Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16010
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊維(Chun-Wei Chen)
dc.contributor.authorPo-Hsun Hoen
dc.contributor.author何柏勳zh_TW
dc.date.accessioned2021-06-07T17:57:57Z-
dc.date.copyright2012-08-15
dc.date.issued2012
dc.date.submitted2012-08-13
dc.identifier.citationChapter 1
1. Peierls, R. E. Quelques proprietes typiques des corpses solides. Ann. I. H. Poincare 1935, 5, 177–222.
2. Landau, L. D. Zur Th eorie der phasenumwandlungen II. Phys. Z. Sowjetunion, 1937, 11, 26–35.
3. Venables, J. A., Spiller, G. D. T. & Hanbucken, M. Nucleation and growth of thin fi lms. Rep. Prog. Phys. 1984, 47, 399–459.
4. Evans, J. W., Th iel, P. A. & Bartelt, M. C. Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Sur. Sci. Rep. 2006, 61, 1–128.
5. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666-669.
6. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K., Two-dimensional atomic crystals. P. Natl. Acad. Sci. USA. 2005, 102 (30), 10451-10453.
7. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A., Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438 (7065), 197-200.
8. Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438 (7065), 201-204.
9. Schwierz, F., Graphene transistors. Nat Nanotechnol. 2010, 5 (7), 487-496.
10. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6 (9), 652-655.
11. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I.; Kim, Y.-J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J.-H.; Hong, B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol. 2010, 5 (8), 574-578.
12. Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z., Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Lett. 2010, 10 (12), 4863-4868
13. Sutter, P., Epitaxial graphene: How silicon leaves the scene. Nat. Mater. 2009, 8 (3), 171-172.
14. de Heer, W. A.; Berger, C.; Wu, X.; First, P. N.; Conrad, E. H.; Li, X.; Li, T.; Sprinkle, M.; Hass, J.; Sadowski, M. L.; Potemski, M.; Martinez, G., Epitaxial graphene. Solid State Commun. 2007, 143 (1–2), 92-100.
15. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457 (7230), 706-710.
16. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324 (5932), 1312-1314.
17. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Rev. Mod. Phys. 2009, 81 (1), 109-162.
18. Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K., Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2006, 2 (9), 620-625.
19. Chen, F.; Xia, J.; Ferry, D. K.; Tao, N., Dielectric Screening Enhanced Performance in Graphene FET. Nano Lett. 2009, 9 (7), 2571-2574.
20. Jang, C.; Adam, S.; Chen, J. H.; Williams, E. D.; Das Sarma, S.; Fuhrer, M. S., Tuning the Effective Fine Structure Constant in Graphene: Opposing Effects of Dielectric Screening on Short- and Long-Range Potential Scattering. Phys. Rev. Lett. 2008, 101 (14), 146805.
21. Lafkioti, M.; Krauss, B.; Lohmann, T.; Zschieschang, U.; Klauk, H.; Klitzing, K. v.; Smet, J. H., Graphene on a Hydrophobic Substrate: Doping Reduction and Hysteresis Suppression under Ambient Conditions. Nano Lett. 2010, 10 (4), 1149-1153.
22. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L., Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146 (9–10), 351-355.
23. Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y., Approaching ballistic transport in suspended graphene. Nat Nanotechnol. 2008, 3 (8), 491-495.
24. Dean, C. R.; Young, A. F.; MericI; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J., Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol. 2010, 5 (10), 722-726.
25. Park, J.; Lee, W. H.; Huh, S.; Sim, S. H.; Kim, S. B.; Cho, K.; Hong, B. H.; Kim, K. S., Work-Function Engineering of Graphene Electrodes by Self-Assembled Monolayers for High-Performance Organic Field-Effect Transistors. J. Phys. Chem. Lett. 2011, 2 (8), 841-845.
26. Romero, H. E.; Shen, N.; Joshi, P.; Gutierrez, H. R.; Tadigadapa, S. A.; Sofo, J. O.; Eklund, P. C., n-Type Behavior of Graphene Supported on Si/SiO2 Substrates. ACS Nano 2008, 2 (10), 2037-2044.
27. Niyogi, S.; Bekyarova, E.; Itkis, M. E.; Zhang, H.; Shepperd, K.; Hicks, J.; Sprinkle, M.; Berger, C.; Lau, C. N.; deHeer, W. A.; Conrad, E. H.; Haddon, R. C., Spectroscopy of Covalently Functionalized Graphene. Nano Lett. 2010, 10 (10), 4061-4066.
28. Englert, J. M.; Dotzer, C.; Yang, G.; Schmid, M.; Papp, C.; Gottfried, J. M.; Steinruck, H.-P.; Spiecker, E.; Hauke, F.; Hirsch, A., Covalent bulk functionalization of graphene. Nat. Chem. 2011, 3 (4), 279-286.
29. Pi, K.; McCreary, K. M.; Bao, W.; Han, W.; Chiang, Y. F.; Li, Y.; Tsai, S. W.; Lau, C. N.; Kawakami, R. K., Electronic doping and scattering by transition metals on graphene. Phys. Rev. B 2009, 80 (7), 075406.
Chapter 2
1. Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R., Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Lett. 2010, 10 (3), 751-758.
2. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K., Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97 (18), 187401.
3. Nemanich, R. J.; Solin, S. A., First- and second-order Raman scattering from finite-size crystals of graphite. Phy. Rev. B 1979, 20 (2), 392-401.
4. DasA; PisanaS; ChakrabortyB; PiscanecS; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3 (4), 210-215.
5. Geim, A. K., Graphene: Status and Prospects. Science 2009, 324 (5934), 1530-1534.
6. Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438 (7065), 201-204.
7. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat. Mater. 2007, 6 (3), 183-191.
8. Peierls, R. E. Quelques proprietes typiques des corpses solides. Ann. I. H. Poincare 1935, 5, 177–222.
9. Landau, L. D. Zur Th eorie der phasenumwandlungen II. Phys. Z. Sowjetunion, 1937, 11, 26–35.
10. Stolyarova, E.; Rim, K. T.; Ryu, S.; Maultzsch, J.; Kim, P.; Brus, L. E.; Heinz, T. F.; Hybertsen, M. S.; Flynn, G. W., High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. P. Natl. Acad. Sci. USA 2007, 104 (22), 9209-9212.
11. Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams, E. D., Atomic Structure of Graphene on SiO2. Nano Lett. 2007, 7 (6), 1643-1648.
12. Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; von Klitzing, K.; Yacoby, A., Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 2008, 4 (2), 144-148.
13. Katsnelson, M. I.; Geim, A. K., Electron scattering on microscopic corrugations in graphene. Philos. T. R. Soc. A. 2008, 366 (1863), 195-204.
14. Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M., Charged-impurity scattering in graphene. Nat. Phys. 2008, 4 (5), 377-381.
15. Farmer, D. B.; Golizadeh-Mojarad, R.; Perebeinos, V.; Lin, Y.-M.; Tulevski, G. S.; Tsang, J. C.; Avouris, P., Chemical Doping and Electron−Hole Conduction Asymmetry in Graphene Devices. Nano Lett. 2008, 9 (1), 388-392.
16. Nomura, K.; MacDonald, A. H., Quantum Transport of Massless Dirac Fermions. Phys. Rev. Lett. 2007, 98 (7), 076602.
17. Hwang, E. H.; Adam, S.; Das Sarma, S., Carrier Transport in Two-Dimensional Graphene Layers. Phys. Rev. Lett. 2007, 98 (18), 186806.
18. Bolotin, K. I.; Sikes, K. J.; Hone, J.; Stormer, H. L.; Kim, P., Temperature-Dependent Transport in Suspended Graphene. Phys. Rev. Lett. 2008, 101 (9), 096802.
19. Chen, W.; Chen, S.; Qi, D. C.; Gao, X. Y.; Wee, A. T. S., Surface Transfer p-Type Doping of Epitaxial Graphene. J. Am. Chem. Soc. 2007, 129, 10418-10422.
20. Guo, B.; Liu, Q.; Chen, E.; Zhu, H.; Fang, L.; Gong, J. R., Controllable N-Doping of Graphene. Nano Lett. 2010, 10, 4975-4980.
21. Usachov, D.; Vilkov, O.; Grüneis, A.; Haberer, D.; Fedorov, A.; Adamchuk, V. K.; Preobrajenski, A. B.; Dudin, P.; Barinov, A.; Oehzelt, M.; et al. Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties. Nano Lett. 2011, 11, 5401-5407.
22. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6 (9), 652-655.
23. Panchakarla, L. S.; Subrahmanyam, K. S.; Saha, S. K.; Govindaraj, A.; Krishnamurthy, H. R.; Waghmare, U. V.; Rao, C. N. R., Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene. Adv. Mater. 2009, 21 (46), 4726-4730.
24. Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G., Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Lett. 2009, 9, 1752-1758.
25. Lin, Y.-C.; Lin, C.-Y.; Chiu, P.-W., Controllable graphene N-doping with ammonia plasma. Appl. Phys. Lett. 2010, 96, 133110-133110-3.
26. Guo, B.; Liu, Q.; Chen, E.; Zhu, H.; Fang, L.; Gong, J. R., Controllable N-Doping of Graphene. Nano Lett. 2010, 10, 4975-4980.
27. Thomsen, C.; Reich, S., Double Resonant Raman Scattering in Graphite. Phys.Rev. Lett. 2000, 85 (24), 5214-5217.
Chapter 3
1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666-669.
2. Blake, P.; Hill, E. W.; Neto, A. H. C.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K., Making graphene visible. Appl. Phys. Lett. 2007, 91 (6), 063124-3.
3. Jung, I.; Pelton, M.; Piner, R.; Dikin, D. A.; Stankovich, S.; Watcharotone, S.; Hausner, M.; Ruoff, R. S., Simple Approach for High-Contrast Optical Imaging and Characterization of Graphene-Based Sheets. Nano Lett. 2007, 7 (12), 3569-3575.
4. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K., Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97 (18), 187401.
5. Park, H.; Brown, P. R.; Bulović, V.; Kong, J., Graphene As Transparent Conducting Electrodes in Organic Photovoltaics: Studies in Graphene Morphology, Hole Transporting Layers, and Counter Electrodes. Nano Lett. 2011, 12 (1), 133-140.
6. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324 (5932), 1312-1314.
7. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I.; Kim, Y.-J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J.-H.; Hong, B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5 (8), 574-578.
Chapter 4
1. Geim, A. K., Graphene: Status and Prospects. Science 2009, 324 (5934), 1530-1534.
2. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Rev. Mod. Phys. 2009, 81 (1), 109-162.
3. Schwierz, F., Graphene transistors. Nat. Nanotechnol. 2010, 5 (7), 487-496.
4. Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y., Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3 (8), 491-495.
5. Bolotin, K. I.; Sikes, K. J.; Hone, J.; Stormer, H. L.; Kim, P., Temperature-Dependent Transport in Suspended Graphene. Phy. Rev. Lett. 2008, 101 (9), 096802.
6. Du, X.; Skachko, I.; Duerr, F.; Luican, A.; Andrei, E. Y., Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 2009, 462 (7270), 192-195.
7. Bolotin, K. I.; Ghahari, F.; Shulman, M. D.; Stormer, H. L.; Kim, P., Observation of the fractional quantum Hall effect in graphene. Nature 2009, 462 (7270), 196-199.
8. Dean, C. R.; Young, A. F.; MericI; LeeC; WangL; SorgenfreiS; WatanabeK; TaniguchiT; KimP; Shepard, K. L.; HoneJ, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5 (10), 722-726.
9. Xue, J.; Sanchez-Yamagishi, J.; Bulmash, D.; Jacquod, P.; Deshpande, A.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; LeRoy, B. J., Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 2011, 10 (4), 282-285.
10. Mayorov, A. S.; Gorbachev, R. V.; Morozov, S. V.; Britnell, L.; Jalil, R.; Ponomarenko, L. A.; Blake, P.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T.; Geim, A. K., Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature. Nano Lett. 2011, 11 (6), 2396-2399.
11. Taychatanapat, T.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P., Quantum Hall effect and Landau-level crossing of Dirac fermions in trilayer graphene. Nat. Phys. 2011, 7 (8), 621-625.
12. Taniguchi, T.; Watanabe, K., Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent. J. Cryst. Growth. 2007, 303 (2), 525-529.
13. Hwang, E. H.; Adam, S.; Das Sarma, S., Carrier Transport in Two-Dimensional Graphene Layers. Phy. Rev. Lett. 2007, 98 (18), 186806.
14. Chen, J.-H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol. 2008, 3 (4), 206-209.
15. Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams, E. D., Atomic Structure of Graphene on SiO2. Nano Lett. 2007, 7 (6), 1643-1648.
16. Katsnelson, M. I.; Geim, A. K., Electron scattering on microscopic corrugations in graphene. Philos. T. Roy. Soc. A. 2008, 366 (1863), 195-204.
17. Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K., Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Phy. Rev. Lett. 2008, 100 (1), 016602.
18. Fratini, S.; Guinea, F., Substrate-limited electron dynamics in graphene. Phy. Rev. B 2008, 77 (19), 195415.
19. Tang, M. L.; Okamoto, T.; Bao, Z., High-Performance Organic Semiconductors:  Asymmetric Linear Acenes Containing Sulphur. J. Am. Chem. Soc. 2006, 128 (50), 16002-16003.
20. Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S., High-Performance Semiconducting Polythiophenes for Organic Thin-Film Transistors. J. Am. Chem. Soc. 2004, 126 (11), 3378-3379.
21. McGovern, M. E.; Kallury, K. M. R.; Thompson, M., Role of Solvent on the Silanization of Glass with Octadecyltrichlorosilane. Langmuir 1994, 10 (10), 3607-3614.
22. Wang, Y.; Lieberman, M., Growth of Ultrasmooth Octadecyltrichlorosilane Self-Assembled Monolayers on SiO2. Langmuir 2003, 19 (4), 1159-1167.
23. Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; von Klitzing, K.; Yacoby, A., Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 2008, 4 (2), 144-148.
24. DasA; PisanaS; ChakrabortyB; PiscanecS; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3 (4), 210-215.
25. Hwang, E. H.; Das Sarma, S., Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phy. Rev. B 2008, 77 (11), 115449.
26. Lafkioti, M.; Krauss, B.; Lohmann, T.; Zschieschang, U.; Klauk, H.; Klitzing, K. v.; Smet, J. H., Graphene on a Hydrophobic Substrate: Doping Reduction and Hysteresis Suppression under Ambient Conditions. Nano Lett. 2010, 10 (4), 1149-1153.
27. Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438 (7065), 201-204.
28. Novoselov, K. S.; McCann, E.; Morozov, S. V.; Fal/'ko, V. I.; Katsnelson, M. I.; Zeitler, U.; Jiang, D.; Schedin, F.; Geim, A. K., Unconventional quantum Hall effect and Berry/'s phase of 2[pi] in bilayer graphene. Nat. Phys. 2006, 2 (3), 177-180.
29. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L., Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146 (9–10), 351-355.
Chapter 5
1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666-669.
2. Geim, A. K., Graphene: Status and Prospects. Science 2009, 324, 1530-1534.
3. Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438, 201-204.
4. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A., Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197-200.
5. Chen, W.; Chen, S.; Qi, D. C.; Gao, X. Y.; Wee, A. T. S., Surface Transfer p-Type Doping of Epitaxial Graphene. J. Am. Chem. Soc. 2007, 129, 10418-10422.
6. Farmer, D. B.; Golizadeh-Mojarad, R.; Perebeinos, V.; Lin, Y.-M.; Tulevski, G. S.; Tsang, J. C.; Avouris, P., Chemical Doping and Electron−Hole Conduction Asymmetry in Graphene Devices. Nano Lett. 2008, 9, 388-392.
7. Wang, X.; Li, X.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H.; Guo, J.; Dai, H., N-Doping of Graphene Through Electrothermal Reactions with Ammonia. Science 2009, 324, 768-771.
8. Chen, Z.; Santoso, I.; Wang, R.; Xie, L. F.; Mao, H. Y.; Huang, H.; Wang, Y. Z.; Gao, X. Y.; Chen, Z. K.; Ma, D.; et al. Surface transfer hole doping of epitaxial graphene using MoO3 thin film. Appl. Phys. Lett. 2010, 96, 213104.
9. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652-5.
10. Ryu, S.; Liu, L.; Berciaud, S.; Yu, Y.-J.; Liu, H.; Kim, P.; Flynn, G. W.; Brus, L. E., Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO2 Substrate. Nano Lett. 2010, 10, 4944-4951.
11. Yang, Y.; Murali, R., Binding mechanisms of molecular oxygen and moisture to graphene. Appl. Phys. Lett. 2011, 98, 093116.
12. Niyogi, S.; Bekyarova, E.; Itkis, M. E.; Zhang, H.; Shepperd, K.; Hicks, J.; Sprinkle, M.; Berger, C.; Lau, C. N.; deHeer, W. A.; et al. Spectroscopy of covalently functionalized graphene. Nano Lett. 2010, 10, 4061-6.
13. Englert, J. M.; Dotzer, C.; Yang, G.; Schmid, M.; Papp, C.; Gottfried, J. M.; Steinrück, H.-P.; Spiecker, E.; Hauke, F.; Hirsch, A., Covalent bulk functionalization of graphene. Nat. Chem. 2011, 3, 279-286.
14. Lin, Y.-C.; Lin, C.-Y.; Chiu, P.-W., Controllable graphene N-doping with ammonia plasma. Appl. Phys. Lett. 2010, 96, 133110-133110-3.
15. Guo, B.; Liu, Q.; Chen, E.; Zhu, H.; Fang, L.; Gong, J. R., Controllable N-Doping of Graphene. Nano Lett. 2010, 10, 4975-4980.
16. Usachov, D.; Vilkov, O.; Grüneis, A.; Haberer, D.; Fedorov, A.; Adamchuk, V. K.; Preobrajenski, A. B.; Dudin, P.; Barinov, A.; Oehzelt, M.; et al. Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties. Nano Lett. 2011, 11, 5401-5407.
17. Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G., Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Lett. 2009, 9, 1752-1758.
18. Wang, R.; Wang, S.; Zhang, D.; Li, Z.; Fang, Y.; Qiu, X., Control of Carrier Type and Density in Exfoliated Graphene by Interface Engineering. ACS Nano 2010, 5, 408-412.
19. Lafkioti, M.; Krauss, B.; Lohmann, T.; Zschieschang, U.; Klauk, H.; Klitzing, K. v.; Smet, J. H., Graphene on a Hydrophobic Substrate: Doping Reduction and Hysteresis Suppression under Ambient Conditions. Nano Lett. 2010, 10, 1149-1153.
20. Wang, Y. y.; Ni, Z. h.; Yu, T.; Shen, Z. X.; Wang, H. m.; Wu, Y. h.; Chen, W.; Shen Wee, A. T., Raman Studies of Monolayer Graphene: The Substrate Effect. J. Phys. Chem. C 2008, 112, 10637-10640.
21. McCreary, K. M.; Pi, K.; Kawakami, R. K., Metallic and insulating adsorbates on graphene. Appl. Phys. Lett. 2011, 98, 192101-3.
22. Pi, K.; McCreary, K. M.; Bao, W.; Han, W.; Chiang, Y. F.; Li, Y.; Tsai, S. W.; Lau, C. N.; Kawakami, R. K., Electronic doping and scattering by transition metals on graphene. Phys. Rev. B 2009, 80, 075406.
23. Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M., Charged-impurity scattering in graphene. Nat. Phys. 2008, 4, 377-381.
24. Yu, W. J.; Liao, L.; Chae, S. H.; Lee, Y. H.; Duan, X., Toward Tunable Band Gap and Tunable Dirac Point in Bilayer Graphene with Molecular Doping. Nano Lett. 2011, 11, 4759-4763.
25. Romero, H. E.; Shen, N.; Joshi, P.; Gutierrez, H. R.; Tadigadapa, S. A.; Sofo, J. O.; Eklund, P. C., n-Type Behavior of Graphene Supported on Si/SiO2 Substrates. ACS Nano 2008, 2, 2037-2044.
26. Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A. J., New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer. Adv. Mater. 2006, 18, 572-576.
27. Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J., Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 2009, 3, 297-302.
28. Cho, S.; Lee, K.; Heeger, A. J., Extended Lifetime of Organic Field-Effect Transistors Encapsulated with Titanium Sub-Oxide as an ‘Active’ Passivation/Barrier Layer. Adv. Mater. 2009, 21, 1941-1944.
29. Lee, K.; Kim, J. Y.; Park, S. H.; Kim, S. H.; Cho, S.; Heeger, A. J., Air-Stable Polymer Electronic Devices. Adv. Mater. 2007, 19, 2445-2449.
30. Al-Ibrahim, M.; Roth, H. K.; Zhokhavets, U.; Gobsch, G.; Sensfuss, S., Flexible Large Area Polymer Solar Cells Based on Poly(3-hexylthiophene)/Fullerene. Sol. Energy Mater. Sol. Cells 2005, 85, 13-20.
31. J, T., Optical Properties and Electronic Structure of Amorphous Ge and Si. Mat. Res. Bull. 1968, 3, 37-46.
32. DasA; PisanaS; ChakrabortyB; PiscanecS; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; et al. Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor. Nat. Nanotechnol. 2008, 3, 210-215.
33. Frank, O.; Mohr, M.; Maultzsch, J.; Thomsen, C.; Riaz, I.; Jalil, R.; Novoselov, K. S.; Tsoukleri, G.; Parthenios, J.; Papagelis, K.; et al. Raman 2D-Band Splitting in Graphene: Theory and Experiment. ACS Nano 2011, 5, 2231-2239.
34. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I.; et al. Roll-to-Roll Production of 30-inch Graphene Films for Transparent Electrodes. Nat. Nanotechnol. 2010, 5, 574-578.
35. Chen, F.; Xia, J.; Ferry, D. K.; Tao, N., Dielectric Screening Enhanced Performance in Graphene FET. Nano Lett. 2009, 9, 2571-2574.
36. Jang, C.; Adam, S.; Chen, J. H.; Williams, E. D.; Das Sarma, S.; Fuhrer, M. S., Tuning the Effective Fine Structure Constant in Graphene: Opposing Effects of Dielectric Screening on Short- and Long-Range Potential Scattering. Phys. Rev. Lett. 2008, 101, 146805.
37. van Dover, R. B., Amorphous Lanthanide-Doped TiOx Dielectric Films. Appl. Phys. Lett. 1999, 74, 3041-3043.
38. Yu, Y.-J.; Zhao, Y.; Ryu, S.; Brus, L. E.; Kim, K. S.; Kim, P., Tuning the Graphene Work Function by Electric Field Effect. Nano Lett. 2009, 9, 3430-3434.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16010-
dc.description.abstract石墨烯是一種單層碳原子以sp2鍵結方式排列而成的二維奈米材料,由於此特殊的幾何結構使得石墨烯有著非常特別的能帶結構、機械性質及熱導性質,因此近年來許多學者在石墨烯領域已投入相當多的研究,特別在電性部分,由於石墨烯在室溫下具有極高之載子遷移率>15000 cm2V-1s-1 使得它被認為是次世代高速元件的核心材料。
然而在一般的邏輯電路中,互補式金屬氧化物半導體(CMOS)是電路中最重要組成之一,此元件必須同時由N型和P型金屬氧化物半導體所構成。由於純石墨烯本質上具有雙載子傳輸特性,為了製成N型和P型金屬氧化物半導體元件需要分別對石墨烯摻雜額外載子。因此如何藉由摻雜來調變石墨烯之電性將成為未來是否能把石墨烯應用在電路上的一個重要關鍵。
在石墨烯的結構中,由於整層碳原子都直接暴露在大氣環境中,除了石墨烯本身表面上部容易吸附一些摻雜物(如水氣或氧氣分子)外,石墨烯與下層基板接觸之介面亦容易對其造成載子摻雜現象,使得石墨烯元件在大氣環境下非常容易因為外部環境的摻雜物影響而變得不穩定。
因此在本研究中,我們藉由改變石墨烯的上下層介面來調變其電子傳輸特性。在文中的第一個部分(第四章),我們先利用有機自組層來鈍化下層基板表面,進一步減少基板表面的極性物質與石墨烯之交互作用,使得石墨烯的載子遷移率大幅提升。
而在文章的第二部分(第五章),我們發現到TiOx對石墨烯而言是一種新穎的N型摻雜物,藉由TiOx在上層摻雜過程中同時對元件形成一自組封裝層,使得元件在被摻雜後還能隔絕大氣環境中的其他外部摻雜物。因此在最後我們將石墨烯的上下兩層皆用此材料覆蓋後可以得到相當程度的N-型參雜濃度且同時具有相當好的空氣穩定性
zh_TW
dc.description.abstractGraphene, which consists of a single atom-thick plane of carbon atoms arranged in a honeycomb lattice, has attracted a large amount of research because of its novel electronic, mechanical, and thermal properties arising from its unique 2D energy dispersion. For its electronic property, ultrahigh mobility > 15000cm2V-1S-1 can be reached in ambient which is higher than carbon nanotube, silicon, which has potential to fabricate next generation of high-speed electronic device or transistor.
However, Modern logic circuits are based on silicon complementary metal oxide semiconductor (CMOS) technology. Both p-type and n-type conductions are necessary to construct complex digital circuits. Since intrinsic graphene demonstrates ambipolar transport behavior, it will be important to control the electrical properties of graphene. Therefore, doping graphene becomes a crucial technique for making graphene based circuits.
Due to the fact that the entire layer of carbon atoms has an immediate exposure to the surroundings, not only dopants in air (such as oxygen, water.) adsorbed on top of graphene but also the substrate under graphene would contribute to considerable doping effect on graphene, making graphene devices very unstable in surroundings. Therefore, controllable doping level with excellent air stability is necessary for fabricating either n-type of p-type transistor based on graphene.
In first part of this work (chapter 4), we focused on the bottom interface between graphene and substrate. Via using an organic self-assembling monolayer to passivate polar groups on SiO2 substrate, the mobility of graphene on this substrate is significant enhanced due to reduced interaction between graphene and dopants on substrate.
Next, in the second part of this article, we induced titanium sub-oxide as an “active” n-type doping material and simultaneously a capping layer for graphene transistor, which prevented graphene from the outer dopants in air. A novel structure is induced via fully coverage for both side of graphene by the hydrophobic layer composed of titanium sub-oxide. The device exhibit strong n-type behavior with good stability, which makes this technique promising for graphene based nonoelectronics in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:57:57Z (GMT). No. of bitstreams: 1
ntu-101-R99527027-1.pdf: 4458229 bytes, checksum: ab50a4625c2f0724cf403e736f18f76d (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContents
口試委員審定書 I
Table of content II
Acknowledgement III
摘要 V
Abstract VI
Contents VIII
List of Tables XI
List of Figures XII
List of Publications XIX
Chapter 1 Introduction: Electronic Transport Properties in graphene 1
1.1 Brief history of graphene 1
1.2 Band structure of graphene 2
1.3 Transport measurements in graphene 5
1.4 Motivation 10
1.5 Reference 12
Chapter 2 Literature Review of Graphene 16
2.1 Raman spectrum of graphene 16
2.2 Massless Dirac fermions in graphene 17
2.2.1 Half-integer Quantum Hall effect 17
2.2.2 Finite minimum conductivity 20
2.3 Structural corrugation and Electron-Hole paddles 22
2.3.1 Corrugations in graphene – broadening of the Dirac point 22
2.2.2 Electron- Hole paddles 24
2.4 Short-range and long-range scattering mechanism in graphene 25
2.5 Chemical Doping of graphene 30
2.5.1 Surface transfer doping 30
2.5.2 Substitutional doping 31
2.6 Reference 33
Chapter 3 Fabrication of Graphene Transistors 37
3.1 Exfoliated graphene 37
3.1.1 The Preparation of exfoliated graphene 37
3.1.2 Resist-free method for fabricating source and drain electrodes 40
3.2 Chemical Vapor Deposition (CVD) Graphene 43
3.2.1 The synthesis of graphene on copper foil 43
3.2.2 Transfer process for graphene on copper foil 44
3.2.3 Fabricating transistors based on CVD graphene 45
3.3 Reference 46
Chapter 4 Facile Fabrication of High Mobility Graphene Field-Effect Transistors on Organic Functionalized Substrates 48
4.1 Introduction 48
4.2 Self-assembling monolayer of octadecylsilanes (OTS-SAM) 49
4.2.1 The fabrication of OTS modified SiO2/Si substrate 50
4.2.2 Characteristic of OTS-modified SiO2 51
4.3 Fabrication of graphene transistors on OTS-modified SiO2 53
4.3.1 Experimental detail 53
4.3.2 Characteristics of graphene on OTS-modified SiO2 55
4.3.3 Transport properties of graphene transistors based on OTS-modified substrate 57
4.3.3.1 Ultrahigh mobility and small charge inhomogeneity 57
4.3.3.2 Temperature-dependent characteristic 61
4.3.4 Magnetotransport properties of graphene on OTS 64
4.4 Conclusion 70
4.5 Reference 71
Chapter 5 Self-Encapsulated Doping of n-Type Graphene Transistors with Extended Air-Stability 75
5.1 Introduction 75
5.2 Solution processed amorphous TiOx film 77
5.2.1 Preparation of TiOx 78
5.2.2 Characteristic of TiOx 79
5.2.2.1 Non-stoichiometric property 79
5.2.2.2 Band structure 80
5.3 n-type doping characteristics of TiOx on graphene 82
5.3.1 Hall measurement 82
5.3.2 XPS measurement 83
5.3.3 Raman spectrum 85
5.4 n-type transport property of TiOx doped graphene transistor 87
5.4.1 Experimental detail of fabricating TiOx doped graphene transistors 87
5.4.2 Top doping graphene transistors 89
5.4.3 Bottom doping graphene transistors 92
5.4.4 Top and bottom-encapsulated doping graphene transistors 97
5.5 Conclusion 101
5.6 Reference 102
Chapter 6 Conclusion 108
dc.language.isoen
dc.subject石墨烯zh_TW
dc.subject參雜zh_TW
dc.subjectGrapheneen
dc.subjectDopingen
dc.title可調性化學修飾於高性能石墨烯電晶體之研究zh_TW
dc.titleHigh-Performance Graphene Transistors by Controllable Chemical Modificationsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee溫政彥(Cheng-Yen Wen),王偉華(Wei-Hua Wang),張玉明(Yu-Ming Chang)
dc.subject.keyword石墨烯,參雜,zh_TW
dc.subject.keywordGraphene,Doping,en
dc.relation.page109
dc.rights.note未授權
dc.date.accepted2012-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
4.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved