請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18742完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游若? | |
| dc.contributor.author | Yeh-Ming Chang | en |
| dc.contributor.author | 張燁銘 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:23:04Z | - |
| dc.date.copyright | 2014-08-17 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-05 | |
| dc.identifier.citation | 吳素玲、張衛明、孫曉明、金敬宏、史勁松與願龔平。2005。刺梨SOD活性測定研究。食品科學。26:58-61。
陳智強。2004。培養條件對乳酸菌胞外多醣生產及抗氧化性之影響。國立台灣大學食品科技研究所碩士學位論文。台北。台灣。 陳慶源、黃崇真、邱雪惠與廖啟成。2007。乳酸菌之保健功效與產品開發。食品生技。11:60-68。 廖啟成。1998。乳酸菌之分類與應用。食品工業。30:1-10。 廖啟成。2011。乳酸菌與代謝症候群。台灣保健食品學會2011年會員大會暨保健食品與代謝症候群研討會大會手冊。台北。台灣。 Arunachalam, K. D. Role of bifidobacteria in nutrition, medicine and technology. Nutr. Res. 1999, 19, 1559-97. Beckman, K. B.; Ames, B. N. The free radical theory of aging matures. Physiol. Rev. 1998, 78, 547-81. Block, G. The data support a role for antioxidants in reducing cancer risk. Nutr.Rev. 1992, 50, 207-13. Brand-Williams, W. C., M. E. ; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci. Tech. 1995, 28, 25-30. Deguchi, Y.; Morishita, T.; Mutai, M. Comparative studies on synthesis of water-soluble vitamins among human species of bifidobacteria. Agric. Biol.Chem. 1985, 49, 13-19. Diaz-Garcia, M. C.; Obon, J. M.; Castellar, M. R.; Collado, J.; Alacid, M. Quantification by UHPLC of total individual polyphenols in fruit juices. Food Chem. 2013, 138, 938-49. Dignum, M. J. W.; Kerler, J.; Verpoorte, R. Beta-glucosidase and peroxidase stability in crude enzyme extracts from green beans of Vanilla planifolia Andrews. Phytochem. Anal. 2001, 12, 174-9. Dziezak, J. D. Preservatives: Antioxidant. Food Technol.1986, 40, 94-102. El Gharras, H. Polyphenols: food sources, properties and applications - a review. Int. J. Food Sci. Tech. 2009, 44, 2512-8. Gerster, H. Intermediate cancer biomarkers and their use in beta-carotene studies in humans. Int. J. Vitam. Nutr. Res. 1996, 66, 3-18. Giese, J. Antioxidants: tools for preventing lipid oxidation. Food Technol. 1996, 50, 73-7. Gilliland, S. E.; Kim, H. S. Effect of viable starter culture bacteria in yogurt on lactose utilization in humans. J. Dairy Sci. 1984, 67, 1-6. Halliwell, B.; Gutteridge, J. M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990, 186, 1-85. Halliwell, B.; Murcia, M. A.; Chirico, S.; Aruoma, O. I. Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit. Rev. Food Sci. Nutr. 1995, 35, 7-20. Hamann, L.; El-Samalouti, V.; Ulmer, A. J.; Flad, H. D.; Rietschel, E. T. Components of gut bacteria as immunomodulators. Int. J. Food Microbiol. 1998, 41, 141-54. Izumi, T.; Piskula, M. K.; Osawa, S.; Obata, A.; Tobe, K.; Saito, M.; Kataoka, S.; Kubota, Y.; Kikuchi, M. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 2000, 130, 1695-9. Jacob, R. A. The integrated antioxidant system. Nutr. Res. 1995, 15, 755-66. Jay, J. M. Modern food microbiology. 2000, 6th edition, Internation Thomson Publishing, New York, U.S.A. Kaizu, H.; Sasaki, M.; Nakajima, H.; Suzuki, Y. Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J. Dairy Sci. 1993, 76, 2493-9. Kanner, J.; Harel, S.; Granit, R. Betalains - a New class of dietary cationized antioxidants. J Agric. Food Chem. 2001, 49, 5178-85. Klaver, F. A. M.; Vandermeer, R. The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium-Bifidum is due to their bile salt-deconjugating activity. Appl. Environ. Microbiol. 1993, 59, 1120-4. Kleessen, B.; Sykura, B.; Zunft, H. J.; Blaut, M. Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. Am. J. Clin. Nutr. 1997, 65, 1397-1402. Kopp-Hoolihan, L. Prophylactic and therapeutic uses of probiotics: A review. J. Am. Diet. Assoc. 2001, 101, 229-41. Kullisaar, T.; Songisepp, E.; Mikelsaar, M.; Zilmer, K.; Vihalemm, T.; Zilmer, M. Antioxidative and antiatherogenic probiotic lactobacillus ME3. Free Radical Biol. Med. 2002, 33, S272-S272. Lankaputhra, W. E. V.; Shah, N. P. Antimutagenic properties of probiotic bacteria and of organic acids. Mutat. Res.-Fundam. Mol. Mech. Mutag. 1998, 397, 169-82. Leroy, F.; De Vuyst, L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 2004, 15, 67-78. Lin, M. Y.; Yen, C. L. Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem. 1999, 47, 1460-6. Loft, S.; Poulsen, H. E. Cancer risk and oxidative DNA damage in man. J. Mol. Med. 1996, 74, 297-312. Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727-47. Marklund, S.; Marklund, G. Involvement of superoxide anion radical in autoxidation of pyrogallol and a convenient assay for superoxide-dismutase. Eur. J. Biochem.1974, 47, 469-74. Marshall, V. M. Fermented milks and their future-Trends:1. Microbiological aspects. J. Dairy Res. 1987, 54, 559-74. Matsuda, S.; Norimoto, F.; Matsumoto, Y.; Ohba, R.; Teramoto, Y.; Ohta, N.; Ueda, S. Solubilization of a novel isoflavone glycoside-hydrolyzing beta-glucosidase from Lactobacillus-casei subsp. rhamnosus. J. Ferment. Bioeng. 1994, 77, 439-41. Miettinen, M.; VuopioVarkila, J.; Varkila, K. Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infect. Immun. 1996, 64, 5403-5. Miller, N. J.; Rice-Evans, C.; Davies, M. J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. (Lond.) 1993, 84, 407-12. Naidu, A. S.; Bidlack, W. R.; Clemens, R. A. Probiotic spectra of lactic acid bacteria (LAB). Crit. Rev. Food Sci. Nutr. 1999, 39, 13-126. Namiki, M. Antioxidants/antimutagens in food. Crit. Rev. Food Sci. Nutr. 1990, 29, 273-300. Ninfali, P.; Angelino, D. Nutritional and functional potential of Beta vulgaris cicla and rubra. Fitoterapia 2013, 89, 188-99. Obón, J. M.; Díaz-García, M. C.; Castellar, M. R. Red fruit juice quality and authenticity control by HPLC. J. Food Compos. Anal. 2011, 24, 760-71. Okamoto, G.; Hayase, F.; Kato, H. Scavenging of active oxygen species by glycated proteins. Biosci. Biotechnol. Biochem. 1992, 56, 928-31. Oyaizu, M. Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. J. Jpn. Soc. food Sci. 1988, 35, 771-5. Parvez, S.; Malik, K. A.; Kang, S. A.; Kim, H. Y. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 2006, 100, 1171-85. Peyrat-Maillard, M. N.; Cuvelier, M. E.; Berset, C. Antioxidant activity of phenolic compounds in 2,2 '-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidation: Synergistic and antagonistic effects. J. Am. Oil Chem. Soc. 2003, 80, 1007-12. Prior, R. L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290-302. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 1999, 26, 1231-7. Reddy, M. K.; Alexander-Lindo, R. L.; Nair, M. G. Relative inhibition of lipid peroxidation, cyclooxygenase enzymes, and human tumor cell proliferation by natural food colors. J. Agri.c Food Chem. 2005, 53, 9268-73. RiceEvans, C. A.; Miller, N. J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biol. Med. 1996, 20, 933-56. Robak, J.; Gryglewski, R. J. Flavonoids are scavengers of superoxide anions. Biochem .Pharmacol.1988, 37, 837-41. Sestelo, A. B. F.; Poza, M.; Villa, T. G. beta-Glucosidase activity in a Lactobacillus plantarum wine strain. World J. Microbiol. Biotechnol. 2004, 20, 633-637. Shah, N. P. Functional cultures and health benefits. Int. Dairy J. 2007, 17, 1262-1277. Shahidi, F.; Wanasundara, P. K. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 1992, 32, 67-103. Shen, L.; Ji, H. F.; Zhang, H. Y. How to understand the dichotomy of antioxidants. Biochem. Biophys. Res. Commun. 2007, 362, 543-5. Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem.1992, 40, 945-8. Sies, H. Oxidative stress: from basic research to clinical application. Am. J. Med. 1991, 91, 31S-8S. Siigur, U.; Tamm, E.; Torm, S.; Lutsar, I.; Salminen, S.; Midtvedt, T. Effect of bacterial infection and administration of a probiotic on faecal short-chain fatty acids. Microb. Ecol. Health Dis. 1996, 9, 271-7. Simic, M. G. Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis. Mutat. Res. 1988, 202, 377-86. Stadtman, E. R. Protein oxidation and aging. Science 1992, 257, 1220-4. Tesoriere, L.; Allegra, M.; Gentile, C.; Livrea, M. A. Betacyanins as phenol antioxidants. Chemistry and mechanistic aspects of the lipoperoxyl radical-scavenging activity in solution and liposomes. Free Radical Res. 2009, 43, 706-17. Willcox, J. K.; Ash, S. L.; Catignani, G. L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 2004, 44, 275-95. Xu, X.; Harris, K. S.; Wang, H. J.; Murphy, P. A.; Hendrich, S. Bioavailability of soybean isoflavones depends upon gut microflora in women. J. Nutr. 1995, 125, 2307-15. Jia, Z. S.; Tang, M. C.; Wu, J. M. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555-559. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18742 | - |
| dc.description.abstract | 紅甜菜(Beta vulgaris)營養豐富,現今為甘蔗以外重要的製糖原料之一,並且廣泛應用於西方國家之餐點上,而當中所富含之甜菜色素除了作為食品加工使用之天然色素外,更具有良好之抗氧化能力。本研究經篩選後選擇以具有高β-glucosidase及superoxide dismutase活性之Lactobacillus plantarum BCRC 11697及Bifidobacterium bifidium BCRC 14615進行紅甜菜汁之發酵,第一部分首先探討最適化之發酵條件,最終將紅甜菜汁調整至6°Brix並添加2% tryptone、1% yeast extract,於30℃發酵36小時後,可使L. plantarum BCRC 11697表現出最高之β-glucosidase活性達17.29±0.48 mU/mL,以及superoxide dismutase活性達22.45±0.67 U/mL。而第二部分探討紅甜菜汁經L. plantarum BCRC 11697及B. bifidium BCRC 14615發酵後,其抗氧化能力之變化情形,結果顯示紅甜菜汁之DPPH自由基清除能力及總抗氧化能力經兩者發酵12小時後皆有顯著性提升(p<0.05),而還原力則於發酵至48小時期間皆無顯著性變化;ROS超氧陰離子清除能力則於發酵24小時後具顯著性提升(p<0.05),其中以L. plantarum BCRC 11697發酵至36小時可達最高之清除率;最後測定抑制脂質過氧化能力之部分,顯示以B. bifidium BCRC 14615發酵12小時即有顯著性提升(p<0.05),而以L. plantarum BCRC 11697發酵24小時則可達最佳抑制脂質過氧化能力並維持至48小時。綜合本研究之結果,顯示紅甜菜汁經乳酸菌發酵後可確實提升其抗氧化能力,其中以L. plantarum BCRC 11697發酵24至36小時具有最佳效果,同
時具有較佳之穩定性。 | zh_TW |
| dc.description.abstract | Beetroot(Beta vulgaris)is vegetable with highly renewable and cheap source of nutrients, that widely consumed in traditional western cooking. It’s an important raw material for sugar industry except for sugar cane. Furthermore, beetroot is abundant in red pigment, betalains, that not only used in food processing but also are excellent antioxidants. In this research, Lactobacillus plantarum BCRC 11697 and Bifidobacterium bifidium BCRC 14615 were selected for their high β-glucosidase and superoxide dismutase activity, and used as starters to ferment red beet juice. In first part of study, the optimal conditions for fermentation were investigated. Results showed that using 6°Brix red beet juice with 2% tryptone and 1% yeast extract, followed by fermentation at 30℃ for 36 hours, L. plantarum BCRC 11697 can exhibit highest β-glucosidase activity for 17.29±0.48 mU/mL and superoxide dismutase activity for 22.45±0.67 U/mL. In the second part of study, the antioxidative activity of red beet juice fermented by L. plantarum BCRC 11697 and B. bifidium BCRC 14615 were investigated. Results showed that DPPH scavenging ability and trolox equivalent of antioxidant capacity of red beet juice was significantly increasing(p<0.05)after fermentation by both lactic acid bacteria for 12 hours. But reducing power of red beet juice showed no significantly changes during fermentation up to 48 hours. The ROS scavenging ability of red beet juice were significantly increasing(p<0.05) after fermentation by both lactic acid bacteria for 24 hours, and further showed highest ROS scavenging ability after fermentation by L. plantarum BCRC 11697 for 36 hours. In the last test, antioxidant power against lipid oxidation, red beet juice after fermentation by B. bifidium BCRC 14615 for 12 hours showed significantly(p<0.05)powerful inhibition of lipid oxidation, but after fermentation by L. plantarum BCRC 11697 for 24 hours, red beet juice showed best inhibition of lipid oxidation. Finally, in this research, results showed that the antioxidative activity of red beet juice can be improved by lactic acid bacteria fermentation, furthermore, red beet juice fermented by L. plantarum BCRC 11697 for 24 to 36 hours showed best antioxidative activity and stability. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:23:04Z (GMT). No. of bitstreams: 1 ntu-103-R01641016-1.pdf: 1249150 bytes, checksum: 75438465c74245a8040bb34624f7f405 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 摘要 1
Abstract 2 目錄 4 圖目錄 7 表目錄 8 壹、 前言 10 貳、 文獻回顧 11 一、紅甜菜及甜菜色素 11 二、酚類化合物及β-葡萄糖苷酶(β-glucosidase) 11 三、益生菌 15 (一) 益生菌定義 15 (二) 乳酸菌 15 四、自由基與氧化壓力 19 (一) 自由基及活性氧之特性 19 (二)氧化壓力與氧化傷害 22 五、抗氧化系統及作用之原理 26 (一) 抗氧化系統 26 (二) 抗氧化劑作用之原理與機制 28 (三) 抗氧化活性測定原理 29 参、材料與方法 31 一、實驗架構 31 二、實驗材料 34 (一) 試驗菌株 34 (二) 試驗原料 34 (三) 培養基 34 (四) 藥品 34 (五) 儀器設備 35 三、實驗方法 37 (一) 乳酸菌菌株活化與保存 37 (二) 濃縮還原紅甜菜汁及相關基質之製備 37 (三)乳酸菌計數、定量接種及發酵條件 38 (四) 酵素活性之檢測 38 (五) 抗氧化能力之檢測 40 (六) 紅甜菜汁乳酸發酵過程之抗氧化物質及物化特性檢測 42 肆、 結果與討論 45 一、乳酸菌菌株酵素活性之篩選結果 45 二、不同°Brix之紅甜菜汁與添加不同氮源對乳酸發酵之影響 47 (一) β-glucosidase活性 47 (二) Superoxide dismutase活性 49 (三) 乳酸菌菌數 51 三、不同發酵溫度及時間對乳酸發酵之影響 53 (一)β-glucosidase活性 53 (二) Superoxide dismutase活性 53 (三) 乳酸菌菌數 53 四、紅甜菜汁經乳酸發酵後抗氧化成分及物化特性分析 56 (一) pH值與可滴定酸度變化 56 (二) 總酚含量 59 (三) 類黃酮含量 59 (四) HPLC分析 61 五、紅甜菜汁經乳酸菌發酵後之抗氧化活性分析 64 (一) DPPH自由基清除能力 64 (二) TEAC總抗氧化能力 66 (三) ROS超氧陰離子清除能力 68 (四) 還原力 71 (五) 抑制脂質過氧化能力 73 伍、 結論 78 陸、 參考文獻 80 | |
| dc.language.iso | zh-TW | |
| dc.title | 以乳酸菌發酵紅甜菜汁增強其抗氧化性及酵素活性之研究 | zh_TW |
| dc.title | Improvement of antioxdative and enzymatic activities of red beet juice by lactic acid bacteria fermentation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周正俊,蔡國珍,丘志威,潘崇良 | |
| dc.subject.keyword | 紅甜菜汁,甜菜色素,β-glucosidase,superoxide dismutase,抗氧化能力,Lactobacillus plantarum BCRC 11697, | zh_TW |
| dc.subject.keyword | red beet juice,betalains,β-glucosidase,superoxide dismutase,antioxidative activity,Lactobacillus plantarum BCRC 11697, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-08-05 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
