Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17943
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor曹承礎(Seng-Cho Chou)
dc.contributor.authorYu-Ting Chenen
dc.contributor.author陳郁婷zh_TW
dc.date.accessioned2021-06-08T00:46:44Z-
dc.date.copyright2020-08-20
dc.date.issued2020
dc.date.submitted2020-08-16
dc.identifier.citation[1] 蔡光超(2019)。解決急診壅塞之政府角色。國立臺灣大學政治學研究所碩士論文,台北市。
[2] 衛生福利部統計處(2018)。醫療機構現況及醫院醫療服務統計年報。
[3] Asplin, B. R., Magid, D. J., Rhodes, K. V., Solberg, L. Il, Lurie, N., Camargo, C. A. Jr. (2003). A conceptual model of Emergency Department crowding, Annals of Emergency Medicine, 42: 173-80.
[4] W.T. Lin, Y.C. Wu, J.S. Zheng, M.Y. Chen. (2011). Analysis by data mining in the emergency medicine triage database at a Taiwanese regional hospital Expert Systems with Applications., 38, pp. 11078-11084.
[5] Byron, G., Raymond, B., Michael Q., Maurice M. (2018). Using Data Mining to Predict Hospital Admissions From the Emergency Department., IEEE, 6.
[6] Hong WS, Haimovich AD, Taylor RA. (2018). Predicting hospital admission at emergency department triage using machine learning. PLoS ONE 13(7): e0201016.
[7] 台灣急診醫學學會(2018)。台灣急診醫學臨床執業模式第二版。
[8] 台灣急診醫學學會(2019)。急診醫學病歷寫作教學建議第一版。
[9] 衛生福利部醫事司(2018)。急診就醫流程。
[10] 王璟璇、陳慧敏、簡芷茵、侯宜菁、楊金蘭(2015)。病歷閱讀。出版地:華杏出版股份有限公司。
[11] Deng, L. Yu, D. (2014). Deep Learning: Methods and Applications. Foundations and Trends in Signal Processing., 7: 3–4.
[12] Kim, Y. (2014). Convolutional neural networks for sentence classification., arXiv, 1408.5882.
[13] W.Y. Ma, K.J. Chen. (2014). Design of CKIP Chinese Word Segmentation System., IJALP, Vol. 14, No. 3, pp. 235–249
[14] Mikolov, Sutskever, Chen,et al. (2013).Distributed Representations of Words and Phrases and their Compositionality.NIPS,3111-3119.
[15] Sepp Hochreiter; Jürgen Schmidhuber. (1997) “Long Short-Term Memory”. Neural Computation. pp. 1735-1780.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17943-
dc.description.abstract急診壅塞的問題長期存在於台灣的醫療體系當中,本研究主要的目的在於藉由急診病患的主訴資料,建構基於機器學習的檢驗項目預測模型,針對病患該次就診最主要痛苦訴求,從非結構化的文本資料當中,找出可以預先執行的醫學檢驗事項,在醫生會診之前,完成應該有的檢驗,讓醫生可以根據檢驗的結果,快速判定病人應有的後續處置,用以改善並加速現有急診流程,提供更好的急診醫療品質及更快速的確診及服務。
zh_TW
dc.description.abstractThe problem of Emergency Department Overcrowding has long existed in Taiwan's medical system. The main purpose of this study is to construct a diagnostic item predictive model based on patient’s chief complaint by using machine learning. From the unstructured text materials, find out the diagnostic items that can be performed and complete the due test before the doctor's consultation, so that the doctor can quickly determine the follow-up treatment that the patient should have based on the results of the test. Improve and accelerate the existing emergency procedures, provide better emergency medical quality and faster diagnosis and services.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:46:44Z (GMT). No. of bitstreams: 1
U0001-1308202021251300.pdf: 4269581 bytes, checksum: b110195dc15816bd4d90e12a3035ec79 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 viii
第一章、 緒論 1
第一節、 研究背景與動機 1
第二節、 研究目的 2
第二章、 文獻探討 3
第一節、 急診醫學 3
第一項、 急診流程 3
第二項、 急診病歷 6
第三項、 主訴(Chief Complaint) 6
第四項、 檢驗項目(Diagnostic Items) 7
第二節、 深度學習演算法 7
第一項、 卷積神經網絡 7
第二項、 TextCNN 8
第三章、 研究方法 9
第一節、 資料集 9
第二節、 資料前處理 13
第三節、 檢驗項目預測模型 15
第四章、 實驗結果與分析 17
第一節、 實驗評估指標 17
第二節、 實驗結果與分析 19
第五章、 結論與未來展望 25
第一節、 結論 25
第二節、 未來展望 25
參考文獻 27
附錄 28
dc.language.isozh-TW
dc.title以機器學習方法藉由急診病人主訴資料預測醫生之檢驗項目zh_TW
dc.titlePredicting diagnostic items at emergency department chief complaint using machine learningen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor盧信銘(Hsin-Min Lu)
dc.contributor.oralexamcommittee周子元(Tzu-Yuan Chou)
dc.subject.keyword急診醫學,病人主訴,機器學習,檢驗預測,zh_TW
dc.subject.keywordemergency medicine,chief complaint,machine learning,diagnostic prediction,en
dc.relation.page33
dc.identifier.doi10.6342/NTU202003326
dc.rights.note未授權
dc.date.accepted2020-08-17
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
Appears in Collections:資訊管理學系

Files in This Item:
File SizeFormat 
U0001-1308202021251300.pdf
  Restricted Access
4.17 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved