請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16232
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 游若萩 | |
dc.contributor.author | Yun-Ying Hu | en |
dc.contributor.author | 胡芸瑛 | zh_TW |
dc.date.accessioned | 2021-06-07T18:06:01Z | - |
dc.date.copyright | 2012-08-17 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-24 | |
dc.identifier.citation | 中國國家標準CNS水果及蔬菜飲料檢驗法-可溶性固形物之測定,總號12569,類號N6215。經濟部標準檢驗局。台北。台灣。
行政院農委會。2010。農業統計年報。行政院農委會統計室。台北。台灣。 行政院衛生署。2012。民國100年主要死因分析。行政院衛生署統計室。台北。台灣。 李婉禎。1994。乳酸發酵芋頭飲料及冷凍甜點之開發。私立輔仁大學食品營養學系碩士學位論文。台北。台灣。 沈明來。2010。試驗設計學。九州圖書文物有限公司。台北,台灣。 林富雄。2001。高雄區鄉土蔬菜食譜系列。高雄區農業改良場。6﹕1-7。 胡會林、李遒安。2005。食物科學觀。新潮社文化。3﹕115-116。 區少梅。2000。食品感官品評學及實習。華格納出版社。台中。台灣。 許雅鈞。2004。雙叉桿菌胞內物對活性氧之抗致突變性與抗氧化性。國立臺灣大學食品科技研究所碩士學位論文。台北。台灣。 陳治玄。2004。登糖入室。科學發展。384﹕57-61。 陳煥堂、林世煜。2006。台灣蔬果生活曆。天下文化。78-79。 陳慶源、黃崇真、邱雪惠與廖啟成。2007。乳酸菌之保健功效與產品開發。食品生技。11:60-68。 廖啟成。1998。乳酸菌之分類與應用。食品工業。30:1-10。 廖啟成。2011。乳酸菌與代謝症候群。台灣保健食品學會2011年會員大會暨保健食品與代謝症候群研討會大會手冊。台北。台灣。 蔡英傑。1998。乳酸菌與益生菌。生物產業。9:98-104。 鄭翕宸。2005。探討乳酸菌發酵對芋香豆漿製品之保健功能性。國立臺灣海洋大學食品科學系碩士學位論文。基隆。台灣。 Ali, A. A. Beneficial Role of Lactic Acid Bacteria in Food Preservation and Human Health. Res. J. Microbiol. 2010, 5, 1213-1221. Andlauer, W. and Furst. P. Antioxidative power of phytochemicals with special reference to cereals. Cereal Foods World. 1998, 43, 356-360. Angelo, A. J. S. Lipid oxidation in foods. Crit. Rev. Food Sci. Nutr. 1996, 36, 175-224. AOAC, Official methods of analysis of association of official analytical chemisits. 17thed. Weshinton D.C., U.S.A. 2000. Arunachalam, K.D.; Role of bifidobacteria in nutrition, medicine and technology. Nutr. Res. 1999, 19, 1559-1597. Aruoma, O. I. Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. Mutat. Res., 2003, 523-524, 9-20. Beckman, K. B.; Ames, B. N. The free radical theory of aging matures. Physiol. Rev. 1998, 78, 547–581. Bekers M.; Marauska M.; Laukevics J.; Grube M; Vigants A.; Karklina, D.; Skudra L. and Viesturs U. Oats and fat-free milk bases function food product. Food Biotech. 2001, 15, 1-12. Block, G. The data support a role for antioxidants in reducing cancer risk. Nutr. Rev. 1992, 50, 207-213. Bradbury, J. H. and Singh, U. Thiamin, riboflavin, and nicotinic acid contents of tropical root crops from the south pacific. J. Food Sci. 1986, 51, 1563-1564. Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci. Tech. 1995, 28, 25-30. Brown, A. C. and A. Valiere. The medicinal uses of Poi. Nutr. Clin. Care. 2004, 7, 69-74. Brown, A. C.; Reitzenstein, J. E.; Liu J. and Jadus, M. R. The anti-cancer effects of Poi (Colocasia esculenta) on colonic adenocarcinoma cells in vitro. Phytother. Res. 2005a, 19, 767–771 Brown, A. C.; Shovic, A.; Ibrahim, S.; Holck, P. and Huang, A. A non-dairy probiotic’s (Poi) influence on changing the gastrointestinal tract’s micro flora environment. Altern Ther Health Med. 2005b, 11, 58-64. Buratti, S.; Pellegrini, N.; Brenna, O. V.; Mannino, S. Rapid electrochemical method for the evaluation of the antioxidant power of some lipophilic food extracts. J. Agric. Food Chem. 2001, 49, 5136-5141. Burton, G.W. Vitamin E: molecular and biological function. Proc. Nutr. Soc. 1994, 53, 251-262. Cambie, R.C. and Ferguson, L.R. Potential functional foods in the traditional Maori diet. Mutat. Res. 2003, 523–524,109–117 Cerning, J. Prodiction of expolysaccarides by lactic acid bacteria and dairy propionibacteria. Lait 1995, 75, 463-472. Chandra, S. Tropical root crops: strategies for sustainable development and food security. Book of Abstracts of the 14th Triennial Symposium of International Society for Tropical Root Crops. 2006. 251. Thiruvananthapuram, India: Central Tuber Crops Reaserach Institude. Chung, Y. C.; Chang, C. T.; Chao, W. W.; Lin, C. F.; Chou, S. T. Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. J. Agric. Food Chem. 2002, 50, 2454-2458. Damebekodi, P.C.; Gilliland, S.E. Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum. J. Dairy Sci. 1998, 81, 1818-1824. Deguchi, Y.; Morishita, T.; Mutai. M. Comparative studied on synthesis of water- soluble vitamins among human species of bifidobacteria. Agric. Biol. Chem. 1985, 49, 13-19 Dinis, T. C. P.; Madeira, V. M. C.; Almeida, L. M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of memvrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994, 315, 161-169. DuBois, M.; Gilles, K. A.; Hamilton, J. k.; Rebers, P. A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350-356. Englberger, L.; Schierle, J.; Marks, G. C.; Fitzgeral, M. H. Micronesian banana, taro, and other foods: newly recognized sources of provitamin A and other carotenoids. J. Food Compos. Anal. 2003, 16, 3-19. Esterbauer, H.; Gebicki, J.; Puhl, H.; Jürgens, G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic. Biol. med 1992, 13, 341-390. FAO/ WHO. Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Report of a Joint FAO/ WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Córdoba, Argentina, October 1-4, 2001. Ferrari, M; Fornasiero, M. C. and Isetta, A. M. MTT colormertric assay for testing macrophage cytoxic activity in vitro. J. Immunol. Methods 1990, 131, 165-172. Finkel, T. and N. J. Holbrook. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239-247. Floridi, S.; Montanari, L.; Marconi, O.; Fantozzi, P. Determination of free phenolic acids in wort and beer by coulometric array detection. J. Agri. Food Chem. 2003, 51, 1548-1554. Frazier, W. C.; Westhoff, D.C. Microorganisms important in food microbiology. In: Frazier, W.C.; Westhoff, D.C. Food Microbiology. 4th ed. New York: McGraw-Hill Book Co. 1988. Fukushima, Y.; Kawata, Y.; Hara, H.; Terada, A.; and Mitsuoka, T. Effect of a probiotic formula on intestinal immunoglobulin A production in healthy children. Int. J. Food Microbiol. 1998, 42, 39-44. Fuller, R. Probiotics in man and animals. J. Appl. Bacteriol. 1989, 66, 365-378. Gerster, H. Intermediate cancer biomarkers and their use in beta-carotene studies in humans. Int. J. Vitam. Nutr. Res. 1996, 66, 3-18. Giese, J. Antioxidants: Tools for Preventing Lipid Oxidation. Food Technol. 1996, 50, 73–77. Gilliland, S. E.; Kim, H.S. Effect of viable starter culture bacteria in yogurt on lactose utilization in humans. J. Dairly Sci. 1984, 67, 1-6. Gold, V. Compendium of Chemical Terminology: IUPAC recommendations. Blackwell Scientific Publications. 1987. Goldin, B. The metabolic activity of the intestinal microflora and its role in colon cancer Lactobacillus and other factors that alter intestinal metabolic activity. Nutr. Today Suppl. 1996, 31, 24S-27S. Gomes, A. M. P. and Malcata, F. X. Bifidobacterium spp. and Lactobacillus acidophilus: biogical, biochemical, technological and therapeutical propertied relevant for use as probiotics. Trends Food Sci. Technol. 1999, 10, 139-157. Halliwell, B. Free radicals and antioxidants: A personal view. Nutr. Rev. 1994, 52, 253-265. Halliwell, B.; Murcia, M. A.; Chirico, S.; Aruoma, O. I. Free radicals and antioxidants in food and in vivo: What they do and how they work. Food Sci. Nutr. 1995, 35, 7-22. Halliwell, Β.; Gutteridge, J. Μ. C. Role of free radicals and catalytic metal ions in human diseases: An overview. Methods Enzymol. 1990, 186, 1-86. Hamann, C.; Samaluti, V. E. L.; Ulmev, A. J.; Flad, H. D.; Rietschel, E. T. Compoents of gut bacteria as immunomodulators. Int. Food Micorbiol. 1998, 41, 141-154. Harrison, S.G.; Masefield, G.B.; Wallis, M., The Oxford Book of Food Plants, Oxford Uni. Press. 1982. Haskard, C.; Binnion, C.; Ahokas, J. Factors affecting the sequestration of aflatoxin by Lactobacillus rhamnosus strain GG. Chemico-Bio. Int. 2000, 128, 39-49. Hassan A. N., Frank J. F.; Schmidt K. A. and Shalabi S. I. Rheological properties of yogurt made with encapsulated nonropy lactic cultures. J Dairy Sci, 1996, 79, 2091-2079. He, L.; Li, X.; Luo, H. S.; Rong, H.; J. Cai. Possible mechanism for the regulation of glucose on proliferation, inhibition and apoptosis of colon cancer cells induced by sodium butyrate. World J. Gastroenterol. 2007, 13, 4015-4018. Ho, C. T. Phenolic Compounds in Food and Their Effect on Health volume I: analysis, occurrence, and chemistry. American Chemical Society. Washington, DC, 1992. Holzapfel, W. H.; Haberer, P.; Snel, J.; Schillinger, U.; Huis in’t Veld J. H. J. Overview of gut flora and probiotics. Int. J. Food Microbiol. 1998, 41, 85-101. Hosono, A.; Kashina, T. Antimutagenic proerties of lactic acid-cluture milk on chemical and fecal mutagens. J. Dairy. Sci. 1986, 69, 2237-2242. Huang, C. C.; Chen, W. C.; Wang C. C. R. Comparison of Taiwan paddy- and upland-cultivated taro (Colocasia esculenta L.) cultivars for nutritive values. Food Chem. 2006, 102, 250-256. Huang, D.; Ou, B. and Prior, R. L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841-1856. Ismail, A. and Hong T. S. Antioxidant activity of selected commercial seaweeds. Mal. J. Nutr. 2002, 8, 167-177. Jacob, R. A. The integrated antioxidant system. Nutr. Res. 1995, 15, 755-766. Jane, J; Shen, L; Lim, S; Kasemsuwan, T.; Nip, W. K. Physical and chemical studies of taro starches and flours. Cereal Chem. 1992, 69, 528-535. Jay, J. M. Modern Food Microbiology. 2000, 6th edition, Internation Thomson Publishing, New York, U.S.A. Jiang, T.; Mustapha, A.; Savaiano, D. A. Improventment of lactose digestion in human by injection of fermented milk containing Bifidobacterium longum. J. Dairly Sci. 1996, 79, 750-757. Kamat, J. P.; Boloor K. K. and Devasagayam. T. P. A. Chlorophyllin as an effective antioxidant against membrane damage in vitro and ex vivo. BBA 2000, 1487, 113-127. Kaur, C. and Kapoor, H. C. Antioxidants in fruits and vegetables – the millennium’s health. Int. J. Food Sci. Technol. 2001, 36, 703-725. Kawai M.; Matsuura S. Manda supresses emotional stressinduced stomach ulcer in rats. Int. J. Stress Manag. 1997, 4, 63-69. Kawai M.; Matsuura S.; Ogawa N. Manda, a fermented natural food, suppresses lipid peroxidation in the senescent rat brain. Neurochem. Res. 1998, 23, 55-61. Kaziu, H.; Sasaki, M.; Nakajima, H.; Suzuki, Y. Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J. Dairy Sci. 1993, 78, 761-768. Kitts, D. D. An evaluation of the multiple effects of the antioxidant vitamins. Trends Food Sci. Technol 1997, 36, 703-725. Klaver, F. A. M. and van der Meer, R. The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl. Environ. Microbiol. 1993, 59, 1120-1124. Klenow, S.; Glei, M.; Haber, B.; Owen, R.; Pool-Zobel, B. L. Carob fibre compounds modulate parameters of cell growth differently in human HT29 colon adenocarcinoma cells than in LT97 colon adenoma cells. Food Chem. Toxicol. 2008, 46, 1389-1397. Kopp-Hoolihan, L. Prophylactic and therapeutic uses of probiotics. J. Am. Diet Assoc. 2001, 101, 229-238. Kot, E.; Furmanov, S. and Bezkorovainy, A. Accumulation of Iron in Lactic acid Bacteria and Bifidobacteria. J. Food Sci. 1995, 60, 547-550. Kullisaar, T.; Zilmer, M.; Mikelsaar, M.; Vihalemm, T.; Annuk, H.; Kairane, C.; Kilk, A. Two antioxidative lactobacilli strains as promising probiotics. Int. J. Food Microbiol. 2002, 72, 215-224. Labuza, T.P. Kinetics of lipid oxidation. CRC Crit. Rev. in Food Tech. 1971, 1, 355-396. Lankaputhra, W. E. V.; Shah, N. P. Antimutagenic properties of probiotic bacteria and of organic acids. Mutat. Res./Fund. Mol. 1998, 397, 169-182. Larson, R. A. The antioxidants of higher plants. Phytochemistry 1998, 27, 969-978. Lee, M. Y.; Lee, M. K., Inhibitory effect of onion extract on polyphenoloxidase and enzymatic browning of taro (Colocasia antiquorum var. esculenta). Food Chem. 2007, 105, 528-532. Leroy F. and De Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends food Sci. Technol. 2004, 15, 67-78. Liebler, D. C. Antioxidant reactions of carotenoids. Ann. New York. Acad. of Sci. 1993, 691, 20-31. Lilly, D. M.; Stillwell, R. H. Probiotics: Growth promoting factors produced by microorganisms. Science 1965, 147, 747-748. Lin, M. Y.; Yen, C. L. Antioxidative Ability of Lactic Acid Bacteria. J. Agric. Food Chem. 1999, 47, 1460-1466. Ling, W. H. Diet and colonic microflora interaction in colorectal cancer. Nutr. Res. 1995, 15, 439-454. Liong, M. T.and Shah, N.P. Effects of a lactobacillus casei symbiotic on serum lipoprotein, intestinal microflora and organic acids in rats. J. Dairy Sci. 2006, 89, 1390-1399. Lo, P. R.; Yu, R. C.; Chou, C. C.; Tsai, Y. H. Antimutageinicity activity of several probiotic bifidobacteria against benzo[a]pyrene. J. Biosci. Bioengineer. 2002, 94, 148-153. Loft, S.; Poulsen, H. E. Cancer risk and oxidative DNA damage in man. J. Mol. Med. 1996, 74, 297-312. Maga, J. A. Taro: composition and food uses. Food Rev. Int. 1992, 8, 443-473. Malenčić, D., M. Popović and J. Miladinović. Phenolic content and antioxidant properties of soybean ( Glycine max (L.) Merr. ) Seeds. Molecules 2007, 12, 576-581. Mara, L. S.; Manuela, D.T.; Marina, M. Determination of peroxy radical-scavenging of lactic acid bacteria. Int. J. Food Microbiol. 2001, 64, 183-188. Marnett, L. J.; Burcham, P. C. Endogenous DNA-adducts-potential and paradox. (Vol 6, p771, 1993). Chem. Res. Toxi. 1994, 7, 583-583. Marshall, V. M. Fermented milk and their future trends. I. Microbiol Aspectds. J. Dairy Res.1987, 54, 559-574. Miettinen, M.; Vuopio-Varkila, J. and Varkila, K. Production of human tumor necrosis factor alpha, interleukin-6 and interleukin-10 is induced by lactic acid bacteria. Inf. Immun. 1996, 64, 5403-5405. Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426-428. Miller, N. J.; Evans, C. R.; Davies, M. J.; Gopinathan, V. and Milner, A. A novel method for measuring antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407-412. Mishra, O. P. and G. B. Kovachich. Inhibition of the autoxidation of ascorbate and norepinephrine by extracts of Clostridium butyricum, Megasphaera elsdenii and Escherichia coli. Life Sci. 1984. 35, 849-854. Morrissey P. A., O’Brien N. M., Dietary antioxidant in health and disease. Int. Dairy J. 1998, 8, 463-472. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55-63. Moy, J. H.; Nip, W. K. Processed Food. In Taro, A Review of Colocasia esculenta and its potentials; Wang, J. K., Ed.; Honolulu, University of Hawaii Press 1983, 261-262. Moy, J. H.; Wang, N. T. S.; Nakayama T. O. M. Dehydration and processing problems of Taro. J. Food Sci. 1977, 42, 917-920. Naidu, A. S.; Bidlack, W. R.; Clemens, R.A. Probiotic spectra of lactic acid bacteria (LAB). Crit. Rev. Food Sci. Nutr. 1999, 39, 13-126. Nakamura, Y.; Watanabe, S.; Miyake, N.; Kohno, H.; Osawa, T. Dihydrochalcones: Evaluation as Novel Radical Scavenging Antioxidants. J. Agri. Food Chem. 2003, 51, 3309-3312. Namiki, M. Antioxidants/antimutagens in food. Crit. Rev. Food Sci. Nutr. 1990, 29, 273 - 300. Nielsen, V. Factors which control the body and texture of commercial yoghurts. Am. Dairy Rev. 1975, 37, 36. Niki, E. Active oxygens and free radicals in biology. J. Jpn. Oil Chem. 1992, 41, 768-773. Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J. A. and Deemer, E. K. Analysis of antioxidant activity of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assay:a comparative study. J. Agric. Food Chem. 2002, 50, 771-775. Oyaizu, M. Studies on products of browning reaction: Antioxidative activities of products of browning reaction. Jpn. J. Nutr. 1986, 44, 307-315. Ozaki, Y. The promotion of growth of bifidobacteria with various kinds of sugars. New Food Ind. 1991, 32, 12-15. Padayatty, S.; Katz, A.; Wang, Y.; Eck, P.; Kwon, O.; Lee, J.; Chen, S.; Corpe, C.; Dutta, A.; Dutta, S.; Levine, M. Vitamin C as an antioxidant: Evaluation of its role in disease prevention. J. Am. Coll. Nutr. 2003, 22, 18-35. Parnell-Clunies, E.; Kakuda, Y. and Deman. J. Influence of heat treatment of milk on the flow properties of yogurt. J. Food Sci. 1986, 51, 1459-1462. Parvez, S.; Malik, K. A.; Kang, A. S.; Kim, H. Y. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 2006, 100, 1171-1185. Paseephol, T.; Small, M. D.; Sherkat, F. Rheology and texture of set yogurt as affected by inulin addition. J. Texture Stud, 2008, 39, 617–634 Prior, R. L.; Wu, X. and Schaich. K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290-4302. Ray, R. C., and Sivakumar, P. S. Traditional and novel fermented foods and beverages from tropical root and tuber crops: Review. Int. J. Food Sci. Technol. 2009, 44, 1073-1087. Re, R, Pellegrini, N, Proteggente, A, Pannala, A, Yang, M, Rice-Evans, C. Antioxidant actibity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231-1237. Rice-Evans, C. A.; Miller, N. J. and Paganga, G. Structure antioxidant activity relationships of flavonoid and phenolic acids. Free Radical Biol. Med. 1996, 20, 933-956. Roberts, J. S.; Kidd, D. R. Lactic acid fermentation of onion. Food Sci. Technol. 2005, 38, 185-190. Saarela, M.; Lähteenmäki, L.; Crittenden, R.; Salminen, S.; Mattila-Sandholm, T. Gutbacteria and healthfoods—the Europeanperspective. Int. J. Food Microbiol. 2002, 78, 99-117. Salminen, S.; Isolauri, E.; Salminen, E. Clinical uses of probiotics for stabilizing the gut mucosal barriersuccesful strains and future challenges. Antonie van Leeuwenhoek. 1996, 70, 347–358 Salminen, S.; Ouwehand, A. C; Benno, Y.; Lee, Y. K. Probiotics: How should they be defined? Trends Food Sci. Technol. 1999, 10, 107-110. Sanz, T.; Salvador,A.; Jimenez, A., and Fiszman, S. A.Yogurt enrichmentwith functional asparagus fibre. Effect of fibre extractionmethod on rheological properties, colour, and sensory acceptance. Eur Food Res Technol, 2008, 227, 1515−1521. Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C; Jiménez, L. Dietary polyphenols and the preventation of diseases. Crit. Rev. Food Sci. 2005, 45, 287-306. Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr. 2000, 130, 2073-2085. Scheinbach, S. Probiotics: functionality and commercial status. Biotechnol. Adv. 1998, 16, 581-608. Scholes, G. Radiation effects on DNA – The thompson, Silvanus memorial lecture, April 1982. Br. J. Radiol. 1983, 56, 221-231. Schrezenmeir, J.; Vrese, M. Probiotics, prebiotics, and synbiotics-approaching a definition. Am. J. Clin. Nutr. 2001, 73, 361-364. Setchell, K. D. R. Absorption and metabolism of soy isoflavones from food to dietary supplements and adults to infants. J. Nutr. 2000, 130, 654S-655S. Shah, N. P. Functional cultures and health benefits. Int. Dairy J. 2007, 17, 1262-1277. Shahidi, F.; Janitha, P. K.; Wanasundara, P. D. Phenolic antioxidants. Crit. Rev. food Sci. Nutr 1992, 32, 67-103. Shem, S. C.; Tseng, K. C.; Chao, F. T.; Wu, J. S. B. Color quality of rose liqueur. J. Food Qual. 2007, 30, 202-217. Shimada, K., K. Fujikawa, K. Yahara and T. Nakamura. Antioxidative properties of Xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 1992, 40, 945-948. Shimamura, S.; Abe, F.; Ishibashi, N.; Miyakawa, H.; Yaeshima, T.; Araya, T.; Tomita, M. Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. J. Dairy Sci. 1992, 75, 3296-3306. Shirai, K.; Gutierrez-Durán, M.; Marshall, V. M. E.; Revah-Moiseevc S. and García-Garibay M. Production of a yogurt-like product from plant foodstuffs and whey. sensory evaluation and physical attributes. J. Sci. Food Agric. 1992, 59, 205-210 Simic, M. G. Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis. Mutat. Res./Fund. Mol. M. 1988, 202, 377-386. Singleton, V. L. and Rossi, J. A. Jr. Colorimetry of total phenolics with phosphomolybdic- phosphotungdtic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144-158. Stadtman, E. R. Protein oxidation and aging. Science 1992, 257, 1220-1224. Stadtman, E. R.; Oliver, C. N. Metal-catalyzed oxidation of proteins - physiological consequences. J. Biol. Chem. 1991, 266, 2005-2008. Sun, Y. P. ; Chou, C. C.; Yu, R. C. Antioxidantactivity of lactic-fermented Chinese cabbage. Food Chem. 2009, 115, 912-917. Suzuk, R.; Matsushita, Y.; Sakurai,T. I. M.; J. Ozaki, M. H. de J. S. K.; and Fukushima, Z. F. K.; Characterization and antioxidant activity of Amazonian woods. J. Wood Sci. 2008, 54, 174-178. Teixeira, A. J. R.; Gommersampt, J. H.; Vandewerken, G.; Westra, J. G.; Stavenuiter, J. F. C.; Dejong, A. P. J. M. Method for the analysis of oxidized nucleosides by gas chromatography mass spectrometry. Ana. Bioch. 1993, 214, 474-483. Thomas, M. J. The role of free radicals and antioxidants: how do we know that they are working. Crit. Rev. Food Sci. Nutr. 1995, 35, 21-39. Torel, J.; Cillard, J. and Cillard, P. Antioxidant activity of flavonoides and reactivity with peroxy radicals. Phytochemistry 1986, 25, 383-385 Tsangalis, D.; Ashton, J. F.; Mcgcill, A. E. J.; Shah, N. P. Enzymic transformation of isoflavone phytoestrogens in soymilk by β-glucosidase-producing bifidobacteria. J. Food Sci. 2002, 67, 3104-3113. Tsen, J. H.; Lin, Y. P.; King, V. A-E. Banana puree fermentation by Lactobacillus acidophilus immobilized in Ca-alginate. J. Gen. App. Microbiol. 2003, 49, 357-361. United States Department of Agricultural (USDA) Research Service. National Nutrient Database for Standard Reference, Release 24, 2011a, 11518. United States Department of Agricultural (USDA) Research Service. National Nutrient Database for Standard Reference, Release 24, 2011b, 19334. Vaca, C. E.; Wilhelm, J.; Harmsringdahl, M. Interaction of lipid-peroxidation products with DNA. Mutat. Res. 1988, 195, 137-149. Velioglu, Y. S.; Mazza, G.; Gao, L.; Oomah, B. D. Antioxidant activity and the total phenolic in selected fruits, vegetables, and grain prodicts. J. Agric. Food Chem. 1998, 46, 4113-4117. Wang, M. Y.; Liehr, J. G. Lipid Hydroperoxide-induced endogenous DNA adducts in hamsters: possible mechanism of lipid hydroperoxide-mediated carcinogenesis. Arch. Biochem. Biophys. 1995, 316, 38-46. Wang, Y. C.; Yu, R. C.; Chou, C. C. Antioxidative activity of soymilk fermented with latic acid bacteria and bifidobacteria. Food Microbiol. 2006, 23, 128-135. Whysner, J. and G. M. Williams. Butylated hydroxyanisole mechanistic data and risk assessment: Conditional species-specific cytotoxicity, enhanced cell proliferation, and tumor promotion. Pharmacol. Ther. 1996, 71, 137-151. Will, R. B. H; Lim, J. S. K; Greenfield. H.; Bayliss-Smith, T. Nutrient composition of taro ( Colocasia esculenta ) cultivars from the papua new guinea highlands. J. Sci. Food Agric. 1983, 34, 1137-1142. Willcox, J. K.; Ash, S. L.; Catignani, G. L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 2004, 44, 275-295. William, R. B.; Michael, W. P. Antioxidant nutrients and protection from free radicals. Nutr. Toxicol. 1994, 61, 573-579. Yusof, S.; Mohamed, S. and Abu Baker, A. Effects of fruit matunity on quality and acceptability of guava puree. Food Chem. 1988, 30, 45-58. Zare, F.; Boye, J. I.; Orsat, V.; Champagne, C.; Simpson, B. K. Microbial, physical and sensory properties of yogurt supplemented with lentil flour. Food Res. Int. 2011, 44, 2482-2488. Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555-559. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16232 | - |
dc.description.abstract | 芋頭為主要糧食作物之一,富有良好的營養素,其相關製品有許多,但以益生菌發酵者卻相當少見,而益生菌發酵製品,長久以來提供人類許多良好的機能性,故本研究以Lactococcus lactis Lab5、Lactobacillus plantarum BCRC 11697、Bifidobacterium bifidum BCRC 14615、Bifidobacterium longum BCRC 14634與添加不同濃度的紅糖分別發酵芋頭,以期擴展芋頭的食用效益與功能性。實驗第一部分於芋頭中不添加或添加1.5%、3 % 紅糖發酵,探討 24小時發酵期間乳酸菌數、pH值、可滴定酸度變化,實驗結果顯示芋頭基質中添加1.5% 紅糖發酵的菌數可達8.95 ± 0.06 log CFU/mL,發酵過程中pH值也隨時間而下降,顯示芋頭中添加1.5% 紅糖發酵者,對於益生菌的生長有良好之影響,發酵期間的可溶性固形物、總糖、還原糖含量、黏度、顏色特性,亦因發酵後具有顯著差異 (p<0.05)。第二部分則以不同溶液萃取益生菌最適發酵芋頭產物中的有效成分,無論是何種萃取方式,總酚與類黃酮含量因發酵後而提高,其中分別以50%的甲醇萃取液、水萃取液含有較高的成分濃度,抗氧化活性分析方面,DPPH自由基清除能力、亞鐵螯合能力、抗維生素C的自氧化能力、總還原力及總抗氧化能力也皆因發酵後有所提升,並顯著高於未添加菌株發酵的芋頭基質 (p<0.05),但是在不同的萃取溶劑種類中,對於抗氧化能力的最佳效益亦有影響。另外,結腸癌細胞株HT-29與Lb. plantarum BCRC 11697、B. bifidum BCRC 14615發酵芋頭產物共培養48小時後,細胞存活率顯著性地下降,顯示益生菌發酵芋頭產物具有抑制癌細胞生長。在喜好性品評中,以Lb. plantarum BCRC 11697發酵的芋頭製品,調整糖酸比後具有最佳的整體接受度。 | zh_TW |
dc.description.abstract | Taro is one of major root crops of world, and its nutritional value is the main concern when a crop is being considered as a food source for wide applicability. Fermented taro is rarely in Taiwan, but fermentation products by probiotic provide good functional for human for a long time, so the object of this research was to use native taro and several probiotics to increase the functional activity of fermented taro. In this study, Lactococcus lactis Lab5, Lactobacillus plantarum BCRC 11697, Bifidobacterium bifidum BCRC 14615, or Bifidobacterium longum BCRC 14634 were used as starters to ferment native taro with different concentrations of brown sugar. First, the cell counts, pH value, titratable acidity content and check some physicochemical properties were determined during 24 hours cultivation. It showed that the cells number of different probiotics fermented taro with 1.5% of brown sugar were achieved up to 8.95 ± 0.06 log CFU/mL. During fermentation, the pH value also became declined with fermentation time. Therefore, the optimal fermentation condition to enrich probiotic of taro was the addion of 1.5% brown sugar to taro for fermentation. Physicochemical properties such as soluble solids, total sugar, reducing sugar, viscosity, and color properties were significantly different (p<0.05) than unfermented. Then using different polarity solvent to extract different probiotics fermented taro with the addition of 1.5% brown sugar. Results showed that the methanol or distilled water extract, total phenol content and flavonoid were significantly different (p<0.05) than unfermented especially Lb. plantarum BCRC 11697, B. bifidum BCRC 14615 as starter. DPPH-radical scavenging activity, Fe2+-chelating ability, inhibition of ascorbate autoxidation, reducing power and trolox equivalent of antioxidant capacity for fermented taro were also significantly higher (p<0.05) than unfermented. In addition, cell viability of HT-29 cocultured with fermented taro with Lb. plantarum BCRC 11697, or B. bifidum BCRC 14615 for 48 hours was decreased. The treatments showed cytotoxicity and dose-dependent. Futhermore Lb. plantarum BCRC 11697 fermented taro of higher sugar/acid ratios of sensory properties analysis was more acceptable. Conclusively, probiotic fermented taro provides innovative taste, flavor, and increase the functional properties to make fermented taro products more diverse. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T18:06:01Z (GMT). No. of bitstreams: 1 ntu-101-R99641005-1.pdf: 1781778 bytes, checksum: 05c21c8b2aa5231c9927014d60a5bfa4 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 謝誌.......................................................I
摘要......................................................II Abstract.................................................III 目錄.......................................................V 圖目錄.....................................................X 表目錄....................................................XI 壹、 前言..................................................1 貳、 文獻回顧..............................................2 一、芋頭...................................................2 (一)、芋頭簡介.............................................2 (二)、芋頭特性.............................................2 (三)、芋頭製品.............................................4 二、紅糖...................................................6 (一)、紅糖簡介.............................................6 (二)、紅糖特性與療效.......................................6 三、益生菌.................................................8 (一)、益生菌定義...........................................8 (二)、乳酸菌...............................................8 1.乳酸菌分類..............................................11 2.乳酸菌生理功效..........................................11 3.乳酸菌應用..............................................14 四、氧化壓力及抗氧化......................................16 (一)、自由基..............................................16 1.自由基與活性氧傷害......................................16 2.核酸之氧化傷害..........................................19 3.脂質之氧化傷害..........................................19 4.蛋白質之氧化傷害........................................19 (二)、抗氧化系統..........................................22 1.預防性..................................................22 2.清除自由基..............................................22 3.修復功能................................................22 (三)、抗氧化劑作用之原理與機制............................22 1.自由基終止性............................................22 2.還原劑或氧清除劑........................................24 3.金屬螯合劑..............................................24 (四)、具抗氧化能力之天然植物..............................24 1.維生素C.................................................25 2.維生素E.................................................25 3.類胡蘿蔔素..............................................25 4.酚類化合物..............................................26 (五)、抗氧化活性測定原理.................................28 1.DPPH自由基清除效應......................................28 2.金屬離子螯合能力........................................28 3.還原力..................................................28 4.TEAC總抗氧化能力........................................29 參、 材料與方法...........................................30 一、實驗架構..............................................30 二、實驗材料..............................................33 (一)、試驗菌株............................................33 (二)、試驗細胞株..........................................33 (三)、試驗原料............................................33 (四)、培養基..............................................33 (五)、藥品................................................33 (六)、儀器與設備..........................................34 三、實驗方法..............................................36 (一)、芋頭基質製備........................................36 (二)、菌株之活化、保存與計數..............................36 1.活化....................................................36 2.保存....................................................36 3.計數....................................................36 (三)、細胞株之活化培養、繼代、計數與保存..................36 1.細胞株的活化與培養......................................36 2.細胞繼代................................................37 3.細胞保存................................................37 (四)、發酵芋頭的製備......................................37 (五)、發酵芋頭生長情形與物化測定..........................37 1.pH值....................................................37 2.可滴定酸................................................37 3.可溶性固形物............................................38 4.總糖....................................................38 5.還原糖..................................................38 6.黏度....................................................38 7.色澤分析................................................38 (六)、發酵芋頭之抗氧化檢測................................39 1.分析樣品製備與萃取......................................39 2.抗氧化成分分析..........................................39 3.抗氧化能力分析..........................................40 (七)、益生菌發酵物抑制人類結腸癌細胞株HT-29增生之試驗.....42 (八)、喜好性品評..........................................42 (九)、統計分析............................................42 肆、 結果與討論...........................................43 一、乳酸菌或雙差桿菌在芋頭發酵過程中生長情形..............43 (一)、益生菌之菌數變化....................................43 (二)、pH值與可滴定酸度變化................................45 二、乳酸菌或雙叉桿菌在芋頭發酵過程中之物化變化............48 (一)、可溶性固形物........................................48 (二)、總糖................................................50 (三)、還原糖含量..........................................50 (四)、黏度................................................54 (五)、顏色................................................56 三、乳酸菌或雙叉桿菌發酵芋頭後之抗氧化成分分析............61 (一)、總酚含量............................................61 (二)、類黃酮含量..........................................62 四、乳酸菌或雙叉桿菌發酵芋頭後之抗氧化活性分析............65 (一)、DPPH自由基清除能力..................................65 (二)、亞鐵離子螯合能力....................................67 (三)、抑制抗壞血酸自氧化活性..............................69 (四)、還原力..............................................71 (五)、TEAC總抗氧化能力....................................73 五、發酵產物對HT-29細胞株之毒性分析.......................75 六、發酵產物之喜好性分析..................................76 伍、 結論.................................................80 陸、 參考文獻.............................................81 附錄......................................................94 附圖一、國產檳榔心芋......................................94 附表一、發酵24小時於不同糖含量下益生菌對發酵芋頭的菌落數、pH 和可滴定酸度。............................................95 附表二、發酵24小時益生菌於不同糖含量下發酵芋頭的可溶性固物、總糖與還原糖含量及黏度變化。..............................96 附表三、喜好性品評問卷....................................97 | |
dc.language.iso | zh-TW | |
dc.title | 數株益生菌發酵芋頭之抗氧化性及對HT-29細胞毒性之研究 | zh_TW |
dc.title | Antioxidative activity of several probiotic fermented taro and its cytoxicity on HT-29 | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 周正俊,潘崇良,蔡國珍,丘志威,顏聰榮 | |
dc.subject.keyword | 芋頭,益生菌,抗氧化能力,抑腸癌能力,感官品評, | zh_TW |
dc.subject.keyword | Taro,probiotics,antioxidative activity,inhibition of colon cancer activity,sensory evaluation, | en |
dc.relation.page | 98 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2012-07-25 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。