Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16298
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高振宏(Chen-Hung Robert Kao)
dc.contributor.authorMei-Shih Kuoen
dc.contributor.author郭楣詩zh_TW
dc.date.accessioned2021-06-07T18:08:43Z-
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-16
dc.identifier.citation[1] Japan Jisso Technology roadmap, 2001
[2] H. Y. Chuang, Doctoral Dissertation, National Taiwan University, Taiwan, 2011
[3] P. Kettner, B. Kim, S. Pargfrieder and S. Zhu, New Technologies for Advanced High Density 3D Packaging by Using TSV Process, 2008 International Conference on Electronic Packaging Technology & High Density Packaging, 2008.
[4] S. W. Yoon, 3D Integration with TSV Technology, SEMICON Singapore, 2008.
[5] T. S. Jung, Samsung Memory Technology and Solutions Roadmap, Samsung, 2008.
[6] A. Munding, H. Hubner, A. Kaiser, S. Penka, P. Benkart and E. Kohn, Wafer Level 3-D ICs Process Technology, A. Munding, Springer Science & Business Media, pp. 132, 2008.
[7] K. Sakuma, P. S. Andry, C. K. Tsang, S. L. Wright, B. Dang, C. S. Patel, B. C. Webb, J. Maria, E. J. Sprogis, S. K. Kang, R. J. Polastre, R. R. Horton and J. U. Knickerbocker, 3D Chip-Stacking Technology with Through-Silicon Vias and Low-Volume Lead-Free Interconnections, IBM Journal of Research and Development, 52 (6), pp. 611-622, 2008
[8] 張淑如,“鉛對人體的危害”, 勞工安全衛生簡訊, 第12 期, p.17, 1995
[9] G. Humpston and D. M. Jacobson, Principles of Soldering and Brazing, ASM, Materials Park, OH, 1996.
[10] A. Rahn (ed.), The Basics of Soldering, John Wiely & Sons, New York, 1993.
[11] K. N. Tu and K. Zeng, Materials Science and Engineering, R34, p.1, 2001.
[12] T. Massalski, Binary Alloy Phase Diagrams, ASM, 1996.
[13] J. Gorlich, D. Baither and G. Schmitz, Acta Materialia 58, pp. 3187–3197, 2010
[14] S. Bader, W. Gust and H. Hieber, Rapid Formation of Intermetallic Compounds Interdiffusion in the Cu-Sn and Ni-Sn Systems, Acta Metall. Mater. 43 (1), pp. 329, 1995
[15] D. Gur and M. Bamberger, Reactive Isothermal Solidification in the Ni-Sn System, Acta Mater. 46 (14), pp.4917, 1998
[16] M. Mita, M. Kajihara, N. Kurokawa and K. Sakamoto, Growth Behavior of Ni3Sn4 Layer During Reactive Diffusion between Ni and Sn at Solid-State Temperatures, Materials Science and Engineering A 403, pp. 269–275, 2005
[17] J. Haimovich, Intermetallic Compound Growth In Tin and Tin-Lead Platings over Nickel and Its Effects on Solderability, Welding J. 68 (3), pp. 102, 1989
[18] Y. M. Lin, C. J. Zhan, J. Y. Juang, J. H. Lau, T. H. Chen, Robert Lo, M. Kao, T. Tian and K. N. Tu, Electromigration in Ni/Sn Intermetallic Micro Bump Joint for 3D IC Chip Stacking, 2011 Electronic Components and Technology Conference
[19] P. T. Vianco, Circuit World, 25/1, pp.6, 1998.
[20] 白蓉生 , 電路板會刊, 第 15 期 , pp.4, 2002
[21] 彭錢塘 , 電路板會刊, 第 12 期 , pp.75, 2001
[22] J. Glazer, Metallurgy of Low Temperature Pb-Free Solders for Electronic Assembly, Inter. Mater. Rev., 40, pp.65, 1995.
[23] C. E. Ho, Y. M. Chen and C. R. Kao, Reaction Kinetics of Solder-Balls with Pads in BGA Packages During Reflow Soldering, Journal of Electronic Materials, 28 (11), pp. 1231-1237, 1999
[24] C. E. Ho, Doctoral Dissertation, National Central University, Taiwan, 2002
[25] C. E. Ho, W. T. Chen and C. R. Kao, Interactions Between Solder and Metallization During Long-Term Aging of Advanced Microelectronic Packages, Journal of Electronic Materials, 30 (4), pp. 379-385, 2001
[26] C. W. Chang, C. E. Ho, S. C. Yang and C. R. Kao, Kinetics of AuSn 4 Migration in Lead-Free Solders, Journal Of Electronic Materials, 35 (11), pp. 1948-1954, 2006
[27] C. E. Ho, R. Zheng, G. L. Luo, A. H. Lin, and C. R. Kao, Formation and Resettlement of (Au x, Ni 1-x)Sn 4 in Solder Joints of Ball-Grid-Array Packages with the Au/Ni Surface Finish, Journal of Electronic Materials, 29 (10), pp. 1175-1181, 2000
[28] K. Banerji, R. F. Darveaux, P. K. Liaw, R. Viswanathan, K. L. Murty, E. P. Simonen, and D. Frear, Microstructures and Mechanical Properties of Aging Materials, TMS, Warrendale, Pa., pp.431, 1993.
[29] R. F. Darveaux, K. Banerji, A. Mawer and G. Dody, Ball Grid Array Technology, McGraw-Hill, New York, pp.379, 1995
[30] Z. Mei, M. Kaufmann, A. Eslambolchi, and P. Johnson, Brittle Interfacial Fracture of PBGA Packages Soldered on Electroless Nickel/Immersion Gold, Proc. 48th IEEE Electronic Components Technology Conf., pp. 952-961, 1998
[31] C. E. Ho, L. C. Shiau and C. R. Kao, Inhibiting the Formation of (Au 1-x, Ni x)Sn4 and Reducing the Consumption of Ni Metallization in Solder Joints, Journal of Electronic Materials, 31 (11), pp. 1264-1269, 2002
[32] H. Okamoto, Journal of Phase Equilibria and Diffusion, 28(5), pp.490, 2007
[33]黃宏勝, 林麗娟, FE-SEM/CL/EBSD 分析技術簡介, 工業材料雜誌, 201, pp.99, 2003

[34] C. Y. Lin, C. C. Jaob, C. Lee and Y. W. Yen, The Effect of Non-Reactive Alloying Elements on the Growth Kinetics of the Intermetallic Compound Between Liquid Sn-Based Eutectic Solders and Ni Substrates, Journal of Alloys and Compounds, 440 (1-2), pp. 333-340, 2007
[35] J. F. Shackelford, W. Alexander, CRC Materials Science and Engineering Handbook, Third Edition, CRC Press, New York, 2001
[36] H. P. R. Frederikse, R. J. Fields and A. Feldman, Journal of Applied Physics, 72(7), pp. 2879-2882, 1992
[37] C. E. Ho, S. C. Yang, C. R. Kao, Interfacial Reaction Issues for Lead-Free Electronic Solders, Journal of Materials Science: Materials in Electronics, 18 (1-3), pp. 155-174, 2007
[38] J. A. V. Beek, S. A. Stolk, F. J. J. V. Loo, Multiphase Diffusion in The Systems Fe-Sn and Ni-Sn, Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 73 (7), pp. 439-444, 1982
[39] S. J. Wang, H. J. Kao and C. Y. Liu, Correlation between Interfacial Reactions and Mechanical Strengths of Sn(Cu)/Ni(P) Solder Bumps, Journal of Electronic Materials, 33 (10), pp. 1130-1136, 2004
[40] R. Labie, W. Ruythooren and J. V. Humbeeck, Solid State Diffusion in Cu-Sn and Ni-Sn Diffusion Couples with Flip-Chip Scale Dimensions, Intermetallics, 15 (3), pp. 396-403, 2007
[41] M. L. Huang, T. Loeher, D. Manessis, L. Boettcher, A. Ostmann and H. Reichl, Morphology and Growth Kinetics of Intermetallic Compounds in Solid-State Interfacial Reaction of Electroless Ni-P with Sn-Based Lead-Free Solders, Journal of Electronic Materials, 35 (1), pp. 181-188, 2006
[42] W. M. Tang, A. Q. He, Q. Liu and D. G. Ivey, Solid State Interfacial Reactions in Electrodeposited Ni/Sn Couples, International Journal of Minerals, Metallurgy and Materials, 17 (4), pp. 459-463, 2010
[43] C. M. Chen and S. W. Chen, Electromigration Effect upon the Sn/Ag and Sn/Ni Interfacial Reactions at Various Temperatures, Acta Materialia, 50 (9), pp. 2461-2469, 2002
[44] W. J. Tomlinson and H. G. Rhodes, Kinetics of Intermetallic Compound Growth Between Nickel, Electroless, Ni-P, electroless Ni-B and tin at 453 to 493 K, Journal of Materials Science, 22 (5), pp. 1769-1772, 1987
[45] S. C. Yang, C. C. Chang, M. H. Tsai and C. R. Kao, Effect of Cu Concentration, Solder Volume and Temperature on The Reaction Between SnAgCu Solders and Ni, Journal of Alloys and Compounds, 499 (2), pp. 149-153, 2010
[46] G. V. Raynor, The Cu-Sn Phase Diagram, Annotated Equilibrium Diagram Series, No. 2, The Institute of Metals, London, 1944
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16298-
dc.description.abstract由於電子元件尺寸不斷減小,功能卻不斷提升,封裝技術也必須不斷進步,近年來隨著 3D IC 的發展,封裝所需要的銲料體積變的非常微小,在正常工作條件下,介金屬在銲料中的比例將大幅增加,促使我們去討論在如此小體積下對銲點的影響。
在無鉛銲料中大多仍是使用高 Sn 銲料,Sn 與基材間的反應幾乎主宰了銲點中介金屬的生長,本實驗在 10μm 尺度下以純 Sn 與常用表面處理層 Ni 進行界面反應的研究,在固液反應下,Ni3Sn4的形貌一開始為細針狀,後來則為稜柱狀。界面中的 Sn 約需要 90 分鐘才能完全轉換成 Ni3Sn4,且當銲料完全轉換成 Ni3Sn4 後,界面是呈現多晶 Ni3Sn4 的分佈。在固態反應下,Ni/Sn 界面長出Ni3Sn4,當反應到界面上的純 Sn 耗盡時,會看到孔洞殘留在界面上,孔洞生成的原因和介金屬形貌、反應前後體積收縮及 Ni/Sn 間擴散特性有關。在 10μm 尺度下的固液反應與固態時效,成長的速率與過去大銲點中的 Ni/Sn 反應相比,並沒有很大的改變。
Ni/Au 層是很常用的表面處理層,然而過厚的 Au 層可能會引發金脆問題。在固態反應溫度下,當體積縮小到 10μm 的尺度,界面上能容許的 Au 濃度在 0.8wt% 到 1.3wt% 之間,相當於 30nm 到 50nm 的 Au 層厚度,超過此範圍之 Au 層厚度就有機會在使用過程中形成過長的Ni3Sn4 /(Au1-x, Nix)Sn4的連續層,可能引發過去所說的金脆問題。另外在此微小尺度下,添加 0.5wt% Cu 之Sn-3.9Au-0.5Cu銲料,在時效過程中,仍會形成(Ni, Cu)3Sn4 /(Au1-x, Nix)Sn4連續層,已沒有辦法抑制金脆效應的發生,必須使用更高的 Cu 濃度、更低的 Au 濃度或者使用不對稱 Cu/Solder/Ni 結構,才有機會在小尺度下以 Cu 防止金脆問題。
zh_TW
dc.description.abstractFor 3D IC applications, solder volume reduction is a significant issue in the chip-to-chip micro bumping process. For the reason, solder joints can contain a large portion of the intermetallic compounds (IMCs). Many new issues must occur due to the reduction of solder volume; however, they are yet to be sufficiently revealed. This study aims to uncover effects caused by the miniaturization of solder volume on the Ni-Sn solid liquid reactions and solid state reactions.
According to Ni/Sn(10μm)/Ni experimental results, the miniaturized solder volume has less impact on the species and growth rate of the IMCs. The grains are still polycrystalline at the interface after solder was totally consumed in solid liquid reaction. A number of voids were observed at the interface in solid state reaction, which were related with IMC characteristics, reaction volume shrinkage and diffusion characteristics.
The gold embrittlement issue should be rediscussed under small solder volume condition. When the gold concentration reaches to 1.3wt%, continuous Ni3Sn4 /(Au1-x, Nix)Sn4 interface will be observed. However, Sn-1.3wt% Au just corresponds to 50nm thickness of Au in 10μm solder. Applying solder alloy of Sn-3.9Au-0.5Cu in Ni/Soldr/Ni, the continuous Ni3Sn4 /(Au1-x, Nix)Sn4 interface still observed. Thus, with the miniaturized solder volume to 10μm, the Au thickness should be thinner than 50nm, and Cu concentration should be higher . One of the choices is to use the asymmetric structure of Ni/solder/Cu, which can supply enough Cu to form (Cu, Au, Ni)6Sn5 and prevent continuous (Au1-x, Nix)Sn4 forming at the interface.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:08:43Z (GMT). No. of bitstreams: 1
ntu-101-R99527041-1.pdf: 4202714 bytes, checksum: e9e6017416d9031c171f732cda691031 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 x
第 1 章 緒論 1
1.1 3D IC封裝 1
1.2 無鉛銲料 7
第 2 章 文獻回顧 8
2.1 Ni墊層與銲料反應 8
2.2 金脆效應 13
第 3 章 實驗步驟與方法 21
3.1 實驗預備 21
3.1.1 銲料的準備 21
3.1.2 試片的準備 22
3.2 實驗儀器 25
3.3 實驗步驟 25
3.3.1 固液反應 25
3.3.2 固態時效 25
3.4 實驗分析 25
3.4.1 金相分析試片準備 25
3.4.2 掃描式電子顯微鏡(SEM)觀察 26
3.4.3 電子微探儀(EPMA)分析 26
3.4.4 電子背向散射繞射(EBSD)分析 26
3.4.5 動力學分析理論與假設 27
第 4 章 結果與討論 28
4.1 Ni/Sn/Ni固液反應 28
4.1.1 介金屬形貌 28
4.1.2 介金屬晶面方向 30
4.1.3 Ni3Sn4 生長動力學 32
4.2 Ni/Sn/Ni固態時效 34
4.2.1 介金屬形貌 34
4.2.2 孔洞生成機制 37
4.2.3 Ni3Sn4 生長動力學 39
4.3 Au添加的固態時效 48
4.3.1 介金屬形貌 48
4.3.2 Ni3Sn4 生長動力學 58
4.3.3 Cu 添加的影響 60
第 5 章 結論 65
參考文獻 66
dc.language.isozh-TW
dc.title3D IC應用中鎳基材與無鉛銲料之界面反應zh_TW
dc.titleInterfacial Reaction between Ni Substrate and Lead Free Solder for 3D IC Applicationen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏怡文(Yee-Wen Yen),陳志銘(Chih-Ming Chen)
dc.subject.keyword3D IC,介金屬化合物,動力學,鎳,金脆,zh_TW
dc.subject.keyword3D IC,IMC,kinetics,gold embrittlement,Ni,en
dc.relation.page69
dc.rights.note未授權
dc.date.accepted2012-07-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
4.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved