Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17842
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅翊禎(Yi-Chen Lo),鄭光成(Kuan-Chen Cheng)
dc.contributor.authorYing Xin Leeen
dc.contributor.author李穎欣zh_TW
dc.date.accessioned2021-06-08T00:44:32Z-
dc.date.copyright2015-08-10
dc.date.issued2015
dc.date.submitted2015-08-06
dc.identifier.citationAdal, K. A.; Farr, B. M. Central venous catheter-related infections: A review. Nutrition 1996, 12 (3), 208–213.
Adnan, M.; Ahmad, A.; Ahmed, A.; Khalid, N.; Hayat, I.; Ahmed, I. Chemical composition and sensory evaluation of tea (Camellia sinensis) commercialized in Pakistan. Pak J Bot 2013, 45 (3), 901–907.
Andrews, J. M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48 (suppl 1), 5–16.
Archer, N. K.; Mazaitis, M. J.; Costerton, J. W.; Leid, J. G.; Powers, M. E.; Shirtliff, M. E. Staphylococcus aureus biofilms. Virulence 2011, 2 (5), 445–459.
Archibald, L. K.; Gaynes, R. P. HOSPITAL-ACQUIRED INFECTIONS IN THE UNITED STATES* : The Importance of Interhospital Comparisons. Infectious Disease Clinics of North America 1997, 11 (2), 245–255.
Arciola, C. R.; Campoccia, D.; Speziale, P.; Montanaro, L.; Costerton, J. W. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 2012, 33 (26), 5967–5982.
Avato, P.; Bucci, R.; Tava, A.; Vitali, C.; Rosato, A.; Bialy, Z.; Jurzysta, M. Antimicrobial activity of saponins fromMedicago sp.: structure-activity relationship. Phytotherapy Research 2006, 20 (6), 454–457.
Balentine, D. A.; Wiseman, S. A.; Bouwens, L. C. M. The chemistry of tea flavonoids. Critical Reviews in Food Science and Nutrition 1997, 37 (8), 693–704.
Bedran, T. B. L.; Grignon, L.; Spolidorio, D. P.; Grenier, D. Subinhibitory Concentrations of Triclosan Promote Streptococcus mutans Biofilm Formation and Adherence to Oral Epithelial Cells. PLoS ONE 2014, 9 (2), e89059.
Blanco, A. R.; Sudano-Roccaro, A.; Spoto, G. C.; Nostro, A.; Rusciano, D. Epigallocatechin Gallate Inhibits Biofilm Formation by Ocular Staphylococcal Isolates. iAntimicrob. Agents Chemother. 2005, i49 (10), 4339–4343.
Blenkinsopp, S. A.; Costerton, J. W. Understanding bacterial biofilms. Trends in Biotechnology 1991, 9 (1), 138–143.
Boles, B. R.; Horswill, A. R. agr-Mediated Dispersal of Staphylococcus aureus Biofilms. PLoS Pathog 2008, 4 (4), e1000052.
Bryers, J. D.; Ratner, B. D. Bioinspired implant materials befuddle bacteria. ASM News-American Society for Microbiology 2004, 70 (5), 232–232.
Caiazza, N. C.; O’Toole, G. A. Alpha-Toxin Is Required for Biofilm Formation by Staphylococcus aureus. J. Bacteriol. 2003, 185 (10), 3214–3217.
Cerca, N.; Brooks, J. L.; Jefferson, K. K. Regulation of the Intercellular Adhesin Locus Regulator (icaR) by SarA, σB, and IcaR in Staphylococcus aureus. J Bacteriol 2008, 190 (19), 6530–6533.
Chen, J.-H.; Wu, H.-Y.; Liau, B.-C.; Chang, C.-M. J.; Jong, T.-T.; Wu, L.-C. Identification and evaluation of antioxidants defatted Camellia oleifera seeds by isopropanol salting-out pretreatment. Food Chemistry 2010, 121 (4), 1246–1254.
Chen, Y.-F.; Yang, C.-H.; Chang, M.-S.; Ciou, Y.-P.; Huang, Y.-C. Foam Properties and Detergent Abilities of the Saponins from Camellia oleifera. International Journal of Molecular Sciences 2010, 11 (11), 4417–4425.
Cheng, K.-C.; Demirci, A.; Catchmark, J. M. Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol 2010, 87 (2), 445–456.
Chmielewski, R. A. N.; Frank, J. F. Biofilm formation and control in food processing facilities. Comprehensive reviews in food science and food safety 2003, 2 (1), 22–32.
Cho, Y.-S.; Oh, J. J.; Oh, K.-H. Antimicrobial activity and biofilm formation inhibition of green tea polyphenols on human teeth. Biotechnol Bioproc E 2010, 15 (2), 359–364.
Cramton, S. E.; Gerke, C.; Schnell, N. F.; Nichols, W. W.; Götz, F. The Intercellular Adhesion (ica) Locus Is Present in Staphylococcus aureus and Is Required for Biofilm Formation. Infect. Immun. 1999, 67 (10), 5427–5433.
Crouzet, M.; Senechal, C. L.; Brözel, V. S.; Costaglioli, P.; Barthe, C.; Bonneu, M.; Garbay, B.; Vilain, S. Exploring early steps in biofilm formation: set-up of an experimental system for molecular studies. BMC Microbiology 2014, 14 (1), 253.
Del Pozo, J. L.; Patel, R. The Challenge of Treating Biofilm-associated Bacterial Infections. Clinical Pharmacology & Therapeutics 2007, 82 (2), 204–209.
Dong, L.; Tong, Z.; Linghu, D.; Lin, Y.; Tao, R.; Liu, J.; Tian, Y.; Ni, L. Effects of sub-minimum inhibitory concentrations of antimicrobial agents on Streptococcus mutans biofilm formation. International Journal of Antimicrobial Agents 2012, 39 (5), 390–395.
Donlan, R. M.; Costerton, J. W. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clin Microbiol Rev 2002, 15 (2), 167–193.
Donlan, R. M. Biofilms: Microbial Life on Surfaces. Emerg Infect Dis 2002, 8 (9), 881–890.
Fischer, E. R.; Hansen, B. T.; Nair, V.; Hoyt, F. H.; Dorward, D. W. Scanning Electron Microscopy. In Current Protocols in Microbiology; John Wiley & Sons, Inc., 2005.
Frees, D.; Chastanet, A.; Qazi, S.; S?rensen, K.; Hill, P.; Msadek, T.; Ingmer, H. Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Molecular Microbiology 2004, 54 (5), 1445–1462.
Geoghegan, J. A.; Corrigan, R. M.; Gruszka, D. T.; Speziale, P.; O’Gara, J. P.; Potts, J. R.; Foster, T. J. Role of Surface Protein SasG in Biofilm Formation by Staphylococcus aureus. J Bacteriol 2010, 192 (21), 5663–5673.
Gm, D.; Al, B. Infections associated with prosthetic devices: clinical considerations. Int J Artif Organs 1993, 16 (11), 749–754.
Gramza, A.; Korczak, J.; Amarowicz, R.; others. Tea polyphenols-their antioxidant properties and biological activity-a review. Polish journal of food and nutrition sciences 2005, 14 (3), 219.
Grilo, I. R.; Ludovice, A. M.; Tomasz, A.; de Lencastre, H.; Sobral, R. G. The glucosaminidase domain of Atl – the major Staphylococcus aureus autolysin – has DNA-binding activity. Microbiologyopen 2014, 3 (2), 247–256.
Gutiérrez, D.; Delgado, S.; Vázquez-Sánchez, D.; Martínez, B.; Cabo, M. L.; Rodríguez, A.; Herrera, J. J.; García, P. Incidence of Staphylococcus aureus and Analysis of Associated Bacterial Communities on Food Industry Surfaces. Appl. Environ. Microbiol. 2012, 78 (24), 8547–8554.
Hall-Stoodley, L.; Costerton, J. W.; Stoodley, P. Bacterial biofilms: from the Natural environment to infectious diseases. Nat Rev Micro 2004, 2 (2), 95–108.
Hao, W.; Li, H.; Hu, M.; Yang, L.; Rizwan-ul-Haq, M. Integrated control of citrus green and blue mold and sour rot by Bacillus amyloliquefaciens in combination with tea saponin. Postharvest Biology and Technology 2011, 59 (3), 316–323.
Harbowy, M. E.; Balentine, D. A.; Davies, A. P.; Cai, Y. Tea chemistry. Critical reviews in plant sciences 1997, 16 (5), 415–480.
Harris, L. G.; Foster, S. J.; Richards, R. G. An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review. Eur Cell Mater 2002, 4 (3).
Heilmann, C.; Schweitzer, O.; Gerke, C.; Vanittanakom, N.; Mack, D.; Götz, F. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Molecular Microbiology 1996, 20 (5), 1083–1091.
Hirschhausen, N.; Schlesier, T.; Schmidt, M. A.; Götz, F.; Peters, G.; Heilmann, C. A novel staphylococcal internalization mechanism involves the major autolysin Atl and heat shock cognate protein Hsc70 as host cell receptor. Cellular Microbiology 2010, 12 (12), 1746–1764.
Hoffman, L. R.; D’Argenio, D. A.; MacCoss, M. J.; Zhang, Z.; Jones, R. A.; Miller, S. I. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 2005, 436 (7054), 1171–1175.
Hu, J.-L.; Nie, S.-P.; Huang, D.-F.; Li, C.; Xie, M.-Y.; Wan, Y. Antimicrobial activity of saponin-rich fraction from Camellia oleifera cake and its effect on cell viability of mouse macrophage RAW 264.7. Journal of the Science of Food and Agriculture 2012, 92 (12), 2443–2449.
Hu, J.-L.; Nie, S.-P.; Huang, D.-F.; Li, C.; Xie, M.-Y. Extraction of saponin from Camellia oleifera cake and evaluation of its antioxidant activity: Extraction and antioxidant activity of saponin. International Journal of Food Science & Technology 2012, 47 (8), 1676–1687.
Jabra-Rizk, M. A.; Meiller, T. F.; James, C. E.; Shirtliff, M. E. Effect of Farnesol on Staphylococcus aureus Biofilm Formation and Antimicrobial Susceptibility. Antimicrob. Agents Chemother. 2006, 50 (4), 1463–1469.
Kobayashi, K.; Teruya, T.; Suenaga, K.; Matsui, Y.; Masuda, H.; Kigoshi, H. Isotheasaponins B1–B3 from Camellia sinensis var. sinensis tea leaves. Phytochemistry 2006, 67 (13), 1385–1389.
Korber, D. R.; Mangalappalli-Illathu, A. K.; Vidović, S. 6 - Biofilm formation by food spoilage microorganisms in food processing environments. In Biofilms in the Food and Beverage Industries; Fratamico, P. M., Annous, B. A., Gunther, N. W., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing, 2009; pp 169–199.
Lai, L.-R.; Hsieh, S.-C.; Huang, H.-Y.; Chou, C.-C. Effect of lactic fermentation on the total phenolic, saponin and phytic acid contents as well as anti-colon cancer cell proliferation activity of soymilk. Journal of Bioscience and Bioengineering 2013, 115 (5), 552–556.
Landini, P.; Antoniani, D.; Burgess, J. G.; Nijland, R. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl Microbiol Biotechnol 2010, 86 (3), 813–823.
Langsrud, S. 9 - Biofilm formation by Gram-positive bacteria including Staphylococcus aureus, Mycobacterium avium and Enterococcus spp. in food processing environments. In Biofilms in the Food and Beverage Industries; Fratamico, P. M., Annous, B. A., Gunther, N. W., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing, 2009; pp 250–269.
Li, Y.; Du, Y.; Zou, C. Effects of pH on antioxidant and antimicrobial properties of tea saponins. Eur Food Res Technol 2009, 228 (6), 1023–1028.
Lowy, F. D. Staphylococcus aureus Infections. New England Journal of Medicine 1998, 339 (8), 520–532.
Lynch, A. S.; Robertson, G. T. Bacterial and Fungal Biofilm Infections. Annual Review of Medicine 2008, 59 (1), 415–428.
Majtán, J.; Majtánová, Ľ.; Xu, M.; Majtán, V. In vitro effect of subinhibitory concentrations of antibiotics on biofilm formation by clinical strains of Salmonella enterica serovar Typhimurium isolated in Slovakia. Journal of Applied Microbiology 2008, 104 (5), 1294–1301.
Matsui, Y.; Kumagai, H.; Masuda, H. Antihypercholesterolemic Activity of Catechin-free Saponin-rich Extract from Green Tea Leaves. Food Science and Technology Research 2006, 12 (1), 50–54.
Mencherini, T.; Picerno, P.; Del Gaudio, P.; Festa, M.; Capasso, A.; Aquino, R. Saponins and Polyphenols from Fadogia ancylantha (Makoni Tea). Journal of Natural Products 2010, 73 (2), 247–251.
Merritt, J. H.; Kadouri, D. E.; O’Toole, G. A. Growing and Analyzing Static Biofilms. In Current Protocols in Microbiology; John Wiley & Sons, Inc., 2005.
Morikawa, T.; Nakamura, S.; Kato, Y.; Muraoka, O.; Matsuda, H.; Yoshikawa, M. Bioactive saponins and glycosides. XXVIII. New triterpene saponins, foliatheasaponins I, II, III, IV, and V, from Tencha (the leaves of Camellia sinensis). Chemical and pharmaceutical bulletin 2007, 55 (2), 293–298.
Morikawa, T.; Matsuda, H.; Li, N.; Li, X.; Yoshikawa, M. Bioactive Saponins and Glycosides. Part 29. Helvetica Chimica Acta 2007, 90 (12), 2342–2348.
Motyl, M.; Dorso, K.; Barrett, J.; Giacobbe, R. Basic microbiological techniques used in antibacterial drug discovery. Current Protocols in Pharmacology 2006, 13A – 3.
M, Y. S.; Uemura, T.; Watanabe, N.; Sakata, K.; Uzawa, J. A New Glucuronide Saponin from Tea Leaves (Camellia sinensis var. sinensis). Bioscience, Biotechnology, and Biochemistry 1994, 58 (11), 2036–2040.
Nostro, A.; Roccaro, A. S.; Bisignano, G.; Marino, A.; Cannatelli, M. A.; Pizzimenti, F. C.; Cioni, P. L.; Procopio, F.; Blanco, A. R. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. Journal of Medical Microbiology 2007, 56 (4), 519–523.
O’Gara, J. P. ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiology Letters 2007, 270 (2), 179–188.
O’Neill, E.; Pozzi, C.; Houston, P.; Smyth, D.; Humphreys, H.; Robinson, D. A.; O’Gara, J. P. Association between Methicillin Susceptibility and Biofilm Regulation in Staphylococcus aureus Isolates from Device-Related Infections. J Clin Microbiol 2007, 45 (5), 1379–1388.
O’Toole, G.; Kaplan, H. B.; Kolter, R. Biofilm Formation as Microbial Development. Annual Review of Microbiology 2000, 54 (1), 49–79.
O’Toole, G. A. Microtiter Dish Biofilm Formation Assay. J Vis Exp 2011, No. 47.
Otto, M. Staphylococcus aureus and Staphylococcus epidermidis peptide pheromones produced by the accessory gene regulator agr system. Peptides 2001, 22 (10), 1603–1608.
Otto, M. Staphylococcal Biofilms. Curr Top Microbiol Immunol 2008, 322, 207–228.
Otto, M. Staphylococcus epidermidis — the “accidental” pathogen. Nat Rev Micro 2009, 7 (8), 555–567.
Oulahal, N.; Martial-Gros, A.; Bonneau, M.; Blum, L. J. Removal of meat biofilms from surfaces by ultrasounds combined with enzymes and/or a chelating agent. Innovative Food Science & Emerging Technologies 2007, 8 (2), 192–196.
Pamp, S. J.; Frees, D.; Engelmann, S.; Hecker, M.; Ingmer, H. Spx Is a Global Effector Impacting Stress Tolerance and Biofilm Formation in Staphylococcus aureus. J. Bacteriol. 2006, 188 (13), 4861–4870.
Performance standards for antimicrobial disk susceptibility tests; approved standard, 11th ed., M02-A11, replaces M02-A10.; Cockerill, F. R., Clinical and Laboratory Standards Institute, Eds.; Documents / Clinical and Laboratory Standards Institute; Committee for Clinical Laboratory Standards: Wayne, PA, 2012.
Qiu, J.; Feng, H.; Lu, J.; Xiang, H.; Wang, D.; Dong, J.; Wang, J.; Wang, X.; Liu, J.; Deng, X. Eugenol Reduces the Expression of Virulence-Related Exoproteins in Staphylococcus aureus. Appl. Environ. Microbiol. 2010, 76 (17), 5846–5851.
Rachid, S.; Ohlsen, K.; Witte, W.; Hacker, J.; Ziebuhr, W. Effect of Subinhibitory Antibiotic Concentrations on Polysaccharide Intercellular Adhesin Expression in Biofilm-Forming Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2000, 44 (12), 3357–3363.
Ramdani, D.; Chaudhry, A. S.; Seal, C. J. Chemical Composition, Plant Secondary Metabolites, and Minerals of Green and Black Teas and the Effect of Different Tea-to-Water Ratios during Their Extraction on the Composition of Their Spent Leaves as Potential Additives for Ruminants. Journal of Agricultural and Food Chemistry 2013, 61 (20), 4961–4967.
Rasheed, A.; Haider, M. Antibacterial activity ofCamellia sinensis extracts against dental caries. Archives of pharmacal research 1998, 21 (3), 348–352.
Resende, P. E. de; Verza, S. G.; Kaiser, S.; Gomes, L. F.; Kucharski, L. C.; Ortega, G. G. The activity of mate saponins (Ilex paraguariensis) in intra-abdominal and epididymal fat, and glucose oxidation in male Wistar rats. Journal of Ethnopharmacology 2012, 144 (3), 735–740.
Reygaert, W. C. The antimicrobial possibilities of green tea. Front Microbiol 2014, 5.
Rode, T. M.; Langsrud, S.; Holck, A.; M?retr?, T. Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. International Journal of Food Microbiology 2007, 116 (3), 372–383.
Saising, J.; Dube, L.; Ziebandt, A.-K.; Voravuthikunchai, S. P.; Nega, M.; Gotz, F. Activity of Gallidermin on Staphylococcus aureus and Staphylococcus epidermidis Biofilms. Antimicrobial Agents and Chemotherapy 2012, 56 (11), 5804–5810.
Schelin, J.; Wallin-Carlquist, N.; Thorup Cohn, M.; Lindqvist, R.; Barker, G. C.; Rådström, P. The formation of Staphylococcus aureus enterotoxin in food environments and advances in risk assessment. Virulence 2011, 2 (6), 580–592.
Schroeder, K.; Jularic, M.; Horsburgh, S. M.; Hirschhausen, N.; Neumann, C.; Bertling, A.; Schulte, A.; Foster, S.; Kehrel, B. E.; Peters, G.; et al. Molecular Characterization of a Novel Staphylococcus Aureus Surface Protein (SasC) Involved in Cell Aggregation and Biofilm Accumulation. PLoS ONE 2009, 4 (10), e7567.
Shah, S.; Stapleton, P. d.; Taylor, P. w. The polyphenol (−)-epicatechin gallate disrupts the secretion of virulence-related proteins by Staphylococcus aureus. Letters in Applied Microbiology 2008, 46 (2), 181–185.
Simões, M.; Simões, L. C.; Vieira, M. J. A review of current and emergent biofilm control strategies. LWT - Food Science and Technology 2010, 43 (4), 573–583.
Starner, T. D.; Shrout, J. D.; Parsek, M. R.; Appelbaum, P. C.; Kim, G. Subinhibitory Concentrations of Azithromycin Decrease Nontypeable Haemophilus influenzae Biofilm Formation and Diminish Established Biofilms. Antimicrob. Agents Chemother. 2008, 52 (1), 137–145.
Somerville, G. A.; Proctor, R. A. The Biology of Staphylococci. In Staphylococci in Human Disease; Chief, K. B. C. Md. of M. A., Assistantessor, K. K. J., Dean, G. L. A. Md. S. A., Medicine, V. G. F. J. M. MHS Associateessor of, Eds.; Wiley-Blackwell, 2009; pp 1–18.
Srey, S.; Jahid, I. K.; Ha, S.-D. Biofilm formation in food industries: A food safety concern. Food Control 2013, 31 (2), 572–585.
Subramaniam, P.; Maheshwar Reddy, K.; Eswara, U. Effect of different types of tea on Streptococcus mutans: An in vitro study. Indian Journal of Dental Research 2012, 23 (1), 43.
Valle, J.; Toledo-Arana, A.; Berasain, C.; Ghigo, J.-M.; Amorena, B.; Penadés, J. R.; Lasa, I. SarA and not σB is essential for biofilm development by Staphylococcus aureus. Molecular Microbiology 2003, 48 (4), 1075–1087.
Van Houdt, R.; Michiels, C. W. Biofilm formation and the food industry, a focus on the bacterial outer surface: Biofilm formation and the bacterial outer surface. Journal of Applied Microbiology 2010, 109 (4), 1117–1131.
Vuong, C.; Saenz, H. L.; Götz, F.; Otto, M. Impact of the agr Quorum-Sensing System on Adherence to Polystyrene in Staphylococcus aureus. J Infect Dis. 2000, 182 (6), 1688–1693.
Wang, Y.; Lee, S. M.; Dykes, G. A. Potential mechanisms for the effects of tea extracts on the attachment, biofilm formation and cell size of Streptococcus mutans. Biofouling 2013, 29 (3), 307–318.
Yadav, M. K.; Chae, S.-W.; Im, G. J.; Chung, J.-W.; Song, J.-J. Eugenol: A Phyto-Compound Effective against Methicillin-Resistant and Methicillin-Sensitive Staphylococcus aureus Clinical Strain Biofilms. PLoS ONE 2015, 10 (3), e0119564.
Zhang, X.-F.; Yang, S.-L.; Han, Y.-Y.; Zhao, L.; Lu, G.-L.; Xia, T.; Gao, L.-P. Qualitative and Quantitative Analysis of Triterpene Saponins from Tea Seed Pomace (Camellia oleifera Abel) and Their Activities against Bacteria and Fungi. Molecules 2014, 19 (6), 7568–7580.
Zhang, Y.-M.; Rock, C. O. Evaluation of Epigallocatechin Gallate and Related Plant Polyphenols as Inhibitors of the FabG and FabI Reductases of Bacterial Type II Fatty-acid Synthase. J. Biol. Chem. 2004, 279 (30), 30994–31001.
Zhao, P.; Gao, D.-F.; Xu, M.; Shi, Z.-G.; Wang, D.; Yang, C.-R.; Zhang, Y.-J. Triterpenoid saponins from the genus camellia. Chemistry & biodiversity 2011, 8 (11), 1931–1942.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17842-
dc.description.abstract金黃色葡萄球菌 (Staphylococcus aureus) 是引起食物中毒常見的病原菌之一,同時也是院內感染的主要致病菌。其主要原因與金黃色葡萄球菌在食品器具及醫療器材表面上所形成的生物膜有關。生物膜為細菌群聚生長的一種結構,在生理特性與毒性等皆與個體有不同的機制表現,進而導致更高的抗藥性及抵抗免疫系統的能力。目前已有研究指出,茶葉萃取物能夠有效的抑制造成蛀牙的變形鏈球菌 (Streptococcus mutans) 在牙齒表面形成生物膜。因此,本研究將從茶葉副產物中萃取及分離不同的區分層,測量各區分層中活性物質如酚類、黃酮類物質以及皂苷的含量。再分別以抑菌圈的方式測試具有抗菌功效的區分層,以及抑制金黃色葡萄球菌生成生物膜的活性試驗。結果顯示,乙酸乙酯-F3 (EA-F3) 為皂苷含量最多的區分層,其可抑制金黃色葡萄球菌生長的最低抑菌濃度 (MIC) 為0.5 mg/ml。同時以此濃度稀釋成1/2倍,1/4倍,1/8倍後,也能有效的抑制金黃色葡萄球菌生物膜的生成。另外,酚類含量較多的乙酸乙酯-F2 (EA-F2) 同樣也具有抑菌以及抑制金黃色葡萄球菌生長的功效,但其效果則在各菌株間有差異性。另以掃描式電子顯微鏡觀察此生物膜的外觀發現,經過EA-F3作用的組別,金黃色葡萄球菌呈現較分散的狀態,且其所產生的生物膜也相對的較少。未來將進一步了解此區分層對抑制金黃色葡萄球菌生物膜形成的作用機制。zh_TW
dc.description.abstractStaphylococcus aureus is a common foodborne pathogen causing food poisoning and also the major pathogen of nosocomial infections at the same time. The main reason for causing infections of S. aureus is the ability of forming biofilm on the food processing equipment and medical devices. Biofilm is a microbially-derived sessile community; they have different performance mechanism individually in physiological characteristics and toxicity, increasing drug resistance and the resistance ability of the immune system compare to the planktonic cells. Previous studies reported that tea leaves extracts have the potential to inhibit biofilm formation of Streptococcus mutans, a major bacteria of dental decay on the surface of teeth. Thus, this study will extract and separate the different bioactive compounds from tea waste, investigate their antimicrobial activity and inhibition of S. aurues biofilm production. As the result, EA-F3 fraction which consists of large amounts of tea saponin, is capable to inhibit the growth of three tested S. aureus and its MIC, 0.5 mg/ml, also effective on inhibit S. aureus biofilm formation. At the same time, EA-F2 fraction that composed of tea polyphenol also effective on the antimicrobial and inhibition of biofilm formation with MIC, 0.5 mg/ml. But the results are different among three of the tested strains. The observation with scanning electron microscope showed that S. aureus grew loose and scattered, less secretion of polysaccharides after treated with both fractions. However, both EA-F2 and EA-F3 fraction could not remove the pre-formed biofilm with the same concentration or the increasing concentrations.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:44:32Z (GMT). No. of bitstreams: 1
ntu-104-R02641041-1.pdf: 27152747 bytes, checksum: 93fb3b947338e10c1bd4b1e871e05add (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents謝誌 i
摘要 ii
Abstract iii
Contents v
List of Figures viii
List of Tables x
1. Introduction 1
2. Literature Review 4
2.1 Biofilm 4
2.1.1 Biofilm formation and development 5
2.1.2 Biofilm infection 7
2.1.3 Biofilm in food industry 9
2.2 Staphylococcus aureus 11
2.2.1 S. aureus biofilm-associated infection and therapeutic 12
2.2.2 S. aureus biofilm in food industry and decontamination issue 14
2.2.3 Molecular mechanisms of S. aureus biofilm formation 15
2.3 Tea and its potential on anti-biofilm ability 18
3. Materials and Methods 20
3.1 Tea by-product 20
3.2 Microorganisms and culture condition 20
3.3 Proximate composition analysis 21
3.4 Extraction and partition of tea by-product 24
3.5 Measurement of total phenolic contents 24
3.6 Measurement of total flavonoids 25
3.7 Analysis of total saponin 25
3.8 Agar diffusion assay 26
3.9 Determination of minimum inhibitory concentration (MIC) 26
3.10 Determination of minimum bactericidal concentration (MBC) 27
3.11 Biofilm formation assay 27
3.12 Scanning Electron Microscopic analysis of biofilm 28
3.13 Effect of samples on established biofilms 28
3.14 Data analysis 29
4. Results and discussion 30
4.1 Proximate composition analysis of tea by-product 30
4.2 Bioactive compounds in extracted samples 32
4.3 Antimicrobial activity 41
4.4 Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) against S. aureus 45
4.5 Effect of MIC and sub-MICs on cell viability 47
4.6 Anti-biofilm activity of extracted fractions against tested bacteria 50
4.7 Scanning electron microscopic analysis of biofilm 58
4.8 Effect of extracted fractions on established biofilm 60
5. Conclusions 67
List of references 68
Appendix 83
dc.language.isoen
dc.title茶葉副產物之萃取物對於抑制金黃色葡萄球菌生成生物膜之評估zh_TW
dc.titleAnti-biofilm activity of tea by-product extracts against Staphylococcus aureusen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂廷璋(Ting-jang Lu),陳勁初(Chin-Chu Chen),陳邦元(Bang-Yuan Chen),陳寬宜(Kuan-I Chen)
dc.subject.keyword金黃色葡萄球菌,生物膜,茶皂?,多酚類物質,茶副產物,zh_TW
dc.subject.keywordtea by-product,Staphylococcus aureus,biofilm formation,tea polyphenol,tea saponin,en
dc.relation.page109
dc.rights.note未授權
dc.date.accepted2015-08-06
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
26.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved