Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18001
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林新智(Hisn-Chih Lin),陳敏璋(Miin-Jang Chen)
dc.contributor.authorYung-Chuan Chuangen
dc.contributor.author莊詠荃zh_TW
dc.date.accessioned2021-06-08T00:48:12Z-
dc.date.copyright2015-08-28
dc.date.issued2015
dc.date.submitted2015-07-21
dc.identifier.citation[1] C. Ozgit-Akgun, E. Goldenberg, A. K. Okyay, and N. Biyikli, 'Hollow cathode plasma-assisted atomic layer deposition of crystalline AlN, GaN and AlxGa1-xN thin films at low temperatures,' Journal of Materials Chemistry C, vol. 2, pp. 2123-2136, 2014.
[2] M. Asif Khan, R. A. Skogman, J. M. Van Hove, D. T. Olson, and J. N. Kuznia, 'Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor deposition,' Applied Physics Letters, vol. 60, pp. 1366-1368, 1992.
[3] H. Profijt, S. Potts, M. Van de Sanden, and W. Kessels, 'Plasma-assisted atomic layer deposition: Basics, opportunities, and challenges,' Journal of Vacuum Science & Technology A, vol. 29, p. 050801, 2011.
[4] P. Stumm and D. Drabold, 'Can amorphous GaN serve as a useful electronic material?,' Physical review letters, vol. 79, p. 677, 1997.
[5] S. Nakamura, T. Mukai, and M. Senoh, 'Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,' Applied Physics Letters, vol. 64, pp. 1687-1689, 1994.
[6] N. H. Karam, T. Parodos, P. Colter, D. McNulty, W. Rowland, J. Schetzina, et al., 'Growth of device quality GaN at 550 °C by atomic layer epitaxy,' Applied Physics Letters, vol. 67, pp. 94-96, 1995.
[7] C. Kim, I. Robinson, J. Myoung, K.-H. Shim, and K. Kim, 'Buffer layer strain transfer in AlN/GaN near critical thickness,' Journal of applied physics, vol. 85, pp. 4040-4044, 1999.
[8] S. Raghavan and J. M. Redwing, 'In situ stress measurements during the MOCVD growth of AlN buffer layers on (111) Si substrates,' Journal of Crystal Growth, vol. 261, pp. 294-300, 1/19/ 2004.
[9] K. Hiramatsu, S. Itoh, H. Amano, I. Akasaki, N. Kuwano, T. Shiraishi, et al., 'Growth mechanism of GaN grown on sapphire with A1N buffer layer by MOVPE,' Journal of Crystal Growth, vol. 115, pp. 628-633, 1991.
[10] M. Bosund, T. Sajavaara, M. Laitinen, T. Huhtio, M. Putkonen, V. M. Airaksinen, et al., 'Properties of AlN grown by plasma enhanced atomic layer deposition,' Applied Surface Science, vol. 257, pp. 7827-7830, Jun 15 2011.
[11] H. Profijt, M. van de Sanden, and W. Kessels, 'Substrate biasing during plasma-assisted ALD for crystalline phase-control of TiO2 thin films,' Electrochemical and Solid-State Letters, vol. 15, pp. G1-G3, 2011.
[12] E. Calleja, M. A. Sánchez-García, D. Basak, F. J. Sánchez, F. Calle, P. Youinou, et al., 'Effect of Ga/Si interdiffusion on optical and transport properties of GaN layers grown on Si(111) by molecular-beam epitaxy,' Physical Review B, vol. 58, pp. 1550-1559, 07/15/ 1998.
[13] S. Huang, S. Yang, J. Roberts, and K. J. Chen, 'Characterization of Vth-instability in Al2O3/GaN/AlGaN/GaN MIS-HEMTs by quasi-static C-V measurement,' physica status solidi (c), vol. 9, pp. 923-926, 2012.
[14] S. Huang, Q. Jiang, S. Yang, C. Zhou, and K. J. Chen, 'Effective passivation of AlGaN/GaN HEMTs by ALD-grown AlN thin film,' Electron Device Letters, IEEE, vol. 33, pp. 516-518, 2012.
[15] A. Bykhovski, B. Gelmont, and M. Shur, 'Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices,' Journal of Applied Physics, vol. 81, pp. 6332-6338, 1997.
[16] J. L. van Hemmen, S. B. S. Heil, J. H. Klootwijk, F. Roozeboom, C. J. Hodson, M. C. M. van de Sanden, et al., 'Plasma and thermal ALD of Al2O3 in a commercial 200 mm ALD reactor,' Journal of the Electrochemical Society, vol. 154, pp. G165-G169, 2007.
[17] R. L. Puurunen, 'Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,' Journal of Applied Physics, vol. 97, p. 121301, 2005.
[18] S. Y. Yang, G. Jeon, and J. K. Kim, 'A high density array of free standing alumina nanotubes aligned vertically on solid substrates in a large area,' Journal of Materials Chemistry, vol. 22, pp. 23017-23021, Nov 21 2012.
[19] L. Bardos, 'Radio frequency hollow cathodes for the plasma processing technology,' Surface & Coatings Technology, vol. 86-7, pp. 648-656, Dec 15 1996.
[20] M. E. Pillow, 'A Critical-Review of Spectral and Related Physical-Properties of the Hollow-Cathode Discharge,' Spectrochimica Acta Part B-Atomic Spectroscopy, vol. 36, pp. 821-843, 1981.
[21] M. E. Pillow, 'A critical review of spectral and related physical properties of the hollow cathode discharge,' Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 36, pp. 821-843, // 1981.
[22] C. Ferreira and J. Delcroix, 'Theory of the hollow cathode arc,' Journal of Applied Physics, vol. 49, pp. 2380-2395, 1978.
[23] H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, 'Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges,' Journal of Vacuum Science & Technology A, vol. 29, Sep 2011.
[24] S. B. S. Heil, J. L. van Hemmen, M. C. M. V. de Sanden, and W. M. M. Kessels, 'Reaction mechanisms during plasma-assisted atomic layer deposition of metal oxides: A case study for Al(2)O(3),' Journal of Applied Physics, vol. 103, May 15 2008.
[25] Y. Ito, 'Grazing-incidence small-angle X-ray scattering technique for nanostructure determination of surfaces and interfaces of thin films,' The Rigaku Journal, vol. 25, 2009.
[26] T. Mitsunaga, 'X-ray thin-film measurement techniques,' The Rigaku Journal, vol. 25, 2009.
[27] M. Yasaka, 'X-ray thin film measurement techniques,' The Rigaku Journal, vol. 26, p. 2, 2010.
[28] K. Inaba, 'X-ray thin-film measurement techniques,' The Rigaku Journal, vol. 24, 2008.
[29] H. P. Maruska and J. Tietjen, 'The preparation and properties of Vapor‐Deposited single‐crystal‐line GaN,' Applied Physics Letters, vol. 15, pp. 327-329, 1969.
[30] J. Sumakeris, Z. Sitar, K. Ailey-Trent, K. More, and R. Davis, 'Layer-by-layer epitaxial growth of GaN at low temperatures,' Thin Solid Films, vol. 225, pp. 244-249, 1993.
[31] M. Kuball, 'Raman spectroscopy of GaN, AlGaN and AlN for process and growth monitoring/control,' Surface and Interface Analysis, vol. 31, pp. 987-999, Oct 2001.
[32] O. H. Kim, D. Kim, and T. Anderson, 'Atomic layer deposition of GaN using GaCl3 and NH3,' Journal of Vacuum Science & Technology A, vol. 27, pp. 923-928, Jul 2009.
[33] S. Strite, 'GaN, AlN, and InN: A review,' Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 10, p. 1237, 1992.
[34] D. Huantao, H. Yue, and Z. Jincheng, 'Effect of a high temperature AlN buffer layer grown by initially alternating supply of ammonia on AlGaN/GaN heterostuctures,' Journal of Semiconductor, vol. 30, 2009.
[35] B. L. Liu, M. Lachab, A. Jia, A. Yoshikawaa, and K. Takahashi, 'MOCVD growth of device-quality GaN on sapphire using a three-step approach,' Journal of Crystal Growth, vol. 234, pp. 637-645, 2// 2002.
[36] T. Lang, M. Odnoblyudov, V. Bougrov, S. Suihkonen, M. Sopanen, and H. Lipsanen, 'Morphology optimization of MOCVD-grown GaN nucleation layers by the multistep technique,' Journal of Crystal Growth, vol. 292, pp. 26-32, 6/15/ 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18001-
dc.description.abstract本論文乃利用原子層沉積(Atomic Layer Deposition, ALD)技術成長氮化鋁薄膜和氮化鋁與氮化鎵多層結構作為氮化鎵磊晶層之緩衝層,並分析其各項性質和相關應用。論文主要分為兩個部分:本論文第一部分使用ALD技術成長氮化鋁薄膜於(002)藍寶石基板及(111)矽基板上,調整各項製程參數,並利用多種分析技術量測氮化鋁薄膜的各項性質,發現氮化鋁薄膜為六方晶纖鋅礦(hexagonal wurtzite)結構,利用退火的方式使薄膜結晶,其基面的繞射峰,和搖擺曲線顯示出晶體具有高擇優取向性,從拉曼的訊號得知氮化鋁薄膜具有殘留拉應力,而AFM影像顯示氮化鋁薄膜具有良好的表面平整度,平均粗糙度都小於1nm。第二部分,本論文使用ALD技術於藍寶石基板上成長氮化鋁薄膜作為緩衝層,並觀察其對氮化鎵磊晶層結晶品質的影響。發現氮化鎵磊晶層有好的結晶度與擇優取向性,表示ALD薄膜能夠促進磊晶層的結晶品質。zh_TW
dc.description.abstractIn this thesis the properties and applications of AlN thin films prepared by atomic layer deposition (ALD) were investigated. It can be divided into two main sections:In the first part, we investigated the influence of the ALD parameters on the crystallinity of AlN thin films grown on different substrates. According to XRD pattern, improved crystallinity of AlN (wurtzite structure) was achieved at high deposition temperature. The Raman spectrum indicates a shift towards lower wavenumber caused by residual tensile stress The AFM scanning images shows a flat surface of AlN with a roughness smaller than 1 nm. In the next section, AlN thin films prepared by ALD were grown on sapphire substrate to serve as the buffer layers between substrates for GaN epitaxy by MOCVD. With the AlN buffer layer, a MOCVD GaN epitaxy layer with high crystallinity and (002) c-axis preferred orientation was achieved.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:48:12Z (GMT). No. of bitstreams: 1
ntu-104-R02527057-1.pdf: 5629005 bytes, checksum: 30d4f6a196a25026f7de695c2a261398 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents第一章 簡介 1
1.1研究動機 1
1.2原子層沉積技術 7
1.2.1 原子層沉積技術原理 7
1.2.2 原子層沉積技術製程參數 9
1.2.3 無線電波頻段中空陰極管電漿技術(Radio Frequency Hollow cathode plasma tech., RF-HCP) 12
1.2.4 遠端電漿與近程電漿的介紹 14
1.3 X光繞射儀(X-ray Diffractometer) 17
1.4 拉曼光譜儀(Raman spectrometer) 18
第二章 利用原子層沉積技術成長氮化鋁薄膜作為緩衝層對氮化鎵磊晶層的影響 20
2.1 簡介 20
2.2實驗方法與量測儀器 20
2.2.1 ALD氮化鋁的實驗方法 20
2.2.2 ALD氮化鋁薄膜作為緩衝層 21
2.3實驗結果與討論 22
2.3.1 電漿時間對於AlN薄膜結晶度與成長速率的影響 22
2.3.2 成長厚度對於AlN薄膜結晶度的影響 23
2.3.3 溫度與電漿功率對AlN薄膜結晶度的影響 24
2.3.4 ALD AlN薄膜緩衝層對GaN磊晶層之結晶度的影響 25
2.3.5 ALD AlN緩衝層對MOCVD AlN結晶度影響 29
2.3.6 MOCVD AlGaN磊晶層對GaN磊晶層之結晶度的影響 31
2.4結論 32
第三章 原子層沉積技術利用氬氣電漿轟擊成長高結晶度氮化鋁薄膜 33
3.1簡介 33
3.2實驗方法與量測儀器 34
3.2.1 ALD氮化鋁的實驗方法 34
3.3實驗結果與討論 35
3.3.1 成長厚度對氮化鋁薄膜結晶度的影響 35
3.3.2 氬氣電漿轟擊對氮化鋁薄膜微結構的影響 37
3.3.3 氬氣電漿轟擊對氮化鋁薄膜拉曼光譜的影響 45
3.3.4 氬氣電漿轟擊對氮化鋁薄膜粗糙度的影響 47
3.4結論 49
第四章 利用原子層沉積技術成長氮化鋁與氮化鎵多層薄膜結構做為緩衝層對MOCVD氮化鎵磊晶層的影響 50
4.1簡介 50
4.2實驗方法與量測儀器 51
4.2.1 ALD氮化鋁作為緩衝層成長氮化鎵磊晶層的實驗方法 51
4.2.2 ALD氮化鋁與氮化鎵多層薄膜做為緩衝層成長氮化鎵磊晶層的實驗方法 52
4.3實驗結果與討論 54
4.3.1 ALD氮化鋁在不同氬氣電漿處理時間對氮化鎵磊晶層結構的影響 54
4.3.2 ALD氮化鋁在不同氬氣電漿處理時間下對氮化鎵磊晶層拉曼訊號的影響 57
4.3.3 ALD氮化鋁在不同氬氣電漿處理時間下對氮化鎵磊晶層PL光譜的影響 58
4.3.4 不同厚度比例氮化鋁與氮化鎵多層結構對氮化鎵磊晶層結構的影響 59
4.3.5 不同厚度比例的氮化鋁與氮化鎵多層結構對氮化鎵磊晶層拉曼訊號的影響 60
4.3.6 不同厚度比例氮化鋁與氮化鎵多層結構對氮化鎵磊晶層PL光譜的影響 62
4.4結論 64
第五章 氬氣電漿轟擊對ALD氮化鎵薄膜微結構的影響 65
5.1簡介 65
5.2實驗方法與量測儀器 65
5.2.1 ALD氮化鎵的實驗方法 65
5.3實驗結果與討論 66
5.3.1氬氣電漿轟擊時間對氮化鎵薄膜之微結構的影響 66
5.3.2氬氣電漿轟擊瓦數對氮化鎵薄膜的微結構影響 69
5.4結論 71
總結 72
未來工作 74
參考文獻 75
dc.language.isozh-TW
dc.title使用原子層沉積技術成長氮化鋁與氮化鎵薄膜之研究zh_TW
dc.titleStudy of the AlN and GaN Thin Films Grown by
Atomic Layer Deposition
en
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐文慶(Wen-Ching Hsu),劉哲銘(Je-Ming Liu),林明志(Ming-Zhi Lin)
dc.subject.keyword原子層沉積技術,退火,氮化鋁,III-族氮化物緩衝層,有機金屬化學氣相沉積,zh_TW
dc.subject.keywordatomic layer deposition (ALD),annealing,aluminum nitride (AlN),III-nitrides,buffer layer,Metal Organic Chemical Vapor Deposition (MOCVD),en
dc.relation.page77
dc.rights.note未授權
dc.date.accepted2015-07-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
5.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved