請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17094完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉安義 | |
| dc.contributor.author | Hui-Ching Tsai | en |
| dc.contributor.author | 蔡蕙青 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:56:16Z | - |
| dc.date.copyright | 2013-08-23 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-20 | |
| dc.identifier.citation | 金喆民、王平、賴楨、陳翠仙、李繼定、孟平蕊。2003。殼聚糖—聚磷酸鈉聚離子複合物滲透汽化膜的研究。北京清華大學化學工程學系。北京,中華人民共和國。
孟平蕊、李良波、陳翠仙、李繼定。2004。殼聚糖-三聚磷酸鈉聚離子複合膜的研究。濟南大學化學工程學院。山東,中華人民共和國。 楊承錞。2012。介質研磨澱粉與幾丁聚醣複合薄膜物化性質之探討。國立臺灣大學食品科技研究所碩士論文。臺北,臺灣。 Aider, M. Chitosan application for active bio-based films production and potential in the food industry: Review. Food Sci. Technol. LEB. 2010, 43, 837-842. Amaral, I. F.; Granja, P. L.; Barbosa, M. A. Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study. J. Biomater. Sci. Polym. Ed. 2005, 16, 1575-1593. ASTM Standard. Standard test method for water vapor transmission of materials. E 96-00. ASTM Intl. 2000. ASTM Standard. Standard test method for tensile properties of thin plastic sheeting. D882-09. ASTM Intl. 2009. Berger, J.; Reist, M.; Mayer, J. M.; Felt, O.; Peppas, N. A.; Gurny, R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 2004, 57, 19-34. Bhumkar, D. R.; Pokharkar, V. B. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. AAPS Pharm Sci Tech. 2006, 7, E138-E143. Bourtoom, T. Edible films and coatings: characteristics and properties. Int. Food Res. J. 2008, 15, 237-248. Bourtoom, T.; Chinnan, M. S. Preparation and properties of rice starch–chitosan blend biodegradable film. Food Sci. Technol. LEB. 2008, 41, 1633-1641. Caner, C.; Vergano, P. J.; Wiles, J. L. Chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage. J. Food Sci. 1998, 63, 1049-1053. Chick, J.; Ustunol, Z. Mechanical and barrier properties of lactic acid and rennet precipitated casein-based edible films. J. Food Sci. 1998, 63, 1024-1027. De Moura, M. R.; Aouada, F. A.; Avena-Bustillos, R. J.; McHugh, T. H.; Krochta, J. M.; Mattoso, L. H. C. Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. J. Food Eng. 2009, 92, 448-453. Debeaufort, F.; MartinPolo, M.; Voilley, A. Polarity homogeneity and structure affect water vapor permeability of model edible films. J. Food Sci. 1993, 58, 426-429. Dhanapal, A.; Rajamani, L.; Banu, M. S. Edible films from polysaccharides. Food Sci. and Quality Manag. 2012, 3, 9-17. Elsabee, M. Z.; Abdou, E. S. Chitosan based edible films and coatings: A review. Mater. Sci. Eng., C. 2013, 33, 1819-1841. Farris, S.; Schaich, K. M.; Liu, L.; Piergiovanni, L.; Yam, K. L. Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: a review. Trends Food Sci. Technol. 2009, 20, 316-332. Friedman, M. Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. J. Agric. Food Chem. 2004, 52, 385-406. Gennadios, A.; Brandenburg, A. H.; Weller, C. L.; Testin, R. F. Effect of pH on properties of wheat gluten and soy protein isolate films. J. Agric. Food Chem. 1993, 41, 1835-1839. Gierszewska-Druzynska, M.; Ostrowska-Czubenko, J. The effect of ionic crosslinking on thermal properties of hydrogel chitosan membranes. Progress on Chemistry and Application of Chitin and its Derivatives. 2010, 25-32. Gindl, W.; Keckes, J. All-cellulose nanocomposite. Polymer. 2005, 46, 10221-10225. Guibal, E. Interactions of metal ions with chitosan-based sorbents: a review. Sep. Purif. Technol. 2004, 38, 43-74. Guilbert, S.; Gontard, N.; Cuq, B. Technology and applications of edible protective films. Packag. Technol. Sci. 1995, 8, 339-346. Hamdine, M.; Heuzey, M. C.; Begin, A. Effect of organic and inorganic acids on concentrated chitosan solutions and gels. Int. J. Biol. Macromol. 2005, 37, 134-142. Jackson, F. L.; Lutton, E. S. The polymorphism of 1-stearyl- and 1-palmityldiacetin, -dibutyrin, -dicaproin and 1-stearyldipropionin. J. Am. Chem. Soc. 1952, 74, 4827-4829. Jia, Y. T.; Gong, J.; Gu, X. H.; Kim, H. Y.; Dong, J.; Shen, X. Y. Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydr. Polym. 2007, 67, 403-409. Jin, J.; Song, M.; Hourston, D. J. Novel chitosan-based films cross-linked by genipin with improved physical properties. Biomacromolecules. 2003, 5, 162-168. Kildeeva, N. R.; Perminov, P. A.; Vladimirov, L. V.; Novikov, V. V.; Mikhailov, S. N. About mechanism of chitosan cross-linking with glutaraldehyde. J. Bioorg. Chem. 2009, 35, 360-369. Ko, J. A.; Park, H. J.; Hwang, S. J.; Park, J. B.; Lee, J. S. Preparation and characterization of chitosan microparticles intended for controlled drug delivery. Int. J. Pharm. 2002, 249, 165-174. Krochta, J. M.; de Mulder-Johnston, C. Edible and biodegradable polymer films: challenges and opportunities. Food Technol. 1997, 51. Leceta, I.; Guerrero, P.; de la Caba, K. Functional properties of chitosan-based films. Carbohydr. Polym. 2013, 93, 339-346. Lee, S. T.; Mi, F. L.; Shen, Y. J.; Shyu, S. S. Equilibrium and kinetic studies of copper(II) ion uptake by chitosan-tripolyphosphate chelating resin. Polymer. 2001, 42, 1879-1892. Liu, M.; Zhou, Y.; Zhang, Y.; Yu, C.; Cao, S. Preparation and structural analysis of chitosan films with and without sorbitol. Food Hydrocolloid. 2013, 33, 186-191. Ma, X. H.; Xu, Z. L.; Ji, C. Q.; Wei, Y. M.; Yang, H. Characterization, separation performance, and model analysis of STPP-chitosan/PAN polyelectrolyte complex membranes. J. Appl. Polym. Sci. 2011, 120, 1017-1026. Mengatto, L.; Luna, J.; Cabrera, M. Influence of cross-linking density on swelling and estradiol permeation of chitosan membranes. J. Mater. Sci. 2010, 45, 1046-1051. Mi, F. L.; Shyu, S. S.; Chen, C. T.; Lai, J. Y. Adsorption of indomethacin onto chemically modified chitosan beads. Polymer. 2002, 43, 757-765. Mi, F. L.; Shyu, S. S.; Lee, S. T.; Wong, T. B. Kinetic study of chitosan-tripolyphosphate complex reaction and acid-resistive properties of the chitosan-tripolyphosphate gel beads prepared by in-liquid curing method. J. Polym. Sci., Part B: Polym. Phys. 1999, 37, 1551-1564. No, H. K.; Young Park, N.; Ho Lee, S.; Meyers, S. P. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 2002, 74, 65-72. Ojagh, S. M.; Rezaei, M.; Razavi, S. H.; Hosseini, S. M. H. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem. 2010, 122, 161-166. Palmeira-de-Oliveira, R.; Palmeira-de-Oliveira, A.; Gaspar, C.; Silvestre, S.; Martinez-de-Oliveira, J.; Amaral, M. H.; Breitenfeld, L. Sodium tripolyphosphate: an excipient with intrinsic in vitro anti-Candida activity. Int. J. Pharm. 2011, 421, 130-134. Park, S. B.; Kang, H. W.; Haam, S.; Park, H. Y.; Kim, W. S. Ca-alginate microspheres encapsulated in chitosan beads. J. Microencapsul. 2004, 21, 485-497. Pati, F.; Adhikari, B.; Dhara, S. Development of chitosan–tripolyphosphate fibers through pH dependent ionotropic gelation. Carbohydr. Res. 2011, 346, 2582-2588. Petersen, K.; Va ggemose Nielsen, P.; Bertelsen, G.; Lawther, M.; Olsen, M. B.; Nilsson, N. H.; Mortensen, G. Potential of biobased materials for food packaging. Trends Food Sci. Technol. 1999, 10, 52-68. Pierog, M.; Gierszewska-Druzynska, M.; Ostrowska-Czubenko, J. Effect of ionic crosslinking agents on swelling behavior of chitosan hydrogel membranes. Progress on Chemistry and Application of Chitin and its Derivatives. 2009, 75-82. Prochazkova, S.; Varum, K. M.; Ostgaard, K. Quantitative determination of chitosans by ninhydrin. Carbohydr. Polym. 1999, 38, 115-122. Rhim, J. W.; Lee, J. H.; Ng, P. K. W. Mechanical and barrier properties of biodegradable soy protein isolate-based films coated with polylactic acid. Food Sci. Technol. LEB. 2007, 40, 232-238. Rivero, S.; Garcia, M. A.; Pinotti, A. Crosslinking capacity of tannic acid in plasticized chitosan films. Carbohydr. Polym. 2010, 82, 270-276. Shahidi, F.; Arachchi, J. K. V.; Jeon, Y. J. Food applications of chitin and chitosans. Trends Food Sci. Technol. 1999, 10, 37-51. Shu, X. Z.; Zhu, K. J. A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery. Int. J. Pharm. 2000, 201, 51-58. Shu, X. Z.; Zhu, K. J. The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release. Eur. J. Pharm. Biopharm. 2002, 54, 235-243. Shu, X. Z.; Zhu, K. J.; Song, W. Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. Int. J. Pharm. 2001, 212, 19-28. Skurtys, O.; Acevedo, C.; Pedreschi, F.; Enrione, J.; Osorio, F.; Aguilera, J. Food Hydrocolloid Edible Films and Coatings. Nova Science Publishers: 2010. Vartiainen, J.; Harlin, A. Crosslinking as an efficient tool for decreasing moisture sensitivity of biobased nanocomposite films. Industrial Biomaterials. 2011, 45. Wang, Q.; Dong, Z.; Du, Y.; Kennedy, J. F. Controlled release of ciprofloxacin hydrochloride from chitosan/polyethylene glycol blend films. Carbohydr. Polym. 2007, 69, 336-343. Wang, Q.; Du, Y. M.; Fan, L. H. Properties of chitosan/poly(vinyl alcohol) films for drug-controlled release. J. Appl. Polym. Sci. 2005, 96, 808-813. Yao, D. K.; Liu, J.; Cheng, G. X.; Lu, X. D.; Tu, H. L.; Da Silva, J. A. L. Swelling behavior of pectin/chitosan complex films. J. Appl. Polym. Sci. 1996, 60, 279-283. Yuan, Y.; Chesnutt, B. M.; Utturkar, G.; Haggard, W. O.; Yang, Y.; Ong, J. L.; Bumgardner, J. D. The effect of cross-linking of chitosan microspheres with genipin on protein release. Carbohydr. Polym. 2007, 68, 561-567. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17094 | - |
| dc.description.abstract | 幾丁聚醣(chitosan)薄膜具生物可分解、生物相容性高、安全無毒等優點,已被廣泛運用於各領域,然而其防水性、機械性等性質仍有許多改進空間。幾丁聚醣是葡萄糖胺單體和乙醯葡萄糖胺單體經由 beta-1,4 糖苷鍵組成的共聚合物,可由幾丁質(chitin)經去乙醯化製備而成,其在酸性溶液中是帶正電的聚合物(pKa = 6.5),能和帶負電離子透過靜電引力形成物理性交聯。本研究選用三聚磷酸鈉 (sodium tripolyphosphate)為交聯劑,旨在改善薄膜防水性和機械性,以增強在包裝材料上的應用性。薄膜交聯度以茚三酮試驗(ninhydrin assay)檢測,並佐以傅立葉紅外線光譜,探討交聯度和水溶性、水氣透過率、機械性質、表面形態等物性之關係。經三聚磷酸鈉交聯的幾丁聚醣薄膜,於酸性環境(pH=1.9)水溶性大幅下降至15.68%,抗張強度顯著提升,由 64.5 Mpa 上升至 146.5 MPa,與茚三酮測得之交聯度呈現正相關。研究發現,幾丁聚醣薄膜的抗張強度能藉由交聯化反應改善,且酸性環境下溶解度隨交聯度提升呈現下降趨勢。 | zh_TW |
| dc.description.abstract | Chitosan is a biodegradable, inexpensive, biocompatible and non-toxic polysaccharide with good film-forming properties. It is a copolymer of glucosamine and N-acetyl glucosamine linked by beta 1,4-glucosidic bonds obtained by N-deacetylation of chitin. Chitosan films were applied in drug delivery systems, reverse osmosis and filtration, ect. However, the application in food packaging industry was restricted due to some disadvantages such as higher water swelling ratio and poor water-shielding ability. Cross-linking, as a result, is applied in order to overcome these problems. Since chitosan is a polycationic polysaccharide in acidic medium (pKa 6.5), it forms gels with the gentle and nontoxic multivalent counterions, tripolyphosphate (TPP), by electrostatic forces. However, few studies have been conducted to investigate the relationship between the degree of cross-linking and mechanical properties, water vapor transmission and solubility of chitosan-tripolyphosphate films. In this study, the effect of degree of cross-linking was determined by ninhydrin assay and the cross-linked films were characterized with regard to mechanical properties, solubility in water, water vapor permeability and IR spectroscopy. The solubility of chitosan films was reduced to 15.68% in acidic (pH= 1.9) solution by cross-linking, which is inversely proportional to degree of cross-linking of chitosan films. Tensile strength was increased from 64.5 Mpa to 146.5 MPa, directly proportional to degree of cross-linking of chitosan films. Results indicated the hydrophobicity in acidic solution and mechanical properties can be improved by cross-linking, and the degree of cross-linking can be measured by ninhydrin assay. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:56:16Z (GMT). No. of bitstreams: 1 ntu-102-R00641010-1.pdf: 2962003 bytes, checksum: 359ec73fdcf8f8f563c9273ff94252c6 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員審定書.................................... I
謝誌.............................................. II 摘要.............................................. IV Abstract ......................................... V 目錄.............................................. VII 圖目錄............................................ IX 表目錄............................................ XI 壹、前言.......................................... 1 貳、文獻回顧...................................... 2 2.1 生質薄膜之發展................................ 2 2.2 幾丁聚醣...................................... 5 2.3 三聚磷酸鈉.................................... 9 2.4 幾丁聚醣/三聚磷酸鈉薄膜特性及其交聯原理................................................ 10 2.5 幾丁聚醣/三聚磷酸鈉薄膜複合物之發展................................................ 13 參、材料與方法.................................... 14 3.1 材料.......................................... 14 3.2 藥品.......................................... 14 3.3 儀器設備...................................... 15 3.4 實驗架構與目的................................ 17 3.4-1 研究目的.................................... 17 3.4-2 實驗架構.................................... 17 3.4-3 薄膜製備方法................................ 19 3.4-4 薄膜之交聯化處理............................ 19 3.4-5 薄膜水含量及溶解度測定(25℃,1天) .............................................. 21 3.4-6 交聯度測定.................................. 21 3.4-7 厚度量測.................................... 25 3.4-8 機械性質.................................... 25 3.4-9 顯微觀察.................................... 26 3.4-10 水氣透過率................................. 26 3.4-11 傅立葉轉紅外線光譜......................... 27 3.4-12 X 光繞射圖譜分析........................... 29 肆、結果與討論.................................... 30 4.1 薄膜外觀及顯微結構............................ 30 4.1.1 薄膜外觀.................................... 30 4.1.2 薄膜交聯前後截面電顯影像.................... 31 4.2 薄膜厚度及水含量.............................. 33 4.3 薄膜交聯時間與交聯度之關係.................... 34 4.4 薄膜溶解度與浸泡時間及交聯度之關係............ 36 4.5 薄膜機械性質.................................. 39 4.6 薄膜水氣透過率................................ 42 4.7 傅立葉轉紅外線光譜分析........................ 44 4.8 X 光繞射圖譜分析.............................. 46 伍、結論.......................................... 48 陸、參考文獻...................................... 49 附錄.............................................. 56 | |
| dc.language.iso | zh-TW | |
| dc.subject | 物性 | zh_TW |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | 交聯度 | zh_TW |
| dc.subject | 三聚磷酸鹽 | zh_TW |
| dc.subject | 三聚磷酸鈉 | zh_TW |
| dc.subject | ?三酮試驗 | zh_TW |
| dc.subject | 薄膜 | zh_TW |
| dc.subject | film | en |
| dc.subject | physical properties | en |
| dc.subject | sodium tripolyphosphate | en |
| dc.subject | chitosan | en |
| dc.subject | degree of cross-linking | en |
| dc.subject | tripolyphosphate | en |
| dc.subject | ninhydrin assay | en |
| dc.title | 交聯化反應對幾丁聚醣-三聚磷酸鈉薄膜物性之影響 | zh_TW |
| dc.title | Effect of cross-linking on physical properties of chitosan-sodium tripolyphospate films | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 馮臨惠,陳時欣,陳政雄,蔣丙煌 | |
| dc.subject.keyword | 幾丁聚醣,交聯度,三聚磷酸鹽,三聚磷酸鈉,?三酮試驗,薄膜,物性, | zh_TW |
| dc.subject.keyword | chitosan,degree of cross-linking,tripolyphosphate,film,ninhydrin assay,sodium tripolyphosphate,physical properties, | en |
| dc.relation.page | 70 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
