Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17943
標題: 以機器學習方法藉由急診病人主訴資料預測醫生之檢驗項目
Predicting diagnostic items at emergency department chief complaint using machine learning
作者: Yu-Ting Chen
陳郁婷
指導教授: 曹承礎(Seng-Cho Chou)
共同指導教授: 盧信銘(Hsin-Min Lu)
關鍵字: 急診醫學,病人主訴,機器學習,檢驗預測,
emergency medicine,chief complaint,machine learning,diagnostic prediction,
出版年 : 2020
學位: 碩士
摘要: 急診壅塞的問題長期存在於台灣的醫療體系當中,本研究主要的目的在於藉由急診病患的主訴資料,建構基於機器學習的檢驗項目預測模型,針對病患該次就診最主要痛苦訴求,從非結構化的文本資料當中,找出可以預先執行的醫學檢驗事項,在醫生會診之前,完成應該有的檢驗,讓醫生可以根據檢驗的結果,快速判定病人應有的後續處置,用以改善並加速現有急診流程,提供更好的急診醫療品質及更快速的確診及服務。

The problem of Emergency Department Overcrowding has long existed in Taiwan's medical system. The main purpose of this study is to construct a diagnostic item predictive model based on patient’s chief complaint by using machine learning. From the unstructured text materials, find out the diagnostic items that can be performed and complete the due test before the doctor's consultation, so that the doctor can quickly determine the follow-up treatment that the patient should have based on the results of the test. Improve and accelerate the existing emergency procedures, provide better emergency medical quality and faster diagnosis and services.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17943
DOI: 10.6342/NTU202003326
全文授權: 未授權
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
U0001-1308202021251300.pdf
  未授權公開取用
4.17 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved