Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17587
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor溫政彥(Cheng-Yen Wen)
dc.contributor.authorChuan-Yu Weien
dc.contributor.author魏川育zh_TW
dc.date.accessioned2021-06-08T00:23:20Z-
dc.date.copyright2020-08-07
dc.date.issued2020
dc.date.submitted2020-08-05
dc.identifier.citation1. Landi, B. J.; Ganter, M. J.; Cress, C. D.; DiLeo, R. A.; Raffaelle, R. P., Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2009, 2 (6), 638-654.
2. Heidari, E. K.; Kamyabi-Gol, A.; Sohi, M. H.; Ataie, A., Electrode Materials for Lithium Ion Batteries: A Review. J. Ultrafine Grained Nanostruct. Mater. 2018, 51, 1-12.
3. Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013, 135 (4), 1167-76.
4. Goodenough, J. B.; Kim, Y., Challenges for Rechargeable Li Batteries. Chem. Mater. 2010, 22 (3), 587-603.
5. Whittingham, M. S., Lithium Batteries and Cathode Materials. Chem. Rev. 2004, 104, 4271−4301.
6. Brodd, R. J., Batteries for Sustainability: Selected Entries from the Encyclopedia of Sustainability Science and Technology. 2013.
7. Takahashi, Y.; S. Tode, A. K.; Fujimoto, H.; Nakane, I.; Fujitani, S., Development of Lithium-Ion Batteries with a LiCoO2 Cathode Toward High Capacity by Elevating Charging Potential. J. Electrochem. Soc. 2008, 155, A537-A541.
8. Reimers, J. N.; Dahn, J. R., Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in LixCoO2. J. Electrochem. Soc. 1992, 139, 2091-2096.
9. Amatucci, G. G.; Tarascon, b. J. M.; Klein, L. C., CoO2, The End Member of the LiCoO2 Solid Solution. J. Electrochem. Soc. 1996, 143, 1114-1122.
10. Mukai, K.; Ikedo, Y.; Kamazawa, K.; Brewer, J. H.; Ansaldo, E. J.; Chow, K. H.; Månsson, M.; Sugiyama, J., The gradient distribution of Ni ions in cation-disordered Li[Ni1/2Mn3/2]O4 clarified by muon-spin rotation and relaxation (μSR). RSC Adv. 2013, 3 (29), 11634-39.
11. Liu, D.; Zhu, W.; Trottier, J.; Gagnon, C.; Barray, F.; Guerfi, A.; Mauger, A.; Groult, H.; Julien, C. M.; Goodenough, J. B.; Zaghib, K., Spinel materials for high-voltage cathodes in Li-ion batteries. RSC Adv. 2014, 4 (1), 154-167.
12. Xia, H.; Luo, Z.; Xie, J., Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium-ion batteries. Prog. Nat. Sci. 2012, 22 (6), 572-584.
13. Liu, T.; Dai, A.; Lu, J.; Yuan, Y.; Xiao, Y.; Yu, L.; Li, M.; Gim, J.; Ma, L.; Liu, J.; Zhan, C.; Li, L.; Zheng, J.; Ren, Y.; Wu, T.; Shahbazian-Yassar, R.; Wen, J.; Pan, F.; Amine, K., Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nat. Commun. 2019, 10 (1), 4721-32.
14. Ohzuku, T.; Takeda, S.; Iwanaga, M., Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries. J. Power Sources 1999, 81, 90-94.
15. Li, S.; Zhu, K.; Du, S., Enhanced elevated-temperature performance of Al-doped LiMn2O4 as cathodes for lithium ion batteries. AIP Publishing: 2017,1890, 040098-1–040098-5.
16. Ram, P.; Gören, A.; Ferdov, S.; Silva, M. M.; Singhal, R.; Costa, C. M.; Sharma, R. K.; Lanceros-Méndez, S., Improved performance of rare earth doped LiMn2O4 cathodes for lithium-ion battery applications. New J. Chem. 2016, 40 (7), 6244-6252.
17. Zhong, Q.; Bonakclarpou, A.; Zhan, M.; Gao, Y.; Dahn, J. R., Synthesis and Electrochemistry of LiNiMn2-xO4. J. Electrochem. Soc. 1997, 144 (1), 205-213.
18. Amine, K.; Tukamoto, H.; Yasuda, H.; Fujita, Y., Preparation and electrochemical investigation of LiMn2-xMexO4 (Me: Ni, Fe, and x= 0.5, 1 ) cathode materials for secondary lithium batteries. J. Power Sources 1997, 68, 604-608.
19. Satyavani, T. V. S. L.; Srinivas Kumar, A.; Subba Rao, P. S. V., Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A review. Int. J. Eng. Sci. Technol. 2016, 19 (1), 178-188.
20. Eftekhari, A., LiFePO4/C nanocomposites for lithium-ion batteries. J. Power Sources 2017, 343, 395-411.
21. Yu, F.; Zhang, L.; Li, Y.; An, Y.; Zhu, M.; Dai, B., Mechanism studies of LiFePO4cathode material: lithiation/delithiation process, electrochemical modification and synthetic reaction. RSC Adv. 2014, 4 (97), 54576-54602.
22. Li, M.; Lu, J.; Chen, Z.; Amine, K., 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1800561.
23. Örnek, A., An impressive approach to solving the ongoing stability problems of LiCoPO4 cathode: Nickel oxide surface modification with excellent core–shell principle. J. Power Sources 2017, 356, 1-11.
24. Fang, L.; Zhang, H.; Zhang, Y.; Liu, L.; Wang, Y., Design and synthesis of two-dimensional porous Fe-doped LiCoPO4 nano-plates as improved cathode for lithium ion batteries. J. Power Sources 2016, 312, 101-108.
25. Maeyoshi, Y.; Miyamoto, S.; Noda, Y.; Munakata, H.; Kanamura, K., Effect of organic additives on characteristics of carbon-coated LiCoPO4 synthesized by hydrothermal method. J. Power Sources 2017, 337, 92-99.
26. Allen, J. L.; Thompson, T.; Sakamoto, J.; Becker, C. R.; Jow, T. R.; Wolfenstine, J., Transport properties of LiCoPO4 and Fe-substituted LiCoPO4. J. Power Sources 2014, 254, 204-208.
27. Ikuhara, Y. H.; Gao, X.; Fisher, C. A. J.; Kuwabara, A.; Moriwake, H.; Kohama, K.; Iba, H.; Ikuhara, Y., Atomic level changes during capacity fade in highly oriented thin films of cathode material LiCoPO4. J. Mater. Chem. A 2017, 5 (19), 9329-9338.
28. Theil, S.; Fleischhammer, M.; Axmann, P.; Wohlfahrt-Mehrens, M., Experimental investigations on the electrochemical and thermal behaviour of LiCoPO4-based cathode. J. Power Sources 2013, 222, 72-78.
29. Wang, J.; Sun, X., Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ. Sci. 2012, 5 (1), 5163-5185.
30. Strobridge, F. C.; Clement, R. J.; Leskes, M.; Middlemiss, D. S.; Borkiewicz, O. J.; Wiaderek, K. M.; Chapman, K. W.; Chupas, P. J.; Grey, C. P., Identifying the Structure of the Intermediate, Li2/3CoPO4, Formed during Electrochemical Cycling of LiCoPO4. Chem. Mater. 2014, 26 (21), 6193-6205.
31. Fauteux, D., Rechargeable lithium battery anodes: alternatives to metallic lithium. J. Appl. Electrochem. 1993, 23, 1-10.
32. Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K., High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Electro. Ener. Rev. 2018, 1 (1), 35-53.
33. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novµk, P., Insertion Electrode Materials forRechargeable Lithium Batteries. Adv. Mater. 1998, 10, 725-763.
34. Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y., On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 1999, 45, 67-86.
35. Kaskhedikar, N. A.; Maier, J., Lithium Storage in Carbon Nanostructures. Adv. Mater. Lett. 2009, 21 (25-26), 2664-2680.
36. Mukherjee, R.; Thomas, A. V.; Datta, D.; Singh, E.; Li, J.; Eksik, O.; Shenoy, V. B.; Koratkar, N., Defect-induced plating of lithium metal within porous graphene networks. Nat. Commun. 2014, 5, 3710.
37. Obrovac, M. N.; Chevrier, V. L., Alloy negative electrodes for Li-ion batteries. Chem. Rev. 2014, 114 (23), 11444-502.
38. Huggins, R. A., Lithium alloy negative electrodes. J. Power Sources 1999, 81-81, 13-19.
39. Chan, C. K.; Ruffo, R.; Hong, S. S.; Cui, Y., Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J. Power Sources 2009, 189 (2), 1132-1140.
40. Ruffo, R.; Hong, S. S.; Chan, C. K.; Huggins, R. A.; Cui, Y., Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes. J. Phys. Chem. 2009, 113, 11390-11398.
41. Yu, S. H.; Lee, S. H.; Lee, D. J.; Sung, Y. E.; Hyeon, T., Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes. Small 2016, 12 (16), 2146-72.
42. Cabana, J.; Monconduit, L.; Larcher, D.; Palacin, M. R., Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22 (35), 170-192.
43. Hassoun, J.; Scrosati, B., Review—Advances in Anode and Electrolyte Materials for the Progress of Lithium-Ion and beyond Lithium-Ion Batteries. J. Electrochem. Soc. 2015, 162 (14), A2582-A2588.
44. Ue, M.; Mori, S., Mobility and Ionic Association of Lithium Salts in a Propylene Carbonate-Ethyl Methyl Carbonate Mixed Solvent. J. Electrochem. Soc. 1995, 142 (8), 2577-2581.
45. Charles W. Walker, J.; Cox, J. D.; Salomon, M., Conductivity and Electrochemical Stability of Electrolytes Containing Organic Solvent Mixtures with Lithium tris(Trifluoromethanesulfonyl)methide. J. Electrochem. Soc. 1996, 143 (4), 80-82.
46. Schmidt, M.; Heider, U.; Kuehner, A.; Oesten, R.; Jungnitz, M.; Ignat'ev, N.; Sartori, P., Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries. Journal of Power Sources 2001, 97-98, 557-560.
47. Zhang, J.; Yue, L.; Hu, P.; Liu, Z.; Qin, B.; Zhang, B.; Wang, Q.; Ding, G.; Zhang, C.; Zhou, X.; Yao, J.; Cui, G.; Chen, L., Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries. Sci. Rep. 2014, 4, 6272.
48. Hassoun, J.; Scrosati, B., A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 2010, 49 (13), 2371-4.
49. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A., A lithium superionic conductor. Nat. Mater. 2011, 10 (9), 682-6.
50. Yamada, T.; Ito, S.; Omoda, R.; Watanabe, T.; Aihara, Y.; Agostini, M.; Ulissi, U.; Hassoun, J.; Scrosati, B., All Solid-State Lithium–Sulfur Battery Using a Glass-Type P2S5–Li2S Electrolyte: Benefits on Anode Kinetics. J. Electrochem. Soc. 2015, 162 (4), A646-A651.
51. Watanabe, M.; Thomas, M. L.; Zhang, S.; Ueno, K.; Yasuda, T.; Dokko, K., Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chem. Rev. 2017, 117 (10), 7190-7239.
52. Matsumoto, H., Review : Ionic Liquids as a Potential Electrolyte for Energy Devices. IEEE International Nanoelectronics Conference (INEC) 2016, 1-4.
53. Arora, P.; Zhang, Z., Battery Separators. Chem. Rev. 2004, 104, 4419−4462.
54. Demirocak, D. E.; Bhushan, B., Probing the aging effects on nanomechanical properties of a LiFePO4 cathode in a large format prismatic cell. J. Power Sources 2015, 280, 256-262.
55. Broussely, M.; Biensan, P.; Bonhomme, F.; Blanchard, P.; Herreyre, S.; Nechev, K.; Staniewicz, R. J., Main aging mechanisms in Li ion batteries. J. Power Sources 2005, 146 (1-2), 90-96.
56. Mukhopadhyay, A.; Sheldon, B. W., Deformation and stress in electrode materials for Li-ion batteries. Prog. Nat. Sci. 2014, 63, 58-116.
57. Ramdon, S.; Bhushan, B., Nanomechanical characterization and mechanical integrity of unaged and aged Li-ion battery cathodes. J. Power Sources 2014, 246, 219-224.
58. Norin, L.; Kostecki, R.; McLarnon, F., Study of Membrane Degradation in High-Power Lithium-Ion Cells. Electrochem. Solid-State Lett. 2002, 5 (4), A67-A769.
59. Vetter, J.; Novák, P.; Wagner, M. R.; Veit, C.; Möller, K. C.; Besenhard, J. O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A., Ageing mechanisms in lithium-ion batteries. J. Power Sources 2005, 147 (1-2), 269-281.
60. Nazri, I.-A.; Pistoia, G., Lithium batteries: Science and technology. 2003.
61. Nagpure, S. C.; Bhushan, B.; Babu, S. S., Multi-Scale Characterization Studies of Aged Li-Ion Large Format Cells for Improved Performance: An Overview. J. Electrochem. Soc. 2013, 160 (11), A2111-A2154.
62. Deng, J.; Wagner, G. J.; Muller, R. P., Phase Field Modeling of Solid Electrolyte Interface Formation in Lithium Ion Batteries. J. Electrochem. Soc. 2013, 160 (3), A487-A496.
63. Zhang, S. S., A review on electrolyte additives for lithium-ion batteries. J. Power Sources 2006, 162 (2), 1379-1394.
64. Arora, P.; White, R. E., Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries. J. Electrochem. Soc. 1998, 145 (10), 3647-3667.
65. Bumbrah, G. S.; Sharma, R. M., Raman spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt. J. Forensic Sci. 2016, 6 (3), 209-215.
66. Moura, C. C.; Tare, R. S.; Oreffo, R. O.; Mahajan, S., Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration. J. R. Soc. Interface. 2016, 13 (118), 1-8.
67. Harks, P. P. R. M. L.; Mulder, F. M.; Notten, P. H. L., In situ methods for Li-ion battery research: A review of recent developments. J. Power Sources 2015, 288, 92-105.
68. Yang, Y.; Liu, X.; Dai, Z.; Yuan, F.; Bando, Y.; Golberg, D.; Wang, X., In Situ Electrochemistry of Rechargeable Battery Materials: Status Report and Perspectives. Adv. Mater. 2017, 29 (31), 1606922.
69. BURBA, C. M.; FRECH, R., Modified Coin Cells for In Situ Raman Spectroelectrochemical Measurements of LixV2O5 for Lithium Rechargeable Batteries. ‎Appl. Spectrosc. 2006, 60 (5), 490-493.
70. Gross, T.; Hess, C., Raman diagnostics of LiCoO2 electrodes for lithium-ion batteries. J. Power Sources 2014, 256, 220-225.
71. Novák, P.; Goers, D.; Hardwick, L.; Holzapfel, M.; Scheifele, W.; Ufheil, J.; Würsig, A., Advanced in situ characterization methods applied to carbonaceous materials. J. Power Sources 2005, 146 (1-2), 15-20.
72. Fang, S.; Yan, M.; Hamers, R. J., Cell design and image analysis for in situ Raman mapping of inhomogeneous state-of-charge profiles in lithium-ion batteries. J. Power Sources 2017, 352, 18-25.
73. Ghanty, C.; Markovsky, B.; Erickson, E. M.; Talianker, M.; Haik, O.; Tal-Yossef, Y.; Mor, A.; Aurbach, D.; Lampert, J.; Volkov, A.; Shin, J.-Y.; Garsuch, A.; Chesneau, F. F.; Erk,C.,Li-Ion Extraction/Insertion of Ni-Rich Li1+x(NiyCozMnz)wO2 Electrodes: In Situ XRD and Raman Spectroscopy Study. ChemElectroChem 2015, 2 (10), 1479-1486.
74. Williams, D. B.; Carter, C. B., Transmission Electron Microscopy: A Textbook for Materials Science. Springer US: 2009.
75. Liu, X. H.; Zheng, H.; Zhong, L.; Huang, S.; Karki, K.; Zhang, L. Q.; Liu, Y.; Kushima, A.; Liang, W. T.; Wang, J. W.; Cho, J.-H.; Epstein, E.; Dayeh, S. A.; Picraux, S. T.; Zhu, T.; Li, J.; Sullivan, J. P.; Cumings, J.; Wang, C.; Mao, S. X.; Ye, Z. Z.; Zhang, S.; Huang, J. Y., Anisotropic Swelling and Fracture of Silicon Nanowires During Lithiation. Nano Lett. 2011, 11, 3312-8.
76. Zeng, Z.; Liang, W. I.; Liao, H. G.; Xin, H. L.; Chu, Y. H.; Zheng, H., Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 2014, 14 (4), 1745-50.
77. Wang, J.; Tang, Y.; Yang, J.; Li, R.; Liang, G.; Sun, X., Nature of LiFePO4 aging process: Roles of impurity phases. J. Power Sources 2003, 454-463.
78. Tsuda, T.; Kanetsuku, T.; Sano, T.; Oshima, Y.; Ui, K.; Yamagata, M.; Ishikawa, M.; Kuwabata, S., In situ SEM observation of the Si negative electrode reaction in an ionic-liquid-based lithium-ion secondary battery. Microsc. 2015, 64 (3), 159-68.
79. Chen, D.; Indris, S.; Schulz, M.; Gamer, B.; Mönig, R., In situ scanning electron microscopy on lithium-ion battery electrodes using an ionic liquid. J. Power Sources 2011, 196 (15), 6382-6387.
80. Prutton, M.; Gomati, M. E., Scanning Auger Electron Microscopy. John Wiley Sons: 2006.
81. Sutter, P.; Sutter, E., Thickness determination of few-layer hexagonal boron nitride films by scanning electron microscopy and Auger electron spectroscopy. APL Mater. 2014, 2 (9), 092502.
82. Xu, M.; Fujita, D.; Gao, J.; Hanagata, N., Auger Electron Spectroscopy: A Rational Method for Determining Thickness of Graphene Films. ACS Nano 2010, 4 (5), 2937–2945.
83. Luo, J.; Zhao, X.; Wu, J.; Jang, H. D.; Kung, H. H.; Huang, J., Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes. J. Phys. Chem. Lett. 2012, 3, 1824−1829.
84. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7 (11), 699-712.
85. Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F., Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10 (4), 1271-5.
86. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5 (4), 263-75.
87. Lauritsen, J. V.; Kibsgaard, J.; Helveg, S.; Topsoe, H.; Clausen, B. S.; Laegsgaard, E.; Besenbacher, F., Size-dependent structure of MoS2 nanocrystals. Nat. Nanotechnol. 2007, 2 (1), 53-8.
88. Bertolazzi, S.; Brivio, J.; Kis, A., Stretching and Breaking of Ultrathin MoS2. ACS Nano 2011, 5 (12), 9703–9709
89. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3 (9), 563-8.
90. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H.-Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V., Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331, 568-571.
91. Wu, S.; Huang, C.; Aivazian, G.; Ross, J. S.; Cobden, D. H.; Xu, X., VaporSolid Growth of High Optical Quality MoS2 Monolayers with Near-Unity Valley Polarization. ACS Nano 2013, 7 (3), 2768–2772.
92. Martin, P. M., Handbook of Deposition Technologies for Films and Coatings. William Andrew Publishing: 2010.
93. Lee, Y. H.; Zhang, X. Q.; Zhang, W.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T.; Chang, C. S.; Li, L. J.; Lin, T. W., Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24 (17), 2320-5.
94. Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lazi, P.; Gibertini, M.; Marzari, N.; Sanchez, O. L.; Kung, Y.-C.; Krasnozhon, D.; Chen, M.-W.; Bertolazzi, S.; Gillet, P.; Morral, A. F. i.; Radenovic, A.; Kis, A., Large-Area Epitaxial Monolayer MoS2. ACS Nano 2015, 9 (4), 4611–4620
95. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F., Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105 (13), 136805.
96. Tiong, K. K.; Huang, Y. S.; Ho, C. H., Electrical and optical anisotropic properties of rhenium-doped molybdenum disulphide. J. Alloys Compd. 2001, 317–318, 208–212.
97. Ivanovskaya, V. V.; Zobelli, A.; Gloter, A.; Brun, N.; Serin, V.; Colliex, C., Ab initiostudy of bilateral doping within theMoS2-NbS2 system. Phys. Rev. B 2008, 78 (13), 134104.
98. Shi, Y.; Huang, J. K.; Jin, L.; Hsu, Y. T.; Yu, S. F.; Li, L. J.; Yang, H. Y., Selective decoration of Au nanoparticles on monolayer MoS2 single crystals. Sci. Rep. 2013, 3, 1839.
99. Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D., Lithium Ion Battery Applications of Molybdenum Disulfide (MoS2) Nanocomposites. Energy Environ. Sci. 2014, 7, 209-231.
100. Long, R.; Prezhdo, O. V., Quantum Coherence Facilitates Efficient Charge Separation at a MoS2/MoSe2 van der Waals Junction. Nano Lett. 2016, 16 (3), 1996-2003.
101. lijima, S., Helical microtubules of graphitic carbon. Nature 1991, 357, 56-58.
102. Hasan, M.; Huq, M. F.; Mahmood, Z. H., A review on electronic and optical properties of silicon nanowire and its different growth techniques. SpringerPlus 2013, 2 (151), 1-9.
103. Cui, Y.; Lieber, C. M., Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks. Science 2001, 291, 851-853.
104. Dong, J. C.; Li, H.; Sun, F. W.; Zhang, K.; Li, Y. F., Theoretical Study of the Properties of Si Nanowire Electronic Devices. J. Phys. Chem. C 2011, 115 (28), 13901-13906.
105. Nolan, M.; O’Callaghan, S.; Fagas, G.; Greer, J. C., Silicon Nanowire Band Gap Modification. Nano Lett. 2007, 7 (1), 34-38.
106. Guichard, A. R.; Barsic, D. N.; Sharma, S.; Kamins, T. I.; Brongersma, M. L., Tunable Light Emission from Quantum-Confined Excitons in TiSi2-Catalyzed Silicon Nanowires. Nano Lett. 2006, 6 (9), 2140-2144.
107. Cui, Y.; Duan, X.; Hu, J.; Lieber, C. M., Doping and Electrical Transport in Silicon Nanowires. J. Phys. Chem. B 2000, 104, 5213-5216.
108. Xing, Y. J.; Yu, D. P.; Xi, Z. H.; Xue, Z. Q., Silicon nanowires grown from Au-coated Si substrate. Appl. Phys. A-Mater. 2003, 76 (4), 551-553.
109. Werner, P.; Zakharov, N. D.; Gerth, G.; Schubert, L.; Gösele, U., On the formation of Si nanowires by molecular beam epitaxy. Int. J. Mat. Res. 2006, 97 (7), 1008-1015.
110. Zhang, Y. F.; Tang, Y. H.; Wang, N.; Yu, D. P.; Lee, C. S.; Bello, I.; Lee, S. T., Silicon nanowires prepared by laser ablation at high temperature. Appl. Phys. Lett. 1998, 72 (15), 1835-1837.
111. Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A., Control of Thickness and Orientation of Solution-Grown Silicon Nanowires. Science 2000, 287 (5457), 171-1473.
112. Kim, B.-S.; Koo, T.-W.; Lee, J.-H.; Kim, D. S.; Jung, Y. C.; Hwang, S. W.; Choi, B. L.; Lee, E. K.; Kim, J. M.; Whang, D., Catalyst-free Growth of Single-Crystal Silicon and Germanium Nanowires. Nano Lett. 2009, 9 (2), 864-869.
113. Wagner, R. S.; Ellis, W. C., Vapor‐Liquid‐Solid Mechanism of Single Crystal Growth. Appl. Phys. Lett. 1964, 4 (5), 89-90.
114. Wikipedia, https://en.wikipedia.org/w/index.php?title=Vapor%E2%80%93liquid%E2%80%93solid_method oldid=935420512.
115. Kawashima, T.; Saitoh, T.; Komori, K.; Fujii, M., Synthesis of Si nanowires with a thermally oxidized shell and effects of the shell on transistor characteristics. Thin Solid Films 2009, 517 (16), 4520-4526.
116. Kamins, T. I.; Williams, R. S.; Chen, Y.; Chang, Y. L.; Chang, Y. A., Chemical vapor deposition of Si nanowires nucleated by TiSi2 islands on Si. Appl. Phys. Lett. 2000, 76 (5), 562-564.
117. Chiang, Y.-T.; Chou, Y.; Huang, C.-H.; Lin, W.-T.; Chou, Y.-C., Dependence of the structure and orientation of VSS grown Si nanowires on an epitaxy process. CrystEngComm. 2019, 21 (29), 4298-4304.
118. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3 (1), 31-35.
119. III, J. R. M.; Kayes, B. M.; Filler, M. A.; Putnam, M. C.; Kelzenberg, M. D.; Atwater, H. A.; Lewis, N. S., High Aspect Ratio Silicon Wire Array Photoelectrochemical Cells. J. Am. Chem. Soc. 2007, 129 (41), 12346-47.
120. Xiong, F.; Wang, H.; Liu, X.; Sun, J.; Brongersma, M.; Pop, E.; Cui, Y., Li Intercalation in MoS2: In Situ Observation of Its Dynamics and Tuning Optical and Electrical Properties. Nano Lett. 2015, 15, 6777-6784.
121. Zeng, Z.; Zhang, X.; Bustillo, K.; Ni, K.; Gammer, C.; Xu, J.; Zheng, H., In Situ Study of Lithiation and Delithiation of MoS2 Nanosheets Using Electrochemical Liquid Cell Transmission Electron Microscopy. Nano Lett. 2015, 15, 5214-5220.
122. Wang, L.; Xu, Z.; Wang, W.; Bai, X., Atomic mechanism of dynamic electrochemical lithiation processes of MoS(2) nanosheets. J. Am. Chem. Soc. 2014, 136 (18), 6693-7.
123. McDowell, M. T.; Lee, S. W.; Harris, J. T.; Korgel, B. A.; Wang, C.; Nix, W. D.; Cui, Y., In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres. Nano Lett. 2013, 13, 758-64.
124. Ashuri, M.; He, Q.; Shaw, L. L., Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 2016, 8 (1), 74-103.
125. Zhou, D.; Shu, H.; Hu, C.; Jiang, L.; Liang, P.; Chen, X., Unveiling the Growth Mechanism of MoS2 with Chemical Vapor Deposition: From Two-Dimensional Planar Nucleation to Self-Seeding Nucleation. Cryst. Growth Des. 2018, 18 (2), 1012-1019.
126. Hussain, S.; Shehzad, M. A.; Vikraman, D.; Iqbal, M. Z.; Singh, J.; Khan, M. F.; Eom, J.; Seo, Y.; Jung, J., Controlled synthesis and optical properties of polycrystalline molybdenum disulfide atomic layers grown by chemical vapor deposition. J. Alloys Compd. 2015, 653, 369-378.
127. Perkgoz, N. K.; Bay, M., Investigation of Single-Wall MoS2 Monolayer Flakes Grown by Chemical Vapor Deposition. Nanomicro. Lett. 2016, 8 (1), 70-79.
128. Yu, Y.; Li, C.; Liu, Y.; Su, L.; Zhang, Y.; Cao, L., Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 2013, 3, 1866.
129. H. Li ; Q. Zhang; C. C. Yap; B. K. Tay; T. H. Tong ; A. Olivier; Baillargeat, D., From Bulk to Monolayer MoS2 : Evolution of Raman Scattering. Adv. Funct. Mater. 2012, 22, 1385-1390.
130. Lin, Y. C.; Chang, C. Y.; Ghosh, R. K.; Li, J.; Zhu, H.; Addou, R.; Diaconescu, B.; Ohta, T.; Peng, X.; Lu, N.; Kim, M. J.; Robinson, J. T.; Wallace, R. M.; Mayer, T. S.; Datta, S.; Li, L. J.; Robinson, J. A., Atomically thin heterostructures based on single-layer tungsten diselenide and graphene. Nano Lett. 2014, 14 (12), 6936-41.
131. Yang, J.; Wang, Y.; Li, W.; Wang, L.; Fan, Y.; Jiang, W.; Luo, W.; Wang, Y.; Kong, B.; Selomulya, C.; Liu, H. K.; Dou, S. X.; Zhao, D., Amorphous TiO2 Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High-Performance and Safe Lithium Storage. Adv. Mater. 2017, 29 (48), 1700523.
132. Kissinger, P. T.; Heineman, W. R., Cyclic Voltammetry. J. Chem. Educ. 1983, 60 (9), 702-706.
133. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9 (1), 30-5.
134. Benavente, E.; Ana, M. A. S.; Mendiza´bal, F.; Gonza´lez, G., Intercalation chemistry of molybdenum disulfide. Coord. Chem. Rev. 2001, 224 (2002), 87–109.
135. Michan, A. L.; Leskes, M.; Grey, C. P., Voltage Dependent Solid Electrolyte Interphase Formation in Silicon Electrodes: Monitoring the Formation of Organic Decomposition Products. Chem. Mater. 2015, 28, 385-398.
136. Wang, T.; Chen, S.; Pang, H.; Xue, H.; Yu, Y., MoS2-Based Nanocomposites for Electrochemical Energy Storage. Adv. Sci. 2017, 4, 1600289.
137. Gao, Y.-P.; Wu, X.; Huang, K.-J.; Xing, L.-L.; Zhang, Y.-Y.; Liu, L., Two-Dimensional Transition Metal Diseleniums for Energy Storage Application: a Review of Recent Developments. CrystEngComm. 2017, 19, 404-418.
138. Das, S. l. K.; Mallavajula, R.; Jayaprakash, N.; Archer, L. A., Self-Assembled MoS2–Carbon Nanostructures: Influence of Nanostructuring and Carbon on Lithium Battery Performance. J. Mater. Chem. 2012, 22.
139. George, C.; Morris, A. J.; Modarres, M. H.; De Volder, M., Structural Evolution of Electrochemically Lithiated MoS2 Nanosheets and the Role of Carbon Additive in Li-Ion Batteries. Chem. Mater. 2016, 28, 7304-7310.
140. Watts, J. F.; Wolstenholme, J., An Introduction to Surface Analysis by XPS and AES. 2003.
141. Patnaik, S. G.; Vedarajan, R.; Matsumi, N., BIAN Based Functional Diimine Polymer Binder for High Performance Li Ion Batteries. J Mater. Chem. A 2017, (34), 17909-17919.
142. Hoffmann, M.; Zier, M.; Oswald, S.; Eckert, J., Challenges for Lithium Species Identification in Complementary Auger and X-ray Photoelectron Spectroscopy. J. Power Sources 2015, 288, 434-440.
143. Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y., Size-Dependent Fracture of Silicon Nanoparticles During Lithiation. ACS Nano 2012, 6 (2), 1522–1531.
144. Kim, H.; Seo, M.; Park, M. H.; Cho, J., A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries. Angew. Chem. Int. Ed. 2010, 49 (12), 2146-9.
145. Memarzadeh Lotfabad, E.; Kalisvaart, P.; Cui, K.; Kohandehghan, A.; Kupsta, M.; Olsen, B.; Mitlin, D., ALD TiO2 coated silicon nanowires for lithium ion battery anodes with enhanced cycling stability and coulombic efficiency. Phys. Chem. Chem. Phys. 2013, 15 (32), 13646-57.
146. Pfanzelt, M.; Kubiak, P.; Fleischhammer, M.; Wohlfahrt-Mehrens, M., TiO2 rutile—An alternative anode material for safe lithium-ion batteries. J. Power Sources 2011, 196 (16), 6815-6821.
147. Wei, Z.; Li, R.; Huang, T.; Yu, A., Fabrication and electrochemical properties of Si/TiO2 nanowire array composites as lithium ion battery anodes. J. Power Sources 2013, 238, 165-172.
148. Zhang, J.-J.; Wei, Z.; Huang, T.; Liu, Z.-L.; Yu, A.-S., Carbon coated TiO2–SiO2 nanocomposites with high grain boundary density as anode materials for lithium-ion batteries. J. Mater. Chem. A 2013, 1 (25), 7360-9.
149. Zheng, J. M.; Li, J.; Zhang, Z. R.; Guo, X. J.; Yang, Y., The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ion. 2008, 179 (27-32), 1794-1799.
150. Luo, W.; Chen, X.; Xia, Y.; Chen, M.; Wang, L.; Wang, Q.; Li, W.; Yang, J., Surface and Interface Engineering of Silicon-Based Anode Materials for Lithium-Ion Batteries. Adv. Energy Mater. 2017, 7 (24), 1701083-111.
151. Green, M.; Fielder, E.; Scrosati, B.; Wachtler, M.; Morenob, J. S., Structured Silicon Anodes for Lithium Battery Applications. Electrochem. Solid-State Lett. 2003, 6 (5), A75-A79.
152. Xu, Z.; Yang, J.; Zhang, T.; Nuli, Y.; Wang, J.; Hirano, S.-i., Silicon Microparticle Anodes with Self-Healing Multiple Network Binder. Joule 2018, 2 (5), 950-961.
153. Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z., Self-Healing Chemistry Enables the Stable Operation of Silicon Microparticle Anodes for High-Energy Lithium-Ion Batteries. Nat. Chem. 2013, 5 (12), 1042-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17587-
dc.description.abstract鋰離子電池是近幾年應用最為廣泛的儲能裝置,提高鋰電池的電量與循環壽命是現在電池研究中非常重要的議題。
為了有效提升電池的效能,了解電極材料的反應與形貌變化成了非常關鍵的資訊。因此,在本研究中,我們開發出新型的臨場掃描式電子顯微鏡觀察方法,用於分析電極材料在不同電壓下的結構變化,以了解其電量衰退的機制。我們以化學氣相沉積法成長出單層且不連續的二硫化鉬薄膜作為電極材料並進行臨場觀察,實驗發現單層二硫化鉬薄膜在當測試電壓由開路電位下降至1.1 V時,薄膜的形貌出現了巨大的轉變,薄膜材料不再平整,取而代之的是許多塊狀的生成物產生。接著將電壓降至0.5 V時,出現大量的島狀結構且表面更加粗糙。此外,我們也試圖以穿透式電子顯微鏡、歐傑電子能譜分析儀以及電化學測試的方法對多層二硫化鉬薄膜進行鋰化過程的觀察以了解其反應機制。我們認為二硫化鉬在鋰電池中1.1V的反應不只有過去研究所提到的離子插層反應而已,而是有更劇烈的相轉變過程,這樣的變化很可能是導致二硫化鉬電極壽命降低的主要原因之一。
本研究也以臨場掃描式電子顯微鏡觀察矽奈米線在鋰電池中的反應。觀察後發現,矽奈米線在10 mV反應10小時後,直徑的部分有約150%的膨脹率。接著,在10 mV反應25小時後,我們觀察到矽奈米線會因為過度的膨脹而在表面出現裂痕,最終導致破裂。這樣的現象也同樣的影響了電極的穩定性。因此,我們試圖利用原子層沉積法在矽奈米線上鍍上一層TiO2保護層以減低矽奈米線膨脹所造成的問題。雖然許多文章聲稱TiO2具有一定的可塑性因此可以用以承受矽奈米線膨脹所產生的應力,但在實驗後發現實際上並沒有這麼理想,在10 mV反應10小時的條件下,這個TiO2保護層就出現碎裂的問題,仍然無法有效解決矽奈米線因為膨脹導致碎裂的問題。本研究希望能透過對於鋰電池電極材料的觀察來了解電極的反應與變化以利未來在電池修飾上有更明確的方向。
zh_TW
dc.description.abstractLithium ion battery is the most popular and widely used energy storage system. To increase the capacity and cycle stability is an important issue for the new generation of lithium ion battery.
In order to improve the performance and efficiency of lithium ion battery, understanding the reaction mechanisms and morphology changes of electrode materials is essential. In this work, we develop a new in-situ scanning electron microscopy (SEM) technique to observe the morphological evolution of the electrode materials for understanding the mechanism of capacity decay of lithium ion batteries. We apply CVD method to synthesize monolayer MoS2 for the anode material and analyze the anode using in-situ SEM. The monolayer MoS2 has significant morphological changes after discharging from the open circuit voltage to 1.1 V. When the cell is discharged to 0.5 V, the MoS2 anode becomes rough and loses the thin-film morphology. We also use Transmission electron microscopy, Auger electron spectroscopy and electrochemical analysis on multilayer MoS2 thin films in order to understand the lithiation mechanism thoroughly. Based on the results, we believe the reaction at 1.1 V is not only Li+ ion intercalation but also accompanied by a phase transformation, which could be the reason of capacity fading of MoS2 anode.
In this work, Si nanowires are also studied by the in-situ SEM observation. The Si nanowires as the anode material exhibit obvious expansion when it is lithiated at 10 mV for 10 h. Further lithiation for 25 h, the Si nanowires are even cracked due to excessive expansion. Crack is one of the main causes that can reduce the electrochemical performance of Si anode. Therefore, we coat a TiO2 protective layer on Si nanowires to decrease the effect of extensive expansion. Many reports suggest the TiO2 layer is an elastic material that can accommodate the volume expansion of the Si anode, but we find that, after lithiation of 10 mV for 10 h, the TiO2 protective layer is still cracked. These results also show that the in-situ SEM observation method developed in this study is useful for understanding the reaction mechanisms in lithium ion battery and the effectiveness of material modification.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:23:20Z (GMT). No. of bitstreams: 1
U0001-0408202018574700.pdf: 9687283 bytes, checksum: 71cfbf639bcf2b525f705a8ec1f377b4 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES ix
LIST OF TABLES xvii
Chapter 1 Background 1
Chapter 2 Introduction 3
2.1 Working principle of lithium ion battery 3
2.2 Cathode material 4
2.2.1 Cathodes of layered structure 5
2.2.2 Cathodes of spinel structure 6
2.2.3 Cathode of olivine structure 6
2.3 Anode materials 8
2.3.1 Anodes of intercalation mechanism 8
2.3.2 Anode of alloying mechanism 10
2.3.3 Anode of conversion mechanism 11
2.4 Electrolyte for lithium ion battery 12
2.4.1 Gel electrolytes 14
2.4.2 Solid-state electrolytes 15
2.4.3 Ionic liquid electrolytes 15
2.5 Separator 16
2.6 Degradation mechanisms in electrode 17
2.6.1 Chemical degradation 18
2.6.2 Mechanical degradation 18
2.6.3 Solid electrolyte interphase (SEI) 19
2.7 Analytical Techniques for studying electrode materials 22
2.7.1 Raman spectroscopy 22
2.7.2 Transmission electron microscopy 24
2.7.3 Scanning electron microscopy 27
2.7.4 Auger electron spectroscopy 30
2.8 Introduction of MoS2 nanosheets 33
2.8.1 Physical properties of MoS2 nanosheets 33
2.8.2 Synthesis methods of MoS2 nanosheets 35
2.8.3 Applications of MoS2 nanosheets 38
2.9 Introduction of silicon nanowires 39
2.9.1 Physical properties of silicon nanowires 39
2.9.2 Growth of silicon nanowires 40
2.9.3 Applications of silicon nanowires 42
2.10 Thesis objectives 42
Chapter 3 Experimental section 44
3.1 Synthesis of monolayer MoS2 atomic sheets 44
3.1.1 Synthesis of monolayer MoS2 atomic sheets by CVD 44
3.1.2 Thickness and morphology determination 46
3.2 Synthesis of multilayer MoS2 nanosheets 48
3.2.1 Synthesis of multilayer MoS2 nanosheets by CVD 48
3.2.2 Thickness and morphology determination 48
3.3 Growth and analysis of Si nanowires 50
3.3.1 Synthesis of Si nanowires via VLS method 50
3.3.2 SEM and TEM analysis of as-grown Si nanowires 52
3.4 Deposition of TiO2 layer on Si nanowires 53
3.4.1 Deposition of TiO2 layer via ALD method 53
3.5 Specimen preparation for electrical measurements 54
3.5.1 Electrical measurement of a lithium ion battery 54
3.5.2 Procedures of preparing a cell for electrical measurements 55
3.5.3 Ex-situ TEM specimen preparation 57
3.5.4 Ex-situ SEM and AES specimen preparation 59
3.5.5 Design of in-situ SEM experiments 59
3.6 Analytical instruments used in the studies 63
Chapter 4 Microstructural analysis of MoS2 anode in lithium ion batteries 64
4.1 In-situ SEM observation of morphology evolution of monolayer MoS2 atomic sheets 64
4.2 In-situ observation of morphology evolution of multilayer MoS2 nanosheets 66
4.3 Ex-situ observation of morphology changes and element distribution of multilayer MoS2 nanosheets 69
4.3.1 Understanding the reactions of MoS2 by cyclic voltammetry 70
4.3.2 Observation of morphology evolution by ex-situ TEM 73
4.3.3 Observation of morphology evolution and element distribution by ex-situ SEM and AES 74
4.4 Summary 78
Chapter 5 Microstructural analysis of Si nanowires in a lithium ion battery 80
5.1 In-situ SEM and ex-situ TEM observations of Si nanowires electrode 81
5.2 In-situ SEM and ex-situ TEM observations of TiO2-coated Si nanowires 84
5.3 Summary 87
Chapter 6 Conclusions 88
REFERENCE 90
dc.language.isoen
dc.title以臨場掃描式電子顯微鏡分析技術研究鋰離子電池陽極材料於鋰化反應時之微結構變化zh_TW
dc.titleIn-situ Scanning Electron Microscopy Analysis of the Lithiation-induced Microstructural Evolution of the Anode Material in Lithium Ion Batteriesen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.oralexamcommittee王迪彥(Di-Yan Wang),吳恆良(Heng-Liang Wu),李紹先(Shao-Sian Li),陳柏均(Po-Chun Chen)
dc.subject.keyword二硫化鉬薄膜,矽奈米線,二氧化鈦,鋰化反應,臨場掃描式電子顯微鏡,穿透式電子顯微鏡,歐傑電子能譜分析儀,zh_TW
dc.subject.keywordMoS2,Si nanowires,TiO2,lithiation,in-situ scanning electron microscopy,transmission electron microscopy,Auger electron spectroscopy,en
dc.relation.page112
dc.identifier.doi10.6342/NTU202002409
dc.rights.note未授權
dc.date.accepted2020-08-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-0408202018574700.pdf
  未授權公開取用
9.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved