2016
dc.date.submitted2016-08-20
dc.identifier.citation邱詩婷。2011。建立並評估生物技術平台篩選具抗發炎效果食品。國立臺灣大學食品科技研究所碩士學位論文。台北。
許渝婷。2014。以Ca9-22建立可篩選具抗氧化潛力之食材的細胞平台。國立台灣大學食品科技研究所碩士學位論文。台北。
許宸。2015。枯草桿菌BCRC 80517對大豆異黃酮生物轉換之研究。國立台灣大學農業化學系碩士學位論文。台北。
Abo, A.; Pick, E.; Hall, A.; Totty, N.; Teahan, C. G.; Segal, A. W., Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 1991, 353, 668-70.
Adomaityte, J.; Farooq, M.; Qayyum, R., Effect of raloxifene therapy on venous thromboembolism in postmenopausal women: A meta-analysis. Thrombosis and Haemostasis 2008, 99, 338-342.
Almeida, M.; Han, L.; Martin-Millan, M.; Plotkin, L. I.; Stewart, S. A.; Roberson, P. K.; Kousteni, S.; O’Brien, C. A.; Bellido, T.; Parfitt, A. M.; Weinstein, R. S.; Jilka, R. L.; Manolagas, S. C., Skeletal Involution by Age-associated Oxidative Stress and Its Acceleration by Loss of Sex Steroids. The Journal of biological chemistry 2007, 282, 27285-27297.
Ambrogini, E.; Almeida, M.; Martin-Millan, M.; Paik, J.-H.; DePinho, R. A.; Han, L.; Goellner, J.; Weinstein, R. S.; Jilka, R. L.; O'Brien, C. A.; Manolagas, S. C., FoxO-mediated defense against oxidative stress in osteoblasts is indispensable for skeletal homeostasis in mice. Cell metabolism 2010, 11, 136.
Arnett, T. R., Osteoclast biology. Osteoporosis. Fourth ed.; Academic Press: 2013.
Aslan, D.; Andersen, M. D.; Gede, L. B.; de Franca, T. K.; Jorgensen, S. R.; Schwarz, P.; Jorgensen, N. R., Mechanisms for the bone anabolic effect of parathyroid hormone treatment in humans. Scand J Clin Lab Invest 2012, 72, 14-22.
Aubin, J. E.; Liu, F.; Malaval, L.; Gupta, A. K., Osteoblast and chondroblast differentiation. Bone 1995, 17, 77S-83S.
Bai, X. C.; Lu, D.; Bai, J.; Zheng, H.; Ke, Z. Y.; Li, X. M.; Luo, S. Q., Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 2004, 314, 197-207.
Bai, X. C.; Lu, D.; Liu, A. L.; Zhang, Z. M.; Li, X. M.; Zou, Z. P.; Zeng, W. S.; Cheng, B. L.; Luo, S. Q., Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J Biol Chem 2005, 280, 17497-506.
Bartell, S. M.; Kim, H. N.; Ambrogini, E.; Han, L.; Iyer, S.; Serra Ucer, S.; Rabinovitch, P.; Jilka, R. L.; Weinstein, R. S.; Zhao, H.; O'Brien, C. A.; Manolagas, S. C.; Almeida, M., FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation. Nat Commun 2014, 5, 3773.
Bharti, A. C.; Takada, Y.; Aggarwal, B. B., Curcumin (Diferuloylmethane) Inhibits Receptor Activator of NF-κB Ligand-Induced NF-κB Activation in Osteoclast Precursors and Suppresses Osteoclastogenesis. The Journal of Immunology 2004, 172, 5940-5947.
Black, D. M.; Rosen, C. J., Postmenopausal Osteoporosis. New England Journal of Medicine 2016, 374, 254-262.
Boyce, B. F.; Yoneda, T.; Lowe, C.; Soriano, P.; Mundy, G. R., Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. Journal of Clinical Investigation 1992, 90, 1622-1627.
Burge, R.; Dawson-Hughes, B.; Solomon, D. H.; Wong, J. B.; King, A.; Tosteson, A., Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res 2007, 22, 465-75.
Callaway, D. A.; Jiang, J. X., Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab 2015, 33, 359-70.
Canalis, E., Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol 2013, 9, 575-583.
Cao, J. J.; Picklo, M. J., N-acetylcysteine supplementation decreases osteoclast differentiation and increases bone mass in mice fed a high-fat diet. J Nutr 2014, 144, 289-96.
Cervellati, C.; Bonaccorsi, G.; Cremonini, E.; Romani, A.; Fila, E.; Castaldini, M. C.; Ferrazzini, S.; Giganti, M.; Massari, L., Oxidative Stress and Bone Resorption Interplay as a Possible Trigger for Postmenopausal Osteoporosis. BioMed Research International 2014, 2014, 8.
Chesnut, C. H., 3rd; Azria, M.; Silverman, S.; Engelhardt, M.; Olson, M.; Mindeholm, L., Salmon calcitonin: a review of current and future therapeutic indications. Osteoporos Int 2008, 19, 479-91.
Clarke, B., Normal bone anatomy and physiology. Clinical journal of the American Society of Nephrology 2008, 3, S131-S139.
Collin-Osdoby, P.; Osdoby, P., RANKL-mediated osteoclast formation from murine RAW 264.7 cells. Methods Mol Biol 2012, 816, 187-202.
Cuetara, B. L. V.; Crotti, T. N.; O'Donoghue, A. J.; McHugh, K. P., Cloning and characterization of osteoclast precursors fron the RAW 264.7 cell line. In vitro cellular & developmental biology. Animal 2006, 42, 182-188.
Cummings, S. R.; Melton, L. J., Epidemiology and outcomes of osteoporotic fractures. Lancet 2002, 359, 1761-7.
Darden, A. G.; Ries, W. L.; Wolf, W. C.; Rodriguiz, R. M.; Key, L. L., Jr., Osteoclastic superoxide production and bone resorption: stimulation and inhibition by modulators of NADPH oxidase. J Bone Miner Res 1996, 11, 671-5.
Dougall, W. C.; Glaccum, M.; Charrier, K.; Rohrbach, K.; Brasel, K.; De Smedt, T.; Daro, E.; Smith, J.; Tometsko, M. E.; Maliszewski, C. R.; Armstrong, A.; Shen, V.; Bain, S.; Cosman, D.; Anderson, D.; Morrissey, P. J.; Peschon, J. J.; Schuh, J., RANK is essential for osteoclast and lymph node development. Genes & Development 1999, 13, 2412-2424.
EFFO and NOF. Who are candidates for prevention and treatment for osteoporosis? Osteoporos Int 1997, 7, 1-6.
Eghbali-Fatourechi, G.; Khosla, S.; Sanyal, A.; Boyle, W. J.; Lacey, D. L.; Riggs, B. L., Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. Journal of Clinical Investigation 2003, 111, 1221-30.Feng, X., RANKing intracellular signaling in osteoclasts. IUBMB Life 2005, 57, 389-95.
Ferri, F. F., Ferri's clinical advisor 2016: 5 books in 1. Elsevier: Philadelphia, PA, 2016.
Florencio-Silva, R.; Sasso, G. R.; Sasso-Cerri, E.; Simoes, M. J.; Cerri, P. S., Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. Biomed Res Int 2015, 2015, 421746.
Follin, S. L.; Hansen, L. B., Current approaches to the prevention and treatment of postmenopausal osteoporosis. Am J Health Syst Pharm 2003, 60, 883-901; quiz 903-4.
Fonseca, J. E.; Brandi, M. L., Mechanism of action of strontium ranelate: what are the facts? Clinical Cases in Mineral and Bone Metabolism 2010, 7, 17-18.
Fu, C.; Xu, D.; Wang, C.-Y.; Jin, Y.; Liu, Q.; Meng, Q.; Liu, K.-X.; Sun, H.-J.; Liu, M.-Z., Alpha-Lipoic Acid Promotes Osteoblastic Formation in H2O2-Treated MC3T3-E1 Cells and Prevents Bone Loss in Ovariectomized Rats. Journal of Cellular Physiology 2015, 230, 2184-2201.
Fujita, K.; Iwasaki, M.; Ochi, H.; Fukuda, T.; Ma, C.; Miyamoto, T.; Takeda, S. (2012). Vitamin E decreases bone mass by stimulating osteoclast fusion. Nat Med, 18(4), 589-594.
Fuller, K.; Murphy, C.; Kirstein, B.; Fox, S. W.; Chambers, T. J., TNFalpha potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology 2002, 143, 1108-18.
Galea, G. L.; Meakin, L. B.; Sugiyama, T.; Zebda, N.; Sunters, A.; Taipaleenmaki, H.; Stein, G. S.; van Wijnen, A. J.; Lanyon, L. E.; Price, J. S., Estrogen Receptor α Mediates Proliferation of Osteoblastic Cells Stimulated by Estrogen and Mechanical Strain, but Their Acute Down-regulation of the Wnt Antagonist Sost Is Mediated by Estrogen Receptor β. J Biol Chem 2013, 288, 9035-48.
Garnero, P.; Sornay-Rendu, E.; Chapuy, M.-C.; Delmas, P. D., Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. Journal of Bone and Mineral Research 1996, 11, 337-349.
Garrett, I. R.; Boyce, B. F.; Oreffo, R. O.; Bonewald, L.; Poser, J.; Mundy, G. R., Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. Journal of Clinical Investigation 1990, 85, 632-9.
Gilbert, L.; He, X.; Farmer, P.; Rubin, J.; Drissi, H.; van Wijnen, A. J.; Lian, J. B.; Stein, G. S.; Nanes, M. S., Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha. J Biol Chem 2002, 277, 2695-701.
Gong, L.; Altman, R. B.; Klein, T. E., Bisphosphonates pathway. Pharmacogenetics and Genomics 2011, 21, 50-53.
Gorrini, C.; Harris, I. S.; Mak, T. W., Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 2013, 12, 931-947.
Gowen, M.; Lazner, F.; Dodds, R.; Kapadia, R.; Feild, J.; Tavaria, M.; Bertoncello, I.; Drake, F.; Zavarselk, S.; Tellis, I.; Hertzog, P.; Debouck, C.; Kola, I., Cathepsin K Knockout Mice Develop Osteopetrosis Due to a Deficit in Matrix Degradation but Not Demineralization. Journal of Bone and Mineral Research 1999, 14, 1654-1663.
Green, J.; Czanner, G.; Reeves, G.; Watson, J.; Wise, L.; Beral, V., Oral bisphosphonates and risk of cancer of oesophagus, stomach, and colorectum: case-control analysis within a UK primary care cohort. BMJ 2010, 341.
Gregory, C. A., Grady Gunn, W., Peister, A., & Prockop, D. J.. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Analytical Biochemistry 2004, 329(1), 77-84.
Grigoriadis, A. E.; Wang, Z. Q.; Cecchini, M. G.; Hofstetter, W.; Felix, R.; Fleisch, H. A.; Wagner, E. F., c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 1994, 266, 443-8.
Guéguen, R.; Jouanny, P.; Guillemin, F.; Kuntz, C.; Pourel, J.; Siest, G., Segregation analysis and variance components analysis of bone mineral density in healthy families. Journal of Bone and Mineral Research 1995, 10, 2017-2022.
Ha, H.; Kwak, H. B.; Lee, S. W.; Jin, H. M.; Kim, H. M.; Kim, H. H.; Lee, Z. H., Reactive oxygen species mediate RANK signaling in osteoclasts. Exp Cell Res 2004, 301, 119-27.
Hellekson, K. L., NIH releases statement on osteoporosis prevention, diagnosis, and therapy. Am Fam Physician 2002, 66, 161-2.
Hendrickx, G.; Boudin, E.; Van Hul, W., A look behind the scenes: the risk and pathogenesis of primary osteoporosis. Nat Rev Rheumatol 2015, 11, 462-74.
Hyeon, S.; Lee, H.; Yang, Y.; Jeong, W., Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Free Radic Biol Med 2013, 65, 789-99.
Ikeda, K.; Takeshita, S., The role of osteoclast differentiation and function in skeletal homeostasis. Journal of biochemistry 2015, mvv112.
Johnell, O.; Kanis, J., Epidemiology of osteoporotic fractures. Osteoporos Int 2005, 16 Suppl 2, S3-7.
Johnell, O.; Kanis, J. A., An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 2006, 17, 1726-33.
Kanis, J. A., Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 1994, 4, 368-81.
Kanzaki, H.; Shinohara, F.; Kajiya, M.; Kodama, T., The Keap1/Nrf2 Protein Axis Plays a Role in Osteoclast Differentiation by Regulating Intracellular Reactive Oxygen Species Signaling. The Journal of Biological Chemistry 2013, 288, 23009-23020.
Kanzaki, H., Shinohara, F., Kanako, I., Yamaguchi, Y., Fukaya, S., Miyamoto, Y., … Nakamura, Y. (2016). Molecular regulatory mechanisms of osteoclastogenesis through cytoprotective enzymes. Redox Biology, 8, 186–191.
Kanzaki, H.; Shinohara, F.; Itohiya-Kasuya, K.; Ishikawa, M.; Nakamura, Y., Nrf2 Activation Attenuates Both Orthodontic Tooth Movement and Relapse. Journal of Dental Research 2015, 94, 787-794.
Kasper, D. F., A. ;Hauser, S. ;Dan Longo,J. ;Jameson, L. ;Loscalzo, J., Harrison's Principles of Internal Medicine. Nineteenth ed.; McGraw-Hill Education: United States of America, 2015.
Khosla, S.; Oursler, M. J.; Monroe, D. G., Estrogen and the skeleton. Trends in Endocrinology & Metabolism 2012, 23, 576-581.
Kim, H. J.; Chang, E.-J.; Kim, H.-M.; Lee, S. B.; Kim, H.-D.; Su Kim, G.; Kim, H.-H., Antioxidant α-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-κB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-κB ligand and tumor necrosis factor-α. Free Radical Biology and Medicine 2006, 40, 1483-1493.
Kim, H. N.; Han, L.; Iyer, S.; de Cabo, R.; Zhao, H.; O'Brien, C. A.; Manolagas, S. C.; Almeida, M., Sirtuin1 Suppresses Osteoclastogenesis by Deacetylating FoxOs. Mol Endocrinol 2015, 29, 1498-509.
Kim, N.; Odgren, P. R.; Kim, D.-K.; Marks, S. C.; Choi, Y., Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene. Proceedings of the National Academy of Sciences of the United States of America 2000, 97, 10905-10910.
Kim, S. J.; Kang, S. Y.; Shin, H. H.; Choi, H. S., Sulforaphane inhibits osteoclastogenesis by inhibiting nuclear factor-kappaB. Mol Cells 2005, 20, 364-70.
Kim, W. K.; Ke, K.; Sul, O. J.; Kim, H. J.; Kim, S. H.; Lee, M. H.; Kim, H. J.; Kim, S. Y.; Chung, H. T.; Choi, H. S., Curcumin protects against ovariectomy-induced bone loss and decreases osteoclastogenesis. J Cell Biochem 2011, 112, 3159-66.
Klein-Nulend, J.; Bacabac, R.; Bakker, A., Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. European Cells and Materials 2012; 24: 278-291.
Koh, J.-M.; Lee, Y.-S.; Kim, Y. S.; Kim, D. J.; Kim, H.-H.; Park, J.-Y.; Lee, K.-U.; Kim, G. S., Homocysteine Enhances Bone Resorption by Stimulation of Osteoclast Formation and Activity Through Increased Intracellular ROS Generation. Journal of Bone and Mineral Research 2006, 21, 1003-1011.
Kwon, S. H.; Kang, M. J.; Huh, J. S.; Ha, K. W.; Lee, J. R.; Lee, S. K.; .Choi, Y. W.. Comparison of oral bioavailability of genistein and genistin in rats. Int J Pharm 2007, 337(1-2), 148-154.
Kyung, T. W.; Lee, J. E.; Shin, H. H.; Choi, H. S., Rutin inhibits osteoclast formation by decreasing reactive oxygen species and TNF-alpha by inhibiting activation of NF-kappaB. Exp Mol Med 2008, 40, 52-8.
Law, M. R.; Hackshaw, A. K., A meta-analysis of cigarette smoking, bone mineral density and risk of hip fracture: recognition of a major effect. BMJ 1997, 315, 841-846.
Lean, J. M.; Davies, J. T.; Fuller, K.; Jagger, C. J.; Kirstein, B.; Partington, G. A.; Urry, Z. L.; Chambers, T. J., A crucial role for thiol antioxidants in estrogen-deficiency bone loss. Journal of Clinical Investigation 2003, 112, 915-923.
Lean, J. M.; Jagger, C. J.; Kirstein, B.; Fuller, K.; Chambers, T. J., Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation. Endocrinology 2005, 146, 728-35.
Lee, D. H.; Lim, B. S.; Lee, Y. K.; Yang, H. C., Effects of hydrogen peroxide (H2O2) on alkaline phosphatase activity and matrix mineralization of odontoblast and osteoblast cell lines. Cell Biol Toxicol 2006, 22, 39-46.
Lee, N. K.; Choi, Y. G.; Baik, J. Y.; Han, S. Y.; Jeong, D. W.; Bae, Y. S.; Kim, N.; Lee, S. Y., A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 2005, 106, 852-9.
Lee, N. K., Molecular Understanding of Osteoclast Differentiation and Physiology. Endocrinol Metab 2010, 25, 264-269.
Lee, S.-H.; Jang, H.-D., Scoparone attenuates RANKL-induced osteoclastic differentiation through controlling reactive oxygen species production and scavenging. Experimental cell research 2015, 331, 267-277.
Leonard, M. B.; Elmi, A.; Mostoufi-Moab, S.; Shults, J.; Burnham, J. M.; Thayu, M.; Kibe, L.; Wetzsteon, R. J.; Zemel, B. S., Effects of Sex, Race, and Puberty on Cortical Bone and the Functional Muscle Bone Unit in Children, Adolescents, and Young Adults. J Clin Endocrinol Metab 2010, 95, 1681-9.
Li, Y.-P.; Chen, W.; Liang, Y.; Li, E.; Stashenko, P., Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet 1999, 23, 447-451.
Li, B. ; Yu, S. Genistein prevents bone resorption diseases by inhibiting bone resorption and stimulating bone formation. Biological and Pharmaceutical Bulletin 2003, 26(6), 780-786.
Lin, Y. C.; Pan, W. H., Bone mineral density in adults in Taiwan: results of the Nutrition and Health Survey in Taiwan 2005-2008 (NAHSIT 2005-2008). Asia Pac J Clin Nutr 2011, 20, 283-91.
Lomaga, M. A.; Yeh, W. C.; Sarosi, I.; Duncan, G. S.; Furlonger, C.; Ho, A.; Morony, S.; Capparelli, C.; Van, G.; Kaufman, S.; van der Heiden, A.; Itie, A.; Wakeham, A.; Khoo, W.; Sasaki, T.; Cao, Z.; Penninger, J. M.; Paige, C. J.; Lacey, D. L.; Dunstan, C. R.; Boyle, W. J.; Goeddel, D. V.; Mak, T. W., TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 1999, 13, 1015-24.
Lu, S.-H.; Chen, T.-H.; Chou, T.-C., Magnolol inhibits RANKL-induced osteoclast differentiation of RAW 264.7 macrophages through heme oxygenase-1-dependent inhibition of NFATc1 expression. Journal of natural products 2015, 78, 61-68.
Manolagas, S. C., Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 2000, 21, 115-37.
Manolagas, S. C., From Estrogen-Centric to Aging and Oxidative Stress: A Revised Perspective of the Pathogenesis of Osteoporosis. Endocr Rev 2010, 31, 266-300.
Marino, S.; Logan, J. G.; Mellis, D.; Capulli, M., Generation and culture of osteoclasts. BoneKEy Rep 2014, 3.
Marx, R. E., Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. Journal of Oral and Maxillofacial Surgery 2003, 61, 1115-1117.
McHugh, K. P.; Hodivala-Dilke, K.; Zheng, M.-H.; Namba, N.; Lam, J.; Novack, D.; Feng, X.; Ross, F. P.; Hynes, R. O.; Teitelbaum, S. L., Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts. Journal of Clinical Investigation 2000, 105, 433-440.
Miller, C. W., Survival and ambulation following hip fracture. The Journal of Bone & Joint Surgery 1978, 60, 930-934.
Miller, P. D.; Zapalowski, C.; Kulak, C. A.; Bilezikian, J. P., Bone densitometry: the best way to detect osteoporosis and to monitor therapy. J Clin Endocrinol Metab 1999, 84, 1867-71.
Moon, H.-J.; Ko, W.-K.; Han, S. W.; Kim, D.-S.; Hwang, Y.-S.; Park, H.-K.; Kwon, I. K., Antioxidants, like coenzyme Q10, selenite, and curcumin, inhibited osteoclast differentiation by suppressing reactive oxygen species generation. Biochemical and biophysical research communications 2012, 418, 247-253.
Moon, H. J.; Kim, S. E.; Yun, Y. P.; Hwang, Y. S.; Bang, J. B.; Park, J. H.; Kwon, I. K., Simvastatin inhibits osteoclast differentiation by scavenging reactive oxygen species. Exp Mol Med 2011, 43, 605-12.
Morgan, E. B., G. and Einhorn, T., The bone organ system: form and function. Osteoporosis. Fourth ed.; Academic Press: 2013.
Muthusami, S.; Ramachandran, I.; Muthusamy, B.; Vasudevan, G.; Prabhu, V.; Subramaniam, V.; Jagadeesan, A.; Narasimhan, S., Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clinica Chimica Acta 2005, 360, 81-86.
North American Menopause Society. Management of osteoporosis in postmenopausal women: 2010 position statement of The North American Menopause Society. Menopause 2010, 17, 25-54; quiz 55-6.
Ozgocmen, S.; Kaya, H.; Fadillioglu, E.; Yilmaz, Z., Effects of calcitonin, risedronate, and raloxifene on erythrocyte antioxidant enzyme activity, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Archives of medical research 2007, 38, 196-205.
Pacifici, R., Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. Journal of Bone and Mineral Research 1996, 11, 1043-1051.
Parra-Torres, A. Y.; Valdés-Flores, M.; Orozco, L.; Velázquez-Cruz, R., Molecular Aspects of Bone Remodeling. 2013.
Phan, T. C.; Xu, J.; Zheng, M. H., Interaction between osteoblast and osteoclast: impact in bone disease. Histol Histopathol 2004, 19, 1325-44.
Raggatt, L. J.; Partridge, N. C., Cellular and molecular mechanisms of bone remodeling. J Biol Chem 2010, 285, 25103-8.
Riggs, B. L., The mechanisms of estrogen regulation of bone resorption. Journal of Clinical Investigation 2000, 106, 1203-4.
Riggs , B. L.; Hartmann , L. C., Selective Estrogen-Receptor Modulators — Mechanisms of Action and Application to Clinical Practice. New England Journal of Medicine 2003, 348, 618-629.
Rossouw, J. E.; Anderson, G. L.; Prentice, R. L.; LaCroix, A. Z.; Kooperberg, C.; Stefanick, M. L.; Jackson, R. D.; Beresford, S. A.; Howard, B. V.; Johnson, K. C.; Kotchen, J. M.; Ockene, J.; Writing Group for the Women's Health Initiative, I., Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA 2002, 288, 321-33.
Schroder, K., NADPH oxidases in bone homeostasis and osteoporosis. Cell Mol Life Sci 2015, 72, 25-38.
Shevde, N. K.; Bendixen, A. C.; Dienger, K. M.; Pike, J. W., Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression. Proceedings of the National Academy of Sciences of the United States of America 2000, 97, 7829-34.
Sly, W. S.; Hewett-Emmett, D.; Whyte, M. P.; Yu, Y. S.; Tashian, R. E., Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proceedings of the National Academy of Sciences of the United States of America 1983, 80, 2752-2756.
Soroko, S. B.; Barrett-Connor, E.; Edelstein, S. L.; Kritz-Silverstein, D., Family history of osteoporosis and bone mineral density at the axial skeleton: The rancho bernardo study. Journal of Bone and Mineral Research 1994, 9, 761-769.
Suda, T.; Takahashi, N.; Udagawa, N.; Jimi, E.; Gillespie, M. T.; Martin, T. J., Modulation of Osteoclast Differentiation and Function by the New Members of the Tumor Necrosis Factor Receptor and Ligand Families. Endocrine Reviews 1999, 20, 345-357.
Sugimoto, E.; Yamaguchi, M.. Anabolic effect of genistein in osteoblastic MC3T3-E1 cells. International Journal of Molecular Medicine 2000, 5(5), 515-520.
Takayanagi, H.; Kim, S.; Koga, T.; Nishina, H.; Isshiki, M.; Yoshida, H.; Saiura, A.; Isobe, M.; Yokochi, T.; Inoue, J.-i.; Wagner, E. F.; Mak, T. W.; Kodama, T.; Taniguchi, T., Induction and Activation of the Transcription Factor NFATc1 (NFAT2) Integrate RANKL Signaling in Terminal Differentiation of Osteoclasts. Developmental Cell 2002, 3, 889-901.
Takayanagi, H., Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 2007, 7, 292-304.
Tevlin, R.; McArdle, A.; Chan, C. K. F.; Pluvinage, J.; Walmsley, G. G.; Wearda, T.; Longaker, M. T. (2014). Osteoclast Derivation from Mouse Bone Marrow. (93), e52056
Teitelbaum, S. L., Bone resorption by osteoclasts. Science 2000, 289, 1504-8.
Tondravi, M. M.; McKercher, S. R.; Anderson, K.; Erdmann, J. M.; Quiroz, M.; Maki, R.; Teitelbaum, S. L., Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 1997, 386, 81-4.
Wang, C.-H., Lin, J.-H., Lu, T.-J., Chiang, A.-N., Chiou, S.-T., Chen, Y.-A., Hsieh, S.-C. Establishment of Reporter Platforms Capable of Detecting NF-κB Mediated Immuno-Modulatory Activity. Journal of Agricultural and Food Chemistry 2013, 61(51), 12582-12587
Wang, S.-T.; Fang, T.-F.; Hsu, C.; Chen, C.-H.; Lin, C.-J.; Su, N.-W., Biotransformed product, genistein 7-O-phosphate, enhances the oral bioavailability of genistein. Journal of Functional Foods 2015, 13, 323-335.
Wang, Y.; Lebowitz, D.; Sun, C.; Thang, H.; Grynpas, M. D.; Glogauer, M., Identifying the relative contributions of Rac1 and Rac2 to osteoclastogenesis. J Bone Miner Res 2008, 23, 260-70.
Wauquier, F.; Leotoing, L.; Coxam, V.; Guicheux, J.; Wittrant, Y., Oxidative stress in bone remodelling and disease. Trends in molecular medicine 2009, 15, 468-477.
Weitzmann, M. N.; Pacifici, R., T Cells: Unexpected Players in the Bone Loss Induced by Estrogen Deficiency and in Basal Bone Homeostasis. Annals of the New York Academy of Sciences 2007, 1116, 360-375.
Weivoda, M. M.; Oursler, M. J., The Roles of Small GTPases in Osteoclast Biology. Orthopedic & muscular system : current research 2014, 3, 1000161.
Xing, L.; Bushnell, T. P.; Carlson, L.; Tai, Z.; Tondravi, M.; Siebenlist, U.; Young, F.; Boyce, B. F., NF-κB p50 and p52 Expression Is Not Required for RANK-Expressing Osteoclast Progenitor Formation but Is Essential for RANK- and Cytokine-Mediated Osteoclastogenesis. Journal of Bone and Mineral Research 2002, 17, 1200-1210.
Yagi, M.; Miyamoto, T.; Sawatani, Y.; Iwamoto, K.; Hosogane, N.; Fujita, N.; Morita, K.; Ninomiya, K.; Suzuki, T.; Miyamoto, K.; Oike, Y.; Takeya, M.; Toyama, Y.; Suda, T., DC-STAMP is essential for cell–cell fusion in osteoclasts and foreign body giant cells. The Journal of Experimental Medicine 2005, 202, 345-351.
Yamaguchi, M. ; Gao, Y. H.. Anabolic effect of genistein and genistin on bone metabolism in the femoral-metaphyseal tissues of elderly rats: the genistein effect is enhanced by zinc. Molecular and Cellular Biochemistry 1998, 178(1-2), 377-382.
Yamaguchi, Y.; Sakai, E.; Sakamoto, H.; Fumimoto, R.; Fukuma, Y.; Nishishita, K.; Okamoto, K.; Tsukuba, T., Inhibitory effects of tert-butylhydroquinone on osteoclast differentiation via up-regulation of heme oxygenase-1 and down-regulation of HMGB1 release and NFATc1 expression. J Appl Toxicol 2014, 34, 49-56.
Yamashita, T.; Yao, Z.; Li, F.; Zhang, Q.; Badell, I. R.; Schwarz, E. M.; Takeshita, S.; Wagner, E. F.; Noda, M.; Matsuo, K.; Xing, L.; Boyce, B. F., NF-κB p50 and p52 Regulate Receptor Activator of NF-κB Ligand (RANKL) and Tumor Necrosis Factor-induced Osteoclast Precursor Differentiation by Activating c-Fos and NFATc1. Journal of Biological Chemistry 2007, 282, 18245-18253.
Yavropoulou, M. P.; Yovos, J. G., Osteoclastogenesis--current knowledge and future perspectives. J Musculoskelet Neuronal Interact 2008, 8, 204-16.
Yoshida, H.; Hayashi, S.-I.; Kunisada, T.; Ogawa, M.; Nishikawa, S.; Okamura, H.; Sudo, T.; Shultz, L. D.; Nishikawa, S.-I., The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 1990, 345, 442-444.
Zwerina, J.; Tzima, S.; Hayer, S.; Redlich, K.; Hoffmann, O.; Hanslik-Schnabel, B.; Smolen, J. S.; Kollias, G.; Schett, G., Heme oxygenase 1 (HO-1) regulates osteoclastogenesis and bone resorption. FASEB J 2005, 19, 2011-3.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18946-
dc.description.abstract在停經後與老化過程中,活性氧的累積以及抗氧化防禦系統能力的降低,導致氧化壓力的形成,並藉此促進蝕骨細胞的形成以及成骨細胞的凋亡,最終造成骨質的流失。NF-E2相關因子2 (nuclear factor E2-related factor 2, Nrf 2) 為調控體內抗氧化防禦系統之關鍵轉錄因子;已有研究證實Nrf 2基因剔除小鼠其骨髓細胞於RANKL (receptor activator of nuclear factor kappa-B ligand) 誘導下,所分化形成的蝕骨細胞數量以及骨吸收活性皆顯著高於野生型 (wild type)。因此本研究以實驗室前人所構築於人類舌頭上皮鱗狀細胞癌 (Ca9-22) 之抗氧化平台,篩選出具有最佳Nrf 2轉錄活性之化合物川陳皮素 (nobiletin)、中國橄欖乙酸乙酯萃取物 (COE-EA)、咖啡酸醯胺衍生物 (36-25B) 與金雀異黃酮 (genistein)。Genistein為一植物性雌激素,已有文獻證實其具有降低骨質疏鬆發生的潛能。本研究藉由Bacillus subtilis natto BCRC 80517將金雀異黃酮進行發酵,得生物轉換之產物金雀異黃酮磷酸酯 (Genistein 7-O-phosphate, G7P),以改善其水不溶之特性,經後續純化可得G7P純度為78.8 %。分別利用Balb/c小鼠與RAW 264.7巨噬細胞株建構蝕骨細胞模式中,藉由蝕骨細胞的標誌酵素-抗酒石酸酸性磷酸酶 (tartrate-resistant acid phosphatase, TRAP) 染色與活性確立模式的建立,於其分化過程中觀察到高量活性氧 (reactive oxygen species, ROS) 的產生,同時Nrf2下游基因HO-1的mRNA表現量大幅降低。反之,若介入Nrf2活化劑tert-butylhydroquinone (TBHQ) 則可抑制ROS的產生,顯示Nrf2活化劑具有抗骨質疏鬆的潛力。為確保蝕骨細胞與成骨細胞間的代謝平衡,以Balb/c小鼠建立初代成骨細胞模式,並藉alizarin red S染鈣試驗確認成骨細胞可執行礦化功能,確立模式的建立。未來可將蝕骨與成骨細胞模式應用於各式化合物的篩選,以得出具有抗骨質疏鬆潛力之化合物。zh_TW
dc.description.abstractDuring menopause and aging, gradual accumulation of reactive oxygen species together with progressive decline of endogenous antioxidant defense system lead to increased oxidative stress, accelerate formation of osteoclast and promote apoptosis of osteoblast, resulting in loss of bone mass. Nuclear factor E2-related factor 2 (Nrf 2) is the key transcription factor of antioxidant defense system; studies have shown that under receptor activator of nuclear factor kappa-B ligand (RANKL) induction, the bone marrow cells isolated from Nrf 2 knockout mice exhibited higher differentiation capacity and bone resorption activity than those of wild type mice. Accordingly, we used an ARE-driven reporter stable cell line to screen Nrf2 activators, and results demonastrate that nobiletin, Chinese olive ethyl acetate extract (COE-EA), caffeamide derivative (36-25B) and genistein are our candidate compounds. Genistein is a phytoestrogen proven to reduce osteoporotic incidence. Fermentation of genistein by Bacillus subtilis natto BCRC 80517 improved water solubility and bioavailability. The bioconversion product, genistein 7-O-phosphate, following a series of purification steps was obtained with a purity of approximately 78.8%. Two in vitro osteoclast models were established from Balb/c mouse primary osteoclast culture and with the murine macrophage cell line RAW 264.7. Tartrate-resistant acid phosphatase (TRAP) is a marker enzyme of osteoclast. Investigation of the number of the TRAP-positive cells and TRAP activity was used to confirm the models. Increased ROS and decreased mRNA level of HO-1, a downstream target of Nrf 2, was observed during differentiation of the osteoclastic cells. On the other hand, such effect was abrogated by a classical Nrf 2 activator, tert-butylhydroquinone (TBHQ), suggesting that Nrf 2 activators may have anti-osteoporotic potential. In order to maintain the delicate balance between osteoclast and osteoblast in vivo, the effects of the compounds on osteoblast were observed. Primary osteoblast culture from Balb/c mouse was established andalizarin red S was used to stain calcium deposits to confirm osteoblastic mineralization. The in vitro osteoclast and osteoblast models will be useful to screen out new compounds with anti-osteoporotic potential.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:40:26Z (GMT). No. of bitstreams: 1
ntu-105-R03641022-1.pdf: 3398807 bytes, checksum: 6d054ac058f3110b971eb93422c25a8d (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 I
謝誌 II
摘要 V
Abstract VI
目錄 VIII
圖目錄 IX
表目錄 XI
附錄目錄 XII
縮寫表 XIII
壹、前言 1
貳、文獻回顧 2
一、骨質疏鬆症 2
(一)骨質疏鬆症的分類 2
(二)骨質疏鬆症的流行病學 3
(三)骨質疏鬆症的診斷標準 3
二、骨組成 4
(一)骨組織 4
(二)骨細胞 5
三、骨重塑作用 6
四、骨質疏鬆症致病因子 7
(一)性荷爾蒙缺乏 8
(二)氧化壓力 10
五、現行藥物 14
六、具抗骨質疏鬆潛力之天然化合物 16
七、 蝕骨細胞模式建立 22
(一)蝕骨細胞形成之關鍵調控子 22
(二)蝕骨細胞模式 25
叁、實驗目的與架構 26
肆、材料與方法 27
伍、結果與討論 49
陸、結論與展望 83
柒、參考文獻 84
捌、附錄 101
dc.language.isozh-TW
dc.subject骨質疏鬆症zh_TW
dc.subject金雀異黃酮zh_TW
dc.subjectNF-E2相關因子2zh_TW
dc.subject蝕骨細胞zh_TW
dc.subject氧化壓力zh_TW
dc.subjectnuclear factor E2-related factor 2en
dc.subjectgenisteinen
dc.subjectoxidative stressen
dc.subjectosteoclasten
dc.subjectOsteoporosisen
dc.title建立蝕骨和成骨細胞平台評估具抗骨質疏鬆潛力之食物因子zh_TW
dc.titleEstablishment of osteoclast and osteoblast cell platforms to evaluate food factors with anti-osteoporotic potentialen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅翊禎(Yi-Chen Lo),郭靜娟(Ching-Chuan Kuo)
dc.subject.keyword骨質疏鬆症,蝕骨細胞,氧化壓力,金雀異黃酮,NF-E2相關因子2,zh_TW
dc.subject.keywordOsteoporosis,osteoclast,oxidative stress,genistein,nuclear factor E2-related factor 2,en
dc.relation.page107
dc.identifier.doi10.6342/NTU201603343
dc.rights.note未授權
dc.date.accepted2016-08-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved