請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17150完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游偉絢 | |
| dc.contributor.author | Jia-Hui Shen | en |
| dc.contributor.author | 沈嘉輝 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:58:34Z | - |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-17 | |
| dc.identifier.citation | 1. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., and Forman, D. (2011). Global cancer statistics. CA: a cancer journal for clinicians 61, 69-90.
2. Herbst, R.S., Heymach, J.V., and Lippman, S.M. (2008). Lung cancer. The New England journal of medicine 359, 1367-1380. 3. Sharma, S.V., Bell, D.W., Settleman, J., and Haber, D.A. (2007). Epidermal growth factor receptor mutations in lung cancer. Nature reviews Cancer 7, 169-181. 4. Yun, C.H., Mengwasser, K.E., Toms, A.V., Woo, M.S., Greulich, H., Wong, K.K., Meyerson, M., and Eck, M.J. (2008). The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proceedings of the National Academy of Sciences of the United States of America 105, 2070-2075. 5. Molina, J.R., Yang, P., Cassivi, S.D., Schild, S.E., and Adjei, A.A. (2008). Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clinic proceedings Mayo Clinic 83, 584-594. 6. Acloque, H., Adams, M.S., Fishwick, K., Bronner-Fraser, M., and Nieto, M.A. (2009). Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. The Journal of clinical investigation 119, 1438-1449. 7. Thiery, J.P., Acloque, H., Huang, R.Y., and Nieto, M.A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell 139, 871-890. 8. Voulgari, A., and Pintzas, A. (2009). Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochimica et biophysica acta 1796, 75-90. 9. Radisky, E.S., and Radisky, D.C. (2010). Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. Journal of mammary gland biology and neoplasia 15, 201-212. 10. Peinado, H., Olmeda, D., and Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nature reviews Cancer 7, 415-428. 11. Nguyen, D.X., Bos, P.D., and Massague, J. (2009). Metastasis: from dissemination to organ-specific colonization. Nature reviews Cancer 9, 274-284. 12. Barrallo-Gimeno, A., and Nieto, M.A. (2005). The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132, 3151-3161. 13. Steven R. Lentz, Manuel Tsiang, and J. Evan Sadler﹒Regulation of Thrombomodulin by Tumor Necrosis Factor-a: Comparison of Transcriptional and Posttranscriptional Mechanisms﹒Blood, Volume 77﹒1991﹒ 14. Ogawa, H., Yonezawa, S., Maruyama, I., Matsushita, Y., Tezuka, Y., Toyoyama, H., Yanagi, M., Matsumoto, H., Nishijima, H., Shimotakahara, T., et al. (2000). Expression of thrombomodulin in squamous cell carcinoma of the lung: its relationship to lymph node metastasis and prognosis of the patients. Cancer letters 149, 95-103. 15. Kim, S.J., Shiba, E., Ishii, H., Inoue, T., Taguchi, T., Tanji, Y., Kimoto, Y., Izukura, M., and Takai, S. (1997). Thrombomodulin is a new biological and prognostic marker for breast cancer: an immunohistochemical study. Anticancer research 17, 2319-2323. 16. Hanly, A.M., Hayanga, A., Winter, D.C., and Bouchier-Hayes, D.J. (2005). Thrombomodulin: tumour biology and prognostic implications. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology 31, 217-220. 17. Huang, H.C., Shi, G.Y., Jiang, S.J., Shi, C.S., Wu, C.M., Yang, H.Y., and Wu, H.L. (2003). Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. The Journal of biological chemistry 278, 46750-46759. 18. Kao, Y.C., Wu, L.W., Shi, C.S., Chu, C.H., Huang, C.W., Kuo, C.P., Sheu, H.M., Shi, G.Y., and Wu, H.L. (2010). Downregulation of thrombomodulin, a novel target of Snail, induces tumorigenesis through epithelial-mesenchymal transition. Molecular and cellular biology 30, 4767-4785. 19. Dan, H.C., Cooper, M.J., Cogswell, P.C., Duncan, J.A., Ting, J.P., and Baldwin, A.S. (2008). Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and Raptor in association with IKK. Genes & development 22, 1490-1500. 20. Min, C., Eddy, S.F., Sherr, D.H., and Sonenshein, G.E. (2008). NF-kappaB and epithelial to mesenchymal transition of cancer. Journal of cellular biochemistry 104, 733-744. 21. Wroblewski, L.E., Noble, P.J., Pagliocca, A., Pritchard, D.M., Hart, C.A., Campbell, F., Dodson, A.R., Dockray, G.J., and Varro, A. (2003). Stimulation of MMP-7 (matrilysin) by Helicobacter pylori in human gastric epithelial cells: role in epithelial cell migration. Journal of cell science 116, 3017-3026. 22. Noe, V., Fingleton, B., Jacobs, K., Crawford, H.C., Vermeulen, S., Steelant, W., Bruyneel, E., Matrisian, L.M., and Mareel, M. (2001). Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. Journal of cell science 114, 111-118. 23. Kawahara, T.L., Michishita, E., Adler, A.S., Damian, M., Berber, E., Lin, M., McCord, R.A., Ongaigui, K.C., Boxer, L.D., Chang, H.Y., et al. (2009). SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136, 62-74. 24. Chou, C.W., Wu, M.S., Huang, W.C., and Chen, C.C. (2011). HDAC inhibition decreases the expression of EGFR in colorectal cancer cells. PloS one 6, e18087. 25. Nguyen, D.X., Bos, P.D., and Massague, J. (2009). Metastasis: from dissemination to organ-specific colonization. Nature reviews Cancer 9, 274-284. 26. Stemmer, V., de Craene, B., Berx, G., and Behrens, J. (2008). Snail promotes Wnt target gene expression and interacts with beta-catenin. Oncogene 27, 5075-5080. 27. Miyoshi, A., Kitajima, Y., Sumi, K., Sato, K., Hagiwara, A., Koga, Y., and Miyazaki, K. (2004). Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. British journal of cancer 90, 1265-1273. 28. Glozak, M.A., and Seto, E. (2007). Histone deacetylases and cancer. Oncogene 26, 5420-5432. 29. Rudolph-Owen, L.A., Chan, R., Muller, W.J., and Matrisian, L.M. (1998). The matrix metalloproteinase matrilysin influences early-stage mammary tumorigenesis. Cancer research 58, 5500-5506. 30. Wilson, C.L., Heppner, K.J., Labosky, P.A., Hogan, B.L., and Matrisian, L.M. (1997). Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proceedings of the National Academy of Sciences of the United States of America 94, 1402-1407. . 31. Liu, D., Nakano, J., Ishikawa, S., Yokomise, H., Ueno, M., Kadota, K., Urushihara, M., and Huang, C.L. (2007). Overexpression of matrix metalloproteinase-7 (MMP-7) correlates with tumor proliferation, and a poor prognosis in non-small cell lung cancer. Lung cancer 58, 384-391. 32. Ii, M., Yamamoto, H., Adachi, Y., Maruyama, Y., and Shinomura, Y. (2006). Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Experimental biology and medicine 231, 20-27. 33. Yu, W.H., Woessner, J.F., Jr., McNeish, J.D., and Stamenkovic, I. (2002). CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes & development 16, 307-323. 34. Hidalgo, M., and Eckhardt, S.G. (2001). Development of matrix metalloproteinase inhibitors in cancer therapy. Journal of the National Cancer Institute 93, 178-193. 35. Overall, C.M., and Lopez-Otin, C. (2002). Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature reviews Cancer 2, 657-672. 36. Biswas, D.K., and Iglehart, J.D. (2006). Linkage between EGFR family receptors and nuclear factor kappaB (NF-kappaB) signaling in breast cancer. Journal of cellular physiology 209, 645-652. 37. Van Meter, M., Mao, Z., Gorbunova, V., and Seluanov, A. (2011). SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells. Cell cycle 10, 3153-3158. 38. Wen, J., Fu, J., Zhang, W., and Guo, M. (2011). Genetic and epigenetic changes in lung carcinoma and their clinical implications. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 24, 932-943. 39 .Jiang, G.M., Wang, H.S., Zhang, F., Zhang, K.S., Liu, Z.C., Fang, R., Wang, H., Cai, S.H., and Du, J. (2013). Histone deacetylase inhibitor induction of epithelial-mesenchymal transitions via up-regulation of Snail facilitates cancer progression. Biochimica et biophysica acta 1833, 663-671. 40. Chang, M.S., Chen, B.C., Yu, M.T., Sheu, J.R., Chen, T.F., and Lin, C.H. (2005). Phorbol 12-myristate 13-acetate upregulates cyclooxygenase-2 expression in human pulmonary epithelial cells via Ras, Raf-1, ERK, and NF-kappaB, but not p38 MAPK, pathways. Cellular signalling 17, 299-310. 41. Jormsjo, S., Whatling, C., Walter, D.H., Zeiher, A.M., Hamsten, A., and Eriksson, P. (2001). Allele-specific regulation of matrix metalloproteinase-7 promoter activity is associated with coronary artery luminal dimensions among hypercholesterolemic patients. Arteriosclerosis, thrombosis, and vascular biology 21, 1834-1839. 42. Cheng, K., Xie, G., and Raufman, J.P. (2007). Matrix metalloproteinase-7-catalyzed release of HB-EGF mediates deoxycholyltaurine-induced proliferation of a human colon cancer cell line. Biochemical pharmacology 73, 1001-1012. 43. Lynch, C.C., Vargo-Gogola, T., Martin, M.D., Fingleton, B., Crawford, H.C., and Matrisian, L.M. (2007). Matrix metalloproteinase 7 mediates mammary epithelial cell tumorigenesis through the ErbB4 receptor. Cancer research 67, 6760-6767. 44. Varro, A., Kenny, S., Hemers, E., McCaig, C., Przemeck, S., Wang, T.C., Bodger, K., and Pritchard, D.M. (2007). Increased gastric expression of MMP-7 in hypergastrinemia and significance for epithelial-mesenchymal signaling. American journal of physiology Gastrointestinal and liver physiology 292, G1133-1140. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17150 | - |
| dc.description.abstract | 文獻指出肺癌為2011年癌症死因之首,而其中以非微小細胞肺癌(Non small cell lung cancer,簡稱NSCLC)比例為大多數,約有8成之多。研究發現,NSCLC之成因與過度活化之EGFR pathway有極高之關聯性,其中以EGFR tyrosine kinase domain之變異(以L858R為主)為主要因素,因此目前臨床上用治療NSCLC之small molecules主要為tyrosine kinase inhibtors (簡稱TKIs)如Gefitinib、Erlotinib等為主要用藥,但研究卻發現,經上述藥物治療後,患者出現第2種適應型tyrosine kinase domain mutant T790M,而此種變異能大幅降低TKIs之治療效果,產生具抗藥性之癌細胞,因此要如何對抗此種變異所帶來之抗藥性問題,為目前最為棘手之議題。研究指出,過度活化之EGFR pathway能促進cancer metastasis來造成NSCLC患者之死亡,而主要因素為誘導Epithelial–Mesenchymal Transition(簡稱EMT )過程之進行,也因此若能抑止EMT之進行,或許就能克服TKIs之抗藥性問題來治療NSCLS患者。Sirtuin 6 (簡稱SIRT6) 為Sirtuin protein family之一員。先前文獻指出,SIRT6能將histone 3 acetylated-lysine 9進行去乙醯基化,進而干擾NF-kB之作用;且有文獻指出,SIRT6在肝癌發展過程中有重要之角色,其能誘導不正常之肝細胞死亡,顯示其或許具有抗癌之功能。因此在本次實驗中將探討SIRT6在hEGFR790M mutant cancer cell之功能為何。
在一開始先建立出能感應EMT進行之Thrombomodulin promoter eGFP vector ( TMp EGFP vector ) CL1-0 cell line,接著將 pBABE puro wt-hEGFR vector、pBABE puro hEGFR T790M vector分別轉殖入上述之cell line,後以抗生素puromycin篩選後,得到TMp eGFP / wt-hEGFR、TMp eGFP / hEGFRT790M CL1-0 cell line。以EGF (50ng/ml)處理24小時後發現,TMp eGFP/wt-hEGFR CL1-0之eGFP signal有增強之情況;而TMp eGFP/hEGFRT790M CL1-0則無論有無處理EGF,都有明顯之eGFP signal,此結果表示eGFP signal之強弱能代表EGFR pathway活化程度,而eGFP signal也與EMT marker SNAIL之入核比例有正相關性。將SIRT6-pDsred expression C1 vector轉殖入上述cell line後發現,若有表現出SIRT6-Dsred fusion protein則eGFP signal有弱化甚至消失之結果;另以Western blotting檢測後也發現SIRT6 protein之含量在CL1-0相對較高,而CL1-5相對偏少,顯示SIRT6與cancer invasive progression確實有關聯性;而MMP7 (為促進EMT進行之重要因子) 在TMp EGFP/hEGFRT790M CL1-0、CL1-5中gene expression也確實較高。以Dual luciferase assay檢測後發現,若表現出SIRT6-Dsred fusion protein,則能降低MMP7 luciferase signal,最後將此重組之vector送入CL1-5後也發現到MMP7之gene expression有下降之趨勢,綜合藉由上述結果,認為SIRT6能降低MMP7之gene expression來抑止EMT之進行。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:58:34Z (GMT). No. of bitstreams: 1 ntu-102-R99442020-1.pdf: 1715237 bytes, checksum: 4935ea39b998ab3c8e901bf04ae8ef3d (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要……………………………………………………...v
Abstract. ……………………………………………………..vii List of Figures ………………………………………………..ix Chapter 1 Introduction ………………………………………..1 1.1 The importance about T790M mutant in Non Small Cell Lung Cancer……..2 1.2 The role of EGFR pathway in Epithelial-mesenchymal transition…………2 1.3 The promoter of Thrombomodulin and SNAIL………………………..3 1.4 The EGFR pathway, EMT and MMP7……………………………....4 1.5 The potential role of Sirtuin 6 in EMT……………………………...5 1.6 Specific aim…………………………………………………..6 Chapter 2 Materials and Methods……………………………..7 2.1 Materials 2.1.1 Cell lines ……………………………………………………8 2.1.2 Plasmids…………………………………………………….8 2.1.3 Enzymes ……………………………………………………8 2.2 Methods 2.2.1 Cell culture ………………………………………………….9 2.2.2 Transfection and Selection of stable pool cell lines.…………………..9 2.2.3 RNA extraction……………………………………………...10 2.2.4 Reverse transcriptase PCR (RT-PCR)…………………………….10 2.2.5 PCR ………………………………………………………11 2.2.6 Construction of the SIRT6-pDsred expression C1 vector……………...12 2.2.7 Transformation and PCR screening………………………………12 2.2.8 Western Blotting …………………………………………….13 2.2.9 Immuofluorescence ………………………………………….15 2.2.10 Luciferase assay ……………………………………………16 Chapter 3 Results ……………………………………….…...18 3.1 The influence of the EGFR pathway in TMp reporter system…………….19 3.2 Construction of the SIRT6-pDsred expression C1 vector…………..……20 3.3 The effect of SIRT6-Dsred fusion protein on the eGFP signal in TMp-1519/ hEGFRT790M CL1-0 cell line……………………………….….….21 3.4 The protein levels of SIRT6 and the gene expressions of MMP7 in different CL1 cell lines……………………………………………………..22 3.5 The effect of SIRT6 on the activity of MMP7 promote…………………22 3.6 The effect of SIRT6 on the gene expression of MMP7 in different CL1 cell lines…………………………………………………………23 Chapter 4 Discussions………………………………………..25 References……………………………………………………30 Figures……………………………………………………….38 | |
| dc.language.iso | en | |
| dc.subject | 抗藥性 | zh_TW |
| dc.subject | 癌症轉移 | zh_TW |
| dc.subject | 肺腺癌 | zh_TW |
| dc.subject | Gefitinib-resistant | en |
| dc.subject | NSCLC | en |
| dc.subject | metastasis | en |
| dc.title | 探討SIRT6 於hEGFRT790M CL1-0 Gefitinib 抗藥性細胞株所誘導之EMT 抑制角色 | zh_TW |
| dc.title | The inhibitor role of SIRT6 in the EMT induced by
Gefitinib-resistant hEGFRT790M CL1-0 cell line | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林榮耀,呂紹俊,蕭信宏,樓國隆 | |
| dc.subject.keyword | 肺腺癌,癌症轉移,抗藥性, | zh_TW |
| dc.subject.keyword | NSCLC,metastasis,Gefitinib-resistant, | en |
| dc.relation.page | 53 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
