請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17269完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛承輝 | |
| dc.contributor.author | Shih-Che Lin | en |
| dc.contributor.author | 林詩哲 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:04:06Z | - |
| dc.date.copyright | 2013-08-23 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-14 | |
| dc.identifier.citation | REFERENCE
[1] A. Sommerfeld, 'Ueber die Fortpflanzung elektrodynamischer Wellen langs eines Drahtes', Annalen der Physik 1899, 303(2), pp. 233-290. [2] J. Zenneck, 'Uber die Fortpflanzung ebener elektromagnetischer Wellen langs einer ebenen Leiterflache und ihre Beziehung zur drahtlosen Telegraphie', Annalen der Physik 1907, 328(10), pp. 846-866. [3] R. W. Wood, 'On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum', Proceedings of the Physical Society of London 1902, 18(1), pp. 269. [4] U. Fano, 'The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld?s Waves)', J. Opt. Soc. Am. 1941, 31(3), pp. 213-222. [5] E. Kretschmann and H. Raether, 'Radiative decay of non radiative surface plasmons excited by light', Z. Naturforsch. 1968, (23A), pp. 2135-2136. [6] A. V. Zayats, I. I. Smolyaninov and A. A. Maradudin, 'Nano-optics of surface plasmon polaritons', Physics Reports 2005, 408(3–4), pp. 131-314. [7] M. Malmqvist, 'Biospecific interaction analysis using biosensor technology', Nature 1993, 361(6408), pp. 186-187. [8] F. C. Chien and S. J. Chen, 'A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes', Biosensors and Bioelectronics 2004, 20(3), pp. 633-642. [9] W. Knoll, 'INTERFACES AND THIN FILMS AS SEEN BY BOUND ELECTROMAGNETIC WAVES', Annual Review of Physical Chemistry 1998, 49(1), pp. 569-638. [10] R. Berndt, J. K. Gimzewski and P. Johansson, 'Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces', Physical Review Letters 1991, 67(27), pp. 3796-3799. [11] R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz and J. G. Zheng, 'Photoinduced Conversion of Silver Nanospheres to Nanoprisms', Science 2001, 294(5548), pp. 1901-1903. [12] R. Jin, Y. Charles Cao, E. Hao, G. S. Metraux, G. C. Schatz and C. A. Mirkin, 'Controlling anisotropic nanoparticle growth through plasmon excitation', Nature 2003, 425(6957), pp. 487-490. [13] B. Rothenhausler and W. Knoll, 'Surface–plasmon microscopy', Nature 1988, 332(6165), pp. 615-617. [14] G. Flatgen, K. Krischer, B. Pettinger, K. Doblhofer, H. Junkes and G. Ertl, 'Two-Dimensional Imaging of Potential Waves in Electrochemical Systems by Surface Plasmon Microscopy', Science 1995, 269(5224), pp. 668-671. [15] G. Mie, 'Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen', Annalen der Physik 1908, 330(3), pp. 377-445. [16] J. D. Jackson, Classical electrodynamics. 3rd ed. ed.; Wiley: New York, {NY}, 1999. [17] C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles. 1st ed. ed.; Wiley &Sons,Inc.: New York, {NY}, 1983. [18] D. Boyer, P. Tamarat, A. Maali, B. Lounis and M. Orrit, 'Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers', Science 2002, 297(5584), pp. 1160-1163. [19] M. Vollmer and U. Kreibig, 'Optical properties of metal clusters', Springer Ser. Mat. Sci 1995, 25. [20] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz and S. Schultz, 'Shape effects in plasmon resonance of individual colloidal silver nanoparticles', The Journal of Chemical Physics 2002, 116(15), pp. 6755-6759. [21] M. Meier and A. Wokaun, 'Enhanced fields on large metal particles: dynamic depolarization', Opt. Lett. 1983, 8(11), pp. 581-583. [22] T. Kokkinakis and K. Alexopoulos, 'Observation of Radiative Decay of Surface Plasmons in Small Silver Particles', Physical Review Letters 1972, 28(25), pp. 1632-1634. [23] M. B. Mohamed, V. Volkov, S. Link and M. A. El-Sayed, 'The `lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal', Chemical Physics Letters 2000, 317(6), pp. 517-523. [24] C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson and P. Mulvaney, 'Drastic Reduction of Plasmon Damping in Gold Nanorods', Physical Review Letters 2002, 88(7), pp. 077402. [25] Jiang, K. Bosnick, M. Maillard and L. Brus, 'Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals', The Journal of Physical Chemistry B 2003, 107(37), pp. 9964-9972. [26] K. Li, M. I. Stockman and D. J. Bergman, 'Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens', Physical Review Letters 2003, 91(22), pp. 227402. [27] D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino and W. E. Moerner, 'Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible', Nano Letters 2004, 4(5), pp. 957-961. [28] L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kall, S. Zou and G. C. Schatz, 'Confined Plasmons in Nanofabricated Single Silver Particle Pairs: Experimental Observations of Strong Interparticle Interactions', The Journal of Physical Chemistry B 2004, 109(3), pp. 1079-1087. [29] P. K. Jain, W. Huang and M. A. El-Sayed, 'On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation', Nano Letters 2007, 7(7), pp. 2080-2088. [30] C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu and P.-T. Lee, 'Plasmonic Coupling in Gold Nanoring Dimers: Observation of Coupled Bonding Mode', Nano Letters 2012, 12(3), pp. 1648-1654. [31] H. Chen, Z. Sun, W. Ni, K. C. Woo, H.-Q. Lin, L. Sun, . . . J. Wang, 'Plasmon Coupling in Clusters Composed of Two-Dimensionally Ordered Gold Nanocubes', Small 2009, 5(18), pp. 2111-2119. [32] H. Katja, B. Michael, L. Gerd and C. Silke, 'Plasmonic dimer antennas for surface enhanced Raman scattering', Nanotechnology 2012, 23(18), pp. 185303. [33] D. R. Ward, F. Huser, F. Pauly, J. C. Cuevas and D. Natelson, 'Optical rectification and field enhancement in a plasmonic nanogap', Nat Nano 2010, 5(10), pp. 732-736. [34] M. Danckwerts and L. Novotny, 'Optical Frequency Mixing at Coupled Gold Nanoparticles', Physical Review Letters 2007, 98(2), pp. 026104. [35] A. Bouhelier, M. R. Beversluis and L. Novotny, 'Characterization of nanoplasmonic structures by locally excited photoluminescence', Applied Physics Letters 2003, 83(24), pp. 5041-5043. [36] A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, . . . H. Park, 'Near-field electrical detection of optical plasmons and single-plasmon sources', Nat Phys 2009, 5(7), pp. 475-479. [37] N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, . . . G. Hofler, 'Plasmonic quantum cascade laser antenna', Applied Physics Letters 2007, 91(17), pp. 173113-3. [38] R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, . . . X. Zhang, 'Plasmon lasers at deep subwavelength scale', Nature 2009, 461(7264), pp. 629-632. [39] Y. Kane, 'Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media', Antennas and Propagation, IEEE Transactions on 1966, 14(3), pp. 302-307. [40] A. Taflove and M. E. Brodwin, 'Computation of the Electromagnetic Fields and Induced Temperatures Within a Model of the Microwave-Irradiated Human Eye', Microwave Theory and Techniques, IEEE Transactions on 1975, 23(11), pp. 888-896. [41] A. Taflove and M. E. Brodwin, 'Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations', Microwave Theory and Techniques, IEEE Transactions on 1975, 23(8), pp. 623-630. [42] A. Taflove, 'Application of the Finite-Difference Time-Domain Method to Sinusoidal Steady-State Electromagnetic-Penetration Problems', Electromagnetic Compatibility, IEEE Transactions on 1980, EMC-22(3), pp. 191-202. [43] G. Mur, 'Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations', Electromagnetic Compatibility, IEEE Transactions on 1981, EMC-23(4), pp. 377-382. [44] C. Dok Hee and W. J. R. Hoefer, 'The Finite-Difference-Time-Domain Method and its Application to Eigenvalue Problems', Microwave Theory and Techniques, IEEE Transactions on 1986, 34(12), pp. 1464-1470. [45] D. M. Sullivan, O. P. Gandhi and A. Taflove, 'Use of the finite-difference time-domain method for calculating EM absorption in man models', Biomedical Engineering, IEEE Transactions on 1988, 35(3), pp. 179-186. [46] J. G. Maloney, G. S. Smith and W. R. Scott, 'Accurate computation of the radiation from simple antennas using the finite-difference time-domain method', Antennas and Propagation, IEEE Transactions on 1990, 38(7), pp. 1059-1068. [47] P. A. Tirkas and C. A. Balanis, 'Finite-difference time-domain technique for radiation by horn antennas', Antennas and Propagation Society International Symposium, 1991. AP-S. Digest 1991, pp. 1750-1753 vol.3. [48] D. S. Katz, M. J. Piket-May, A. Taflove and K. R. Umashankar, 'FDTD analysis of electromagnetic wave radiation from systems containing horn antennas', Antennas and Propagation, IEEE Transactions on 1991, 39(8), pp. 1203-1212. [49] R. W. Ziolkowski and J. B. Judkins, 'Full-wave vector Maxwell equation modeling of the self-focusing of ultrashort optical pulses in a nonlinear Kerr medium exhibiting a finite response time', J. Opt. Soc. Am. B 1993, 10(2), pp. 186-198. [50] P. M. Goorjian and A. Taflove, 'Direct time integration of Maxwell?s equations in nonlinear dispersive media for propagation and scattering of femtosecond electromagnetic solitons', Opt. Lett. 1992, 17(3), pp. 180-182. [51] R. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler and M. Schneider, 'A frequency-dependent finite-difference time-domain formulation for dispersive materials', Electromagnetic Compatibility, IEEE Transactions on 1990, 32(3), pp. 222-227. [52] T. Kashiwa and I. Fukai, 'A treatment by the FD-TD method of the dispersive characteristics associated with electronic polarization', Microwave and Optical Technology Letters 1990, 3(6), pp. 203-205. [53] J.-P. Berenger, 'A perfectly matched layer for the absorption of electromagnetic waves', Journal of Computational Physics 1994, 114(2), pp. 185-200. [54] D. S. Katz, E. T. Thiele and A. Taflove, 'Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes', Microwave and Guided Wave Letters, IEEE 1994, 4(8), pp. 268-270. [55] H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, . . . Y.-H. Lee, 'Electrically Driven Single-Cell Photonic Crystal Laser', Science 2004, 305(5689), pp. 1444-1447. [56] C. Andreas, G. Marie-Christine, C. Maria, K. Sven and K. Niels, 'Age-dependent tissue-specific exposure of cell phone users', Physics in Medicine and Biology 2010, 55(7), pp. 1767. [57] H. Zhao, S. Crozier and F. Liu, 'Finite difference time domain (FDTD) method for modeling the effect of switched gradients on the human body in MRI', Magnetic Resonance in Medicine 2002, 48(6), pp. 1037-1042. [58] K. Wang, L. Cheng, X. Y. Wang and C. Y. Fu, 'Simulation and Analysis of Stealth Fighter RCS in High-Frequency Band', Advanced Materials Research 2012, 571, pp. 547-550. [59] D. B. Davidson, Computational electromagnetics for RF and microwave engineering. Cambridge University Press: 2005. [60] A. Tavlove and S. C. Hagness, 'Computational electrodynamics: the finite-difference time-domain method', Artech House, Norwood, MA 1995, 2062. [61] F. Solutions, 'Lumerical Solutions Inc', Vancouver, British Columbia, Canada (Accessed January 2013), http://www. lumerical. com/tcad-products/fdtd 2003. [62] C. M. Studio, 'Computer Simulation Technology', Darmstadt, Germany 2009. [63] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos and S. G. Johnson, 'MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method', Computer Physics Communications 2010, 181(3), pp. 687-702. [64] A. Smekal, 'Zur Quantentheorie der Dispersion', Naturwissenschaften 1923, 11(43), pp. 873-875. [65] C. Raman, 'A new radiation', Indian Journal of physics 1928, 2, pp. 387-398. [66] G. Placzek, Rayleigh-Streuung und Raman-Effekt. Akad. Verlag-Ges.: 1934; Vol. 2. [67] E. R. Menzel, 'Interaction of Light with Molecules—An Overview', Applied Spectroscopy Reviews 1999, 34(4), pp. 209-247. [68] H. Haken and H. C. Wolf, Molecular physics and elements of quantum chemistry: introduction to experiments and theory. Springer Verlag: 1995. [69] M. Fleischmann, P. J. Hendra and A. J. McQuillan, 'Raman spectra of pyridine adsorbed at a silver electrode', Chemical Physics Letters 1974, 26(2), pp. 163-166. [70] D. L. Jeanmaire and R. P. Van Duyne, 'Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode', Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 84(1), pp. 1-20. [71] M. G. Albrecht and J. A. Creighton, 'Anomalously intense Raman spectra of pyridine at a silver electrode', Journal of the American Chemical Society 1977, 99(15), pp. 5215-5217. [72] M. Moskovits, 'Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals', The Journal of Chemical Physics 1978, 69(9), pp. 4159-4161. [73] J. C. Tsang, J. R. Kirtley and J. A. Bradley, 'Surface-Enhanced Raman Spectroscopy and Surface Plasmons', Physical Review Letters 1979, 43(11), pp. 772-775. [74] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari and M. S. Feld, 'Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)', Physical Review Letters 1997, 78(9), pp. 1667-1670. [75] D. A. Weitz, S. Garoff, J. I. Gersten and A. Nitzan, 'The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface', The Journal of Chemical Physics 1983, 78(9), pp. 5324-5338. [76] Y. Yokota, K. Ueno and H. Misawa, 'Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles', Chemical Communications 2011, 47(12), pp. 3505-3507. [77] M. Kerker, D.-S. Wang and H. Chew, 'Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata', Appl. Opt. 1980, 19(24), pp. 4159-4174. [78] B. Pettinger, 'Single-molecule surface- and tip-enhanced raman spectroscopy', Molecular Physics 2010, 108(16), pp. 2039-2059. [79] N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, . . . B. Gu, 'Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy', Nano Letters 2010, 10(12), pp. 4952-4955. [80] U. Fano, 'Effects of Configuration Interaction on Intensities and Phase Shifts', Physical Review 1961, 124(6), pp. 1866-1878. [81] B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen and C. T. Chong, 'The Fano resonance in plasmonic nanostructures and metamaterials', Nat Mater 2010, 9(9), pp. 707-715. [82] A. Hessel and A. A. Oliner, 'A New Theory of Wood?s Anomalies on Optical Gratings', Appl. Opt. 1965, 4(10), pp. 1275-1297. [83] F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe and S. A. Maier, 'Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing', ACS Nano 2009, 3(3), pp. 643-652. [84] S. Zhang, D. A. Genov, Y. Wang, M. Liu and X. Zhang, 'Plasmon-Induced Transparency in Metamaterials', Physical Review Letters 2008, 101(4), pp. 047401. [85] N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, . . . S. A. Maier, 'Fano Resonances in Individual Coherent Plasmonic Nanocavities', Nano Letters 2009, 9(4), pp. 1663-1667. [86] K. Bao, N. Mirin and P. Nordlander, 'Fano resonances in planar silver nanosphere clusters', Applied Physics A 2010, 100(2), pp. 333-339. [87] M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos and N. Liu, 'Transition from Isolated to Collective Modes in Plasmonic Oligomers', Nano Letters 2010, 10(7), pp. 2721-2726. [88] J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, . . . F. Capasso, 'Self-Assembled Plasmonic Nanoparticle Clusters', Science 2010, 328(5982), pp. 1135-1138. [89] N. A. Mirin, K. Bao and P. Nordlander, 'Fano Resonances in Plasmonic Nanoparticle Aggregates†', The Journal of Physical Chemistry A 2009, 113(16), pp. 4028-4034. [90] J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander and N. J. Halas, 'Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS', Nano Letters 2012, 12(3), pp. 1660-1667. [91] A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius and H. Giessen, 'Optical properties of planar metallic photonic crystal structures: Experiment and theory', Physical Review B 2004, 70(12), pp. 125113. [92] A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl and H. Giessen, 'Waveguide-Plasmon Polaritons: Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab', Physical Review Letters 2003, 91(18), pp. 183901. [93] Z. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas and X. Zhu, 'Removing a Wedge from a Metallic Nanodisk Reveals a Fano Resonance', Nano Letters 2011, 11(10), pp. 4475-4479. [94] R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, . . . W. Zhang, 'Observing metamaterial induced transparency in individual Fano resonators with broken symmetry', Applied Physics Letters 2011, 99(20), pp. 201107-201107-3. [95] V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis and N. I. Zheludev, 'Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry', Physical Review Letters 2007, 99(14), pp. 147401. [96] A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio and N. I. Zheludev, 'Carbon Nanotubes in a Photonic Metamaterial', Physical Review Letters 2010, 104(15), pp. 153902. [97] D.-H. Chae, T. Utikal, S. Weisenburger, H. Giessen, K. v. Klitzing, M. Lippitz and J. Smet, 'Excitonic Fano Resonance in Free-Standing Graphene', Nano Letters 2011, 11(3), pp. 1379-1382. [98] N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau and H. Giessen, 'Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit', Nat Mater 2009, 8(9), pp. 758-762. [99] A. E. Cetin, A. Artar, M. Turkmen, A. A. Yanik and H. Altug, 'Plasmon induced transparency in cascaded pi-shaped metamaterials', Opt. Express 2011, 19(23), pp. 22607-22618. [100] C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, . . . C. M. Soukoulis, 'Magnetic Metamaterials at Telecommunication and Visible Frequencies', Physical Review Letters 2005, 95(20), pp. 203901. [101] J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, . . . W. Zhang, 'Active control of electromagnetically induced transparency analogue in terahertz metamaterials', Nat Commun 2012, 3, pp. 1151. [102] C.-H. Hsueh, C.-H. Lin, J.-H. Li, N. A. Hatab and B. Gu, 'Resonance modes, cavity field enhancements, and long-range collective photonic effects in periodic bowtie nanostructures', Opt. Express 2011, 19(20), pp. 19660-19667. [103] K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang and K. C. Toussaint, 'Nonlinear Optical Response from Arrays of Au Bowtie Nanoantennas', Nano Letters 2010, 11(1), pp. 61-65. [104] G. W. Bryant, F. J. Garcia de Abajo and J. Aizpurua, 'Mapping the Plasmon Resonances of Metallic Nanoantennas', Nano Letters 2008, 8(2), pp. 631-636. [105] B. Nikoobakht and M. A. El-Sayed, 'Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method', Chemistry of Materials 2003, 15(10), pp. 1957-1962. [106] P. Nordlander, C. Oubre, E. Prodan, K. Li and M. I. Stockman, 'Plasmon Hybridization in Nanoparticle Dimers', Nano Letters 2004, 4(5), pp. 899-903. [107] E. Prodan, C. Radloff, N. J. Halas and P. Nordlander, 'A Hybridization Model for the Plasmon Response of Complex Nanostructures', Science 2003, 302(5644), pp. 419-422. [108] E. Prodan and P. Nordlander, 'Plasmon hybridization in spherical nanoparticles', The Journal of Chemical Physics 2004, 120(11), pp. 5444-5454. [109] S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha and H. A. Atwater, 'Plasmonics—A Route to Nanoscale Optical Devices', Advanced Materials 2001, 13(19), pp. 1501-1505. [110] M. L. Brongersma, J. W. Hartman and H. A. Atwater, 'Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit', Physical Review B 2000, 62(24), pp. R16356-R16359. [111] P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor and M. Orenstein, 'Resonances On-Demand for Plasmonic Nano-Particles', Nano Letters 2011, 11(6), pp. 2329-2333. [112] N. Berkovitch and M. Orenstein, 'Thin Wire Shortening of Plasmonic Nanoparticle Dimers: The Reason for Red Shifts', Nano Letters 2011, 11(5), pp. 2079-2082. [113] I. D. Mayergoyz, D. R. Fredkin and Z. Zhang, 'Electrostatic (plasmon) resonances in nanoparticles', Physical Review B 2005, 72(15), pp. 155412. [114] O. Perez-Gonzalez, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander and J. Aizpurua, 'Optical Spectroscopy of Conductive Junctions in Plasmonic Cavities', Nano Letters 2010, 10(8), pp. 3090-3095. [115] J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, . . . N. J. Halas, 'Close Encounters between Two Nanoshells', Nano Letters 2008, 8(4), pp. 1212-1218. [116] N. Berkovitch, P. Ginzburg and M. Orenstein, 'Concave Plasmonic Particles: Broad-Band Geometrical Tunability in the Near-Infrared', Nano Letters 2010, 10(4), pp. 1405-1408. [117] B. N. Khlebtsov and N. G. Khlebtsov, 'Multipole Plasmons in Metal Nanorods: Scaling Properties and Dependence on Particle Size, Shape, Orientation, and Dielectric Environment', The Journal of Physical Chemistry C 2007, 111(31), pp. 11516-11527. [118] T. H. P. Chang, 'Proximity effect in electron-beam lithography', Journal of Vacuum Science and Technology 1975, 12(6), pp. 1271-1275. [119] E. D. Palik, Handbook of Optical Constants of Solids. Academic Press: 1998. [120] D.-S. Kong, S.-L. Yuan, Y.-X. Sun and Z.-Y. Yu, 'Self-assembled monolayer of o-aminothiophenol on Fe(1 1 0) surface: a combined study by electrochemistry, in situ STM, and molecular simulations', Surface Science 2004, 573(2), pp. 272-283. [121] P. B. Johnson and R. W. Christy, 'Optical Constants of the Noble Metals', Physical Review B 1972, 6(12), pp. 4370-4379. [122] P. K. Jain and M. A. El-Sayed, 'Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing', Nano Letters 2008, 8(12), pp. 4347-4352. [123] M. Gluodenis and C. A. Foss, 'The Effect of Mutual Orientation on the Spectra of Metal Nanoparticle Rod−Rod and Rod−Sphere Pairs', The Journal of Physical Chemistry B 2002, 106(37), pp. 9484-9489. [124] A. J. Haes, S. Zou, G. C. Schatz and R. P. Van Duyne, 'Nanoscale Optical Biosensor: Short Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles', The Journal of Physical Chemistry B 2004, 108(22), pp. 6961-6968. [125] K. Kopitzki and P. Herzog, Einfuhrung in die Festkorperphysik. Teubner: 1993. [126] S. Underwood and P. Mulvaney, 'Effect of the solution refractive index on the color of gold colloids', Langmuir 1994, 10(10), pp. 3427-3430. [127] K.-S. Lee and M. A. El-Sayed, 'Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition', The Journal of Physical Chemistry B 2006, 110(39), pp. 19220-19225. [128] S. S. Aćimović, M. P. Kreuzer, M. U. Gonzalez and R. Quidant, 'Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing', ACS Nano 2009, 3(5), pp. 1231-1237. [129] J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant and F. J. Garcia de Abajo, 'Optical Properties of Gold Nanorings', Physical Review Letters 2003, 90(5), pp. 057401. [130] M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzan and L. M. Lechuga, 'Identification of the Optimal Spectral Region for Plasmonic and Nanoplasmonic Sensing', ACS Nano 2009, 4(1), pp. 349-357. [131] Y. Tanaka, A. Sanada and K. Sasaki, 'Nanoscale interference patterns of gap-mode multipolar plasmonic fields', Sci. Rep. 2012, 2. [132] Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini and P. J. Schuck, 'Manipulating Nanoscale Light Fields with the Asymmetric Bowtie Nano-Colorsorter', Nano Letters 2009, 9(12), pp. 4505-4509. [133] N. Liu, M. L. Tang, M. Hentschel, H. Giessen and A. P. Alivisatos, 'Nanoantenna-enhanced gas sensing in a single tailored nanofocus', Nat Mater 2011, 10(8), pp. 631-636. [134] Y. H. Fu, J. B. Zhang, Y. F. Yu and B. Luk'yanchuk, 'Generating and Manipulating Higher Order Fano Resonances in Dual-Disk Ring Plasmonic Nanostructures', ACS Nano 2012, 6(6), pp. 5130-5137. [135] T. G. Habteyes, S. Dhuey, S. Cabrini, P. J. Schuck and S. R. Leone, 'Theta-Shaped Plasmonic Nanostructures: Bringing “Dark” Multipole Plasmon Resonances into Action via Conductive Coupling', Nano Letters 2011, 11(4), pp. 1819-1825. [136] A. E. Cetin and H. Altug, 'Fano Resonant Ring/Disk Plasmonic Nanocavities on Conducting Substrates for Advanced Biosensing', ACS Nano 2012, 6(11), pp. 9989-9995. [137] X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, . . . W. Zhang, 'Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode', Applied Physics Letters 2012, 100(13), pp. 131101-4. [138] J. Chen, Z. Li, S. Yue, J. Xiao and Q. Gong, 'Plasmon-Induced Transparency in Asymmetric T-Shape Single Slit', Nano Letters 2012, 12(5), pp. 2494-2498. [139] Z. Zhihua, Y. Xu, G. Jianqiang, J. Jun, Y. Weisheng, T. Zhen, . . . Z. Weili, 'Broadband plasmon induced transparency in terahertz metamaterials', Nanotechnology 2013, 24(21), pp. 214003. [140] D. R. Lide, CRC Handbook of Chemistry and Physics 2004-2005: A Ready-Reference Book of Chemical and Physical Data. CRC press: 2004. [141] M. Bass, E. Van Stryland, D. Williams and W. Wolfe, Handbook of Optics. McGraw-Hill: 1996. [142] K. R. Williams, K. Gupta and M. Wasilik, 'Etch rates for micromachining processing-Part II', Microelectromechanical Systems, Journal of 2003, 12(6), pp. 761-778. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17269 | - |
| dc.description.abstract | 表面電漿子是金屬表面電子和入射光共振的現象,依種類可分為傳播於金屬表面的表面電漿子 (Surface plasmon polaritons, SPP)與集中在局部的局部表面電漿子(Localized surface plasmon polaritons, LSP),使用經過設計的奈米級微結構,即可以在結構的特定位置上激發出局部表面電漿子,用來增強局部區域的電場。然而,表面電漿子只會和特定波長的入射光發生共振,共振波長則決定於奈米微結構的材質、間距和幾何形狀,最常使用的共振金屬材質為金、銀和鋁,假如兩個奈米微結構的金屬中間存在一奈米間隙時,局部表面電漿子會在間隙做強烈的共振,於間隙表面生成數百到千倍的電場,本論文即在探討不同的奈米間隙距離和不同的金奈米微結構幾何,對共振波長與電場增強倍數的影響。首先是探討有奈米間隙的兩顆金奈米橢球,其共振波長隨橢球長寬比和不同奈米間隙距離的關係,使用的方法為時域有限差分法(Finite-Difference Time-Domain, FDTD)數值模擬計算,以及利用米式散射理論(Mie scattering theory)和電偶極理論(Electric dipole theory),推倒出共振波長的解析解,最後再和美國橡樹嶺國家實驗室(Oak Ridge National Laboratory, ORNL)製作出的懸架式金奈米橢圓微結構,量測出的增強拉曼散射光譜實驗結果做比對與分析。第二部份是探討金奈米指南針的超穎材料,金奈米指南針的超穎材料,藉由中間指針和周圍環的奈米間隙產生共振,其利用環型幾何形狀和針型幾何形狀,所支持的兩種不同共振模態,來形成可支援兩種共振波長的增強拉曼散射微結構,同時因為兩種模態所產生的電荷分佈不同,金奈米指南針的微結構同時也是電磁誘導穿透(Electromagnetically Induced Transparency, EIT)的超穎材料,本論文將使用時域有限差分法數值模擬來做探討,並嘗試使用電子束微影(E-beam lithography)、電子束蒸鍍(E-beam Evaporator)等技術來製作出金奈米指南針微結構。 | zh_TW |
| dc.description.abstract | Surface plasmon is a resonance phenomenon between incident light and surface electrons of metal which can be classified as two types, surface plasmon polaritons (SPP), propagating at metal surface, and localized surface plasmon (LSP), concentrating at local region. By using designed nanostructure, localized surface plasmon can be induced at specific location on the structure surface enhancing electrical field at local region. However, surface plasmon only resonant with particular wavelength, and the resonance wavelength is decided by the materials, gap distance and geometry of nanostructure. The common materials for surface plasmon usage is gold, silver and alumina. If there is a nanogap between two metal nanostructure, localized surface plasmon will resonant strongly at the nanogap inducing hundreds or thousands times of local electric field. This thesis is to study the different nanogap distance and nanostructure geometry on the impact of electric field enhancement factor. First part is to investigate the resonance wavelength of two ellipsoid gold particles with a nanogap. The relation of resonance wavelength to the different aspect ratios of gold ellipsoid particles and gap distance is also studied. The Finite-Difference Time-Domain (FDTD) simulation method is used as research approach and the analytical solution of resonance wavelength is also derivate by Lorentz-Mie theory and Electric dipole theory. Finally, the simulated and analytical result is compared with the experimental measured SERS signal of free-standing gold ellipse nanoantenna fabricated by Oak Ridge National Laboratory (ORNL). The second part is to investigate the gold nano compass metamaterials. The gold nano compass metamaterials use the nanogap between needle and surrounded ring to resonant. This structure could support two resonant mode for SERS application, one is determined by needle geometry with another determined by ring geometry. Meanwhile, the gold nano compass metamaterials is also a electromagnetically induced transparency (EIT) metamaterials due to the different charge distribution of two resonance mode. This thesis will use FDTD simulation method to investigate and try to fabricate the gold nano compass structure by using E-beam lithography and E-beam Evaporator technic. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:04:06Z (GMT). No. of bitstreams: 1 ntu-102-R00527007-1.pdf: 6515611 bytes, checksum: ae98a2bfa917cc08949aa95ce56cb61f (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vii LIST OF TABLES xii Chapter 1 Preface 1 1.1 Motivation of study 1 1.2 Objectives 1 Chapter 2 Introduction 2 2.1 Plasmonics 2 2.1.1 Surface plasmon polaritons 2 2.1.2 Localized surface plasmon polaritons 5 2.1.3 Nanogap effect 9 2.2 Finite Difference Time Domain simulation (FDTD) 10 2.2.1 Brief history of the FDTD method 10 2.2.2 The 2D FDTD algorithm 11 2.2.3 The 3D FDTD simulation by commercial software 14 2.3 Surface-Enhanced Raman Scattering 15 2.3.1 Introduction to Raman scattering 15 2.3.2 Surface-Enhanced Raman Scattering 18 2.4 Fano resonances in metamaterials 20 2.4.1 Fano resonance in plasmonic nanostructures 20 2.4.2 Electromagnetically induced transparency in metamaterials 24 Chapter 3 Surface-Enhanced Raman Scattering of Free-standing Gold Ellipse Nanoantenna 25 3.1 Background 25 3.2 Experiment result 26 3.3 FDTD simulation 29 3.3.1 Simulation Setup and Algorithm 29 3.3.2 Simulation Result 31 3.4 Analytical Solution 33 3.5 Conclusions 42 Chapter 4 Electromagnetic Induced Transparency of Gold Nanocompass Metamaterials 43 4.1 Background 43 4.2 FDTD simulation 44 4.2.1 Simulation Setup and Algorithm 44 4.2.2 Simulation Result 46 4.3 Fabrication 52 4.4 Result and Discussion 54 4.4.1 Structure characterization 54 4.5 Conclusions 58 Chapter 5 Concluding Remarks 59 5.1 Summary of results 59 5.2 Future Prospctive 60 REFERENCE 61 | |
| dc.language.iso | en | |
| dc.title | 調控奈米間隙界面與模擬超穎材料表面電漿子共振於增強拉曼散射光譜之應用 | zh_TW |
| dc.title | Manipulating of Nanogap Interfaces and Simulation on Metamaterials Surface Plasmon Resonance on the Application of Surface-Enhanced Raman Spectroscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳敏璋,李佳翰 | |
| dc.subject.keyword | 奈米光學天線,電子束微影,時域有限差分法模擬,表面增強拉曼散射光譜, | zh_TW |
| dc.subject.keyword | Optical nanoantenna,Electron beam lithography,FDTD simulation,SERS,Lorentz-Mie theory, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 6.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
