Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15798
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣丙煌
dc.contributor.authorShiau-Wei Chenen
dc.contributor.author陳小薇zh_TW
dc.date.accessioned2021-06-07T17:52:22Z-
dc.date.copyright2012-08-27
dc.date.issued2012
dc.date.submitted2012-08-19
dc.identifier.citation何毓倫。薰衣草、茉莉、洋甘菊、檀香或佛手柑精油吸入性芳香療法對心率變異度的影響。2007。南華大學碩士論文。
林進丁。胰島素。1986。藥學雜誌。2: 57-63。
宋嘉軒。點帶石斑( Epinephelus coioides )攝食調控因子-神經胜肽(Neuropeptide Y)基因之分子選殖及特性分析與其對攝食行為之影響。2007。海洋大學碩士論文。
吳帛儒。香料物質對嗅覺神經細胞與人體血漿中神經胜肽酪氨酸(NPY)表現之影響。2009。台灣大學碩士論文。
鄭澄意。老化伴生脂質代謝異常之研究。1992。國防醫學院醫學科學研究所博士論文。
Ahima R.; Osei S. Y. Leptin and appetite control in lipodystrophy. J Clin Endocrinol Metab. 2004, 89, 4254-4257.
Allen, M. Activity-generated endorphins: a review of their role in sports science. Canadian Journal of Applied Sport Science. 1983, 8, 115-133.
Ammar A. A.; Sederholm F.; Saito T. R.; Scheurink A. J. W.; Johnson A. E.; Sodersten P. NPY-leptin: opposing effects on appetitive and consummatory ingestive behavior and sexual behavior. Am. J. Physiol. 2000, 278, 1627-1633.
Anand B. K.; Brobeck J. R. Hypothalamic control of food intake in rats and cats. Yale Journal of Biology & Medicine. 1951, 24, 123-140.
Aoshima H,; Hamamoto K. Potentiation of GABAA receptors expressed in Xenopus oocytes by perfume and phytoncid. Biosci Biotechnol Biochem. 1999, 63, 743-748.
Aguirre V,; Werner ED,; Giraud J,; Lee YH,; Shoelson SE,; White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2002, 277, 1531-1537.
Baker J,; Brown K,; Rajendiran E,; Yip A,; Decoffe D,; Dai C,; Molcan E,; Chittick SA,; Ghosh S,; Mahmoud S,; Gibson DL. Medicinal lavender modulates the enteric microflora to protect against Citrobacter rodentium-induced colitis. Am J Physiol Gastrointest Liver Physiol. 2012.
Balasubramaniam A. Clinical potentials of neuropeptide Y family of hormones. The American Journal of Surgery. 2002, 183, 430-434.
Balasubramaniam A. Neuropeptide Y family of hormones: Receptor subtypes and antagonists. Peptides. 1997, 18, 445-457.
Baldo B. A.; Daniel R. A.; Berridge C. W., Kelley A. E. Overlapping distribution of orexin/hypocretin- and dopamine-beta-hydroxylase immunoreactive fibers in rat brain regions mediating arousal, motivation, and stress. J. Comp. Neurol. 2003, 464, 220-237.
Baly C.; Aioun J.; Badonnel K.; Lacroix M. C.; Durieux D.; Schlegel C.; Salesse R.; Caillol M. Leptin and its receptors are present in the rat olfactory mucosa and modulated by the nutritional status. Brain Res. 2007, 1129, 130–141.
Barsh G. S.; Schwartz M. W. Genetic approaches to studying energy balance: Perception and integration. Nature reviews. 2002, 3, 589-600.
Baskin D.G.; Breininger J. F.; Schwartz M. W. Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus. Diabetes. 1999, 48, 828-833.
Bedoui, S.; Kawamura, N.; Straub, R. H.; Pabst, R.; Yamamura, T.; von Horsten, S. Relevance of neuropeptide Y for the neuroimmune crosstalk. J. Neuroimmunol. 2003, 134, 1-11.
Benoit S. C.; Clegg D. J.; Wood S. C.; Seeley R. J. The role of previous exposure in the appetitive and consummatory effects of orexigenic neuropeptide. Peptides. 2005, 26, 751-757.
Benedict C.; Kern W.; Schultes B.; Born J.; Hallschmid M. Differential sensitivity of men and women to anorexigenic and memory-improving effects of intranasal insulin. J Clin Endocrinol Metab. 2008, 93, 1339-1344.
Bergen H. T.; Mobbs C. V.; Ventromedial hypothalamic lesions produced by gold thioglucose do not impair induction of NPY mRNA in the arcuate nucleus by fasting. Brain Research. 1996, 707, 266-271.
Billington C. J.; Briggs J. E.; Grace M.; Levine A. S. Effects of intracerebroventricular injection of neuropeptide Y on energy metabolism. American Journal of Physiology. 1991, 260, 321-327.
Billington C. J.; Briggs JE.; HarkerS.; Grace M.; Levine AS. Neuropeptide Y in hypothalamic paraventricular nucleus: A center coordinating energy metabolism. American Journal of Physiology. 1994, 266, 1765-1770.
Bishop C. D. Antiviral activeity of the essentiall oil of Melaleuca alternifolia (Maiden and Betche) Cheel (tea tree) against tobacco mosaic virus. J of Essent Oil Res. 1995, 7, 641-644.
Braverman E, Pfieffer C. The Healing Nutrients Within. In Facts, Findings and New Research on Amino Acids. New Canaan, CT: Keats Publishing, 1987.
Bray, G. A.; Oomura, Y.; Tarui, S. Inoue, T.; Shimazu E. The MONALISA hypothesis: most obesities known are low in sympathetic activity. Progress in Obesity Research. 1990, 53, 61–66.
Burrin D. G.; Mersmann H. J. Biology of metabolism in growing animals. Elsevier, Edinburgh. New York. 2005.
Caillol M.; Aioun J.; Baly C.; Persuy M. A.; Salesse R. Localization of orexins and their receptors in the rat olfactory perception by a neuropeptide synthetized centrally or locally. Brain Res. 2003, 960, 48-61.
Carlson, N.R. Physiology of behavior, 4th ed.U.S.A.: Allyn and Bacon. 1991, 401-433.
Carrasco, G. A.; Van de Kar, L. D. Neuroendocrine pharmacology of stress. Eur. J. Pharmacol. 2003,463, 235–272.
Cavagnini F, Invitti C, Pinto M. Effect of acute and repeated administration of gamma aminobutyric acid (GABA) on growth hormone and prolactin secretion in man. Acta Endocrinol. 1980, 93, 149–154.
Chance W. T.; Balasubramaniam A.; Dayal R. Hypothalamic concentration and release of neuropeptide Y into the microdialysates is reduced in anorectic tumor-bearing rats. Life Sciences. 1994, 54, 1869-1874.
Clark J. T.; Kalra P. S.; Crowley W. R. Kalra S. P. Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats . Endocrinology. 1984, 115, 427-429.
Colmers, W. F.; Wahlested, C. The biology of neuropeptide Y and related peptides, humana press. Totawa, NJ. 1993, 564pp.
Craft, L. L., & Landers, D. M. (1998). The effect of exercise on clinical depression and depression resulting from mental illness: A meta-analysis. Journal of Sport and Exercise Psychology, 20, 339-357.
Date Y.; Ueta Y.; Yamashita, H.; Yamaguchi H.; Matsukura S.; Kangawa K.; Sakurai T.; Yanagisawa M.; Nakazato M. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 748-753.
Date Y.; Ueta Y.; Yamashita, H.; Yamaguchi H.; Matsukura S.; Kangawa K.; Sakurai T.; Yanagisawa M.; Nakazato M. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 748-753.
Day D. E.; Keen-Rhinehart E.; Bartness T. J.; Role of NPY and its receptor subtype in for-aging, food hoarding, and food intake by Siberian hamsters. Am. J. Physiol. 2005, 289, 29-36.
De Lecea, L.; Kilduff, T. S.; Peyron, C.; Gao, X.; Foye, P. E.; Danielson, P. E.; Fukuhara, C.; Battenberg, E. L.; Gautvik, V. T.; Bartlett, F. S.; Frankel, W. M.; Sutcliffe, J. G. The hypocretins: hypotjalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 322-327.
Dietrich, A., & McDaniel, W. F. (2004). Endocannabinoids and exercise. British Journal of Sports Medicine, 38, 536-541.
Dimeo, F., Bauer, M., Varahram, I., Proest, G., & Haulter, U. (2001). Benefits from aerobic exercise in patients with major depression: A pilot study. British Journal of Sports Medicine, 35, 114-117.
Dryden S.; Pickavance L.; Frankish H. M.; Williams G. Increased neuropeptide Y secretion in the hypothalamic paraventricular nucleus obese(fa/fa)Zucker rats. Brain Research. 1995a, 690, 185-8.
Dube M. G.; Kalra P. S,; Crowley W. R.; Kalra S. P. Evidence of physiological role for neuropeptide Y in ventromedial hypothalamic lesion-induced hyperphagia. Brain Research. 1995, 690, 275-278.
Egawa M.; Yoshimatsu H.; Bray G. Neuropeptide Y suppresses sympathetic activity to interscapular brown adipose tissue in rats. American Journal of Physiology. 1991, 260, 328-334.
Elisabetsky E,; Marschner J,; Souza DO. Effects of Linalool on glutamatergic system in the rat cerebral cortex. Neurochem Res. 1995, 20, 461-465.
Elmquist, J. K.; Elias, C. F.; Saper, C. B. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron. 1999, 22, 221-232.
Erickson J. C.; Hollopeter C.; Palmiter R. D. Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science. 1996, 274, 1704-1707.
Flood J. F.; Morley J. E. Increase food intake by neuropeptide Y is due to an increased motivation to eat. Peptides. 1991, 12, 1329-1332.
Fruhbeck G. J.; Gomez-Ambrosi F. J,; Muruzabal; Burrell M. A. The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am. J. Physiol. Endocrinol. Metab. 2001, 280, 827-847.
Gerozissis K. Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies. Eur J Pharmacol. 2008, 585,38-49.
Godfrey, H. Biological perspectives for healthcare. Churchill Livingstone, New York 2004, pp. 78.
Glod R. M. Hypothalamic obesity: The myth of the ventromedial nucleus. Science. 1973, 182, 488-490.
Gorojankina T.; Grebert D.; Salesse R.; Tanfin Z.; Caillol M. Study of orexins signal transduction pathways in rat olfactory mucosa and in olfactory sensory neurons-derived cell line Odora: Multiple orexin signalling pathways. Regulatory Peptides. 2007, 141, 73-85.
Hallschmid M,; Benedict C, Born J,; Fehm HL,; Kern W. Manipulating central nervous mechanisms of food intake and body weight regulation by intranasal administration of neuropeptides in man. Physiol Behav. 2004, 83, 55-64.
Hansel, D. E.; Eipper, B. A.; Ronnett, G. V. Neuropeptide Y functions as a neuroproliferative factor. Nature. 2001, 410, 940-944.
Hara, J.; Beuckmann, C. T.; Nambu, T.; Willie, J. T.; Chemelli, R. M.; Sinton, C. M.; Sugiyama, F.; Yagami, K.; Goto, K.; Yanagisawa, M.; Sakurai, T. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001, 30, 345-354.
Higuchi, H.; Yang, H.T. ; Sabol, S.L. Rat neuropeptide Y precursor gene expression. J. Biol. Chem. 1988, 263, 6288-6295.
Howley, E. T. (1976). The effect of different intensities on exercise on the excretion of epinephrine and norepinephrine. Medicine and Science in Sports and Exercise, 8, 219-222.
Hug C.; Lodish H. F.; Visfatin. A New Adipokine. Science. 2005, 307, 366-367.
Inoue, N.; Kuroda, K.; Sugimoto, A.; Kakuda, T.; Fushiki, T. Autonomic nervous responses according to preference for the odor of jasmine tea. Bioscience, biotechnology, and biochemistry. 2003, 67, 1206-1214.
Inui A. Neuropeptide Y feeding receptors-Are multiple subtypes involved? Trends in Pharmacological Sciences. 1999, 20, 43-46.
Inui A. Transgenic approach to the study of body weight regulation. Pharmacological Reviews. 2000, 52, 35-55.
Ishihara A.; Tanaka T.; Kanatani A.; Fukami T.; Ihara M.; Fukuroda T. A potent neuropeptide Y antagonist, 1229U91: suppressed spontaneous food intake in Zucker fatty rats. American Journal of Physiology. 1998, 274, 1500-1504.
Jain M. R.; Dube M.; Pedrazzani T.; Seydoux J.; Kunstner P.; Aubert JF.; Grouzmann E.; Beermann F.; Brunner H. R. Cardiovascular response, feeding behavior and locomotor activity in mice lacking the NPY Y1 receptor. Nature Medicine. 1998, 4, 722-726.
Jewett D. C.; Cleary J.; Levine A. S.; Schaal D. W.; Thompson T. Effect of neuropeptide-Y on food reinforced behavior in satiated rats. Pharmacol. Biochem. Behav. 1992, 42, 207-212.
Jewett D. C.; Cleary J.; Levine A. S.; Schaal D. W.; Thompson T. Effect of neuropeptide Y, insulin, a 2-deoxyglucose, and food deprivation on food motivated behavior. Psychopharmacology ( Berlin ). 1995, 120, 267-271.
Julgal S,; Govinden R,; Odhav B.; Spice oils for the control of co-occurring mycotoxin-producing fungi. J of Food Protect. 2002, 65, 683-687.
Kalra P. S.; Bube M. G.; Xu B.; Kalra S. P. Increased receptor sensitivity to neuropeptide Y in the hypothalamus may underlie transient hyperphagia and body weight gain. Regulatory Peptides. 1997, 72, 121-130.
Kalra S. P.; Bube M. G.; Pu S.; Xu B.; Horvath T. H.; Kalra P. S. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endorcrine Review. 1999, 20, 68-100.
Kanatani A.; Ishihara A.; Asahi S.; Tanaka T.; Ozaki S.; Ihara M. A potent neuropeptide Y Y1 receptor antagonist, 1229U91: blockade of neuropeptide Y-induced and physiological food intake. Endocrinology. 1996, 137, 3177-3182.
Karpouhtsis I,; Pardali E, Feggou E, Kokkini S, Scouras ZG, Mavragani-Tsipidou P.. Insecticidal and genotoxic activeities of oregano essentiall oils. J Agric Food Chem. 1998, 46, 1111-1115.
Kastin, A. J.; Akerstrom, V. Nonsaturable entry of neuropeptide Y into brain. Am J Physiol. 1999, 276, 479-482.
Kim A. B., Janet M. G., Michel S., Michael Z. The nervous system and innate immunity: the neuropeptide connection. Nature immunology. 2005, 6, 558-564.
Kirkham T.; Cooper S. Integrative System and the Development of Anti-Obesity Drugs. Appetite and body weight. 2007.
Lee, R. G.; Rains, T. M.; Tovar-Palacio, C.; Beverly, J.L.; Shay, N. F. Zinc deficiency increases hypothalamic neuropeptide Y and neuropeptide Y mRNA levels and does not block neuropeptide Y-induced feeding in rats, J. Nutr. 1998, 128, 1218-1223.
Leibowitz S. F.; Alexander J. T. Analysis of neuropeptide Y-induced feeding-Dissociation of Y1-receptor and Y2-receptor effects on natural meal patterns. Peptides. 1991, 12, 1251-1260.
Ludwig D. S.; Tritos N. A.; Mastaitis J. W.; Kulkarni R.; Kokkotou E.; Elmquist J.; Lowell B.; Flier J. S.; Maratos-Flier E. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J. Clin. Invest. 2001, 107, 379-386.
Lynch W. C.; Hart P.; Babcock A. M.; Neuropeptide Y attenuates satiety-evidence from a detailed analysis of patterns of ingestion. Brain Res. 1994, 636, 28-34.
Maggi, F.; Bilek T.; Lucarini, D.; Papa, F.; Sagratini, G.; Vittori, S. Melittis melissophyllum L. subsp. melissophyllum (Lamiaceae) from central Italy: A new source of a mushroom-like flavour. Food Chem. 2009, 113, 216-221.
Maitre M. The gamma-hydroxybutyrate signaling system in brain: organization and functional implications. Prog. Neurobiol. 1997, 541, 337-361.
Mari M,; Bertolini P,; Pratella G. C.. Non-conventional methods for the control of post-harvest pear disease. J of Appli Microbio. 2003, 94, 761-766.
McGowan MK,; Andrews KM,; Grossman SP. Role of intrahypothalamic insulin in circadian patterns of food intake, activity, and body temperature. Behav Neurosci. 1992, 106, 380-385.
Meguid M. M.; Fetissov, S. O.; Varma, M., Sato, T.; Zhang, L. H.; Laviano, A.; RossiFanelli, F. Hypothalamic dopamine and serotonin in the regulation of food intake. Nutrition. 2000, 16, 843-857.
Michel M.; Beck-Sickinger A.; Cox H.; Doods H. N.; Herzog H.; Larhammar D.; Quiroon R.; Schwartz T.; Westfall T. International of pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacological Reviews. 1998, 50, 143-149.
Misaki, N.; Higuchi, H.; Yamagata, K.; Miki, N. Identification of glucocorticoid responsive elements_GREs.at far upstream of rat NPY gene. Neurochem. Int. 1992, 21, 185-189.
Mullett M. A.; Billington C. J.; Levine, A. S. Kotz C. M. Hypocretin 1 in the lateral hypothalamus activates key feeding-regulatory brain sites. Neuroreport. 2000, 11, 103-108.
Mullett M. A.; Billington C. J.; Levine, A. S. Kotz C. M. Hypocretin 1 in the lateral hypothalamus activates key feeding-regulatory brain sites. Neuroreport. 2000, 11, 103-108.
Niijima A.; Nagai K. Effect of Olfactory stimulation with flavor of grapefruit oil and lemon oil on the activity of sympathetic branch in the white adipose tissue of the epididymis. Exp. Biol. Med. 2003, 228, 1190-1192.
Noriatsu S.; Rie O.; Yuko K.; Hirohito M.; Akihiro H.; Kiyoshi K.; Kiyohito N.; Yuzo N. Leptin modulates behavioral responses to sweet substances by influencing peripheral taste structures. Endocrinology. 2004, 145, 2, 839–847.
North, T. C., McCullagh, P, & Tran, Z. V. (1990). Effect of exercise on depression. Exercise and Sport Science Review, 18, 397-415.
Nowak, K.W.; Maćkowiak, P.; Switońska, M. M.; Fabiś, M.; Malendowicz, L. K. Acute orexin effects on insulin secretion in the rat: in vivo and in vitro studies. Life Sci. 2000,66, 449-454.
Passi S. Cosmetic formulations comprising lipids, antioxidants, anti-inflammatory, and anti-free-radical agents PCT. Int Appl. 2002, 16, WO0226207.
Pessoa L. M,; Morais, S. M,; Bevilaqus C. M. L,; Luciano J. H. S. Anthelminitic activeity of essentiall oil of Ocimum gratisimum Linn. and eugenol against Haemonchus contortus. Veter Parasito. 2002, 109, 59-63.
Peyron C.; Tighe, D. K.; Van den Pol, A. N.; delecea, L.; Heller, H. C.; Sutcliffe, J. G.; Kilduff, T. S. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 1998, 18, 9996-10015.
Polidori C.; Ciccocioppo R.; Regoli D.; Massi M. Neuropeptide Y receptors mediating feeding in the rat: characterization with antagonists. Peptides. 2000, 21, 29-35.
Prashar, A.; Locke, I. C.; Evans, C. S. Cytotoxicity of lavender oil and its major components to human skin cells. Cell prolif. 2004, 37, 221-229.
Priego, T.; Sanchez, J.; Pico, C.; Palou, A. Sex-associated differences in the leptin and ghrelin systems related with the induction of hyperphagia under high-fat diet exposure in rats. Hormones and Behavior. 2009, 55, 33-40.
Ramon-Cueto, A.; Nieto-Sampedro, M. Glial cells from adult rat olfactory bulb: immunocytochemical properties of pure cultures of ensheathing cells. Neuroscience. 1992, 47, 213-220.
Rutkoski, N. J.; Fitch, C. A.; Carden, Y. E.; Dodge, J.; Trombley, P. Q.; Levenson, C. W. Regulation of neuropeptide Y mRNA and peptide concentrations by copper in rat olfactory bulb. Molecular Brain Research . 1999, 65, 80-86.
Sabol, S. L.; Higuchi, H. Transcriptional regulation of the neuropeptide Y gene by nerve growth factor: antagonism by glucocorticoids and potentiation by adenosine 3X5X-monophosphate and phorbol ester. Mol. Endocrinol.1990, 4, 384–392.
Sakurai T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R. M.; Tanaka, H.; Williams, S. C.; Richardson, J. A.; Kozlowski, G. P.; Wilson, S.; Arch, J. R.S.; Buckingham, R. E.; Haynes, A. C.; Carr, S. A.; Annan, R. S.; McNulty, D. E.; Liu, W. S.; Terrett, J. A.; Elshourbagy, N. A.; Bergsma, D. J. ; Yanagisawa, M. Orexins and orexin receptors : a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998 , 92, 573-585.
Sakurai T. Roles of orexins in regulation of feeding and wakefulness. Neuroreport. 2002, 13, 987-995.
Sakurai, T. Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep Med Rev. 2005, 9, 231-241.
Schwartz, M. W.; Seeley, R. J.; Campfield, L.A.; Burn, P.; Baskin, D. G. Identification of targets of leptin action in rat hypothalamus. J. Clin. Invest. 1996, 98, 1101-1106.
Seeley R. J.; Payne C. J.; Woods S. C.; Neuropeptide Y fails to increase intraoral intake in rats. Am. J. Physiol. 1995, 37, 423-427.
Shelef L. A. Antimicrobial effect of spices. J of Food Safety. 1983, 6, 29-44.
Shen J.; Niijima A.; Tanida M.; Horii Y.; Maeda K.; Nagai K. Olfactory stimulation with scent of lavender oil affects autonomic nerves, lipolysis and appetite in rats. Neurosci. Lett. 2005, 383, 188-193.
Shen J.; Niijima A.; Tanida M.; Horii Y.; Maeda K.; Nagai K. Olfactory stimulation with scent of grapefruit oil affects autonomic nerves, lipolysis and appetite in rats. Neurosci. Lett. 2005, 380, 289-294.
Shibata M.; Mondal M. S.; Date Y.; Nakazato M.; Suzuki H.; Ueta Y. Distribution of orexins-containing fibers and contents of orexins in the rat olfactory bulb. Neuroscience Research. 2008, 61, 99–105.
Sinha S,; Biswas D,; Antigenotoxic and antioxidant activities of palmarosa and citronella essential oils. J Ethnopharmacol. 2011, 137, 1521–1527.
Stricker E.; Woods S. Neurobiology of Food and Fluid Intake. Handbook of Behavioral Neurobiology. 2004. Second Edition.
Stricker-Krongrad A.; Barbanel G.; Beck B. Modulation of hypothalamic hypocretin/orexin mRNA expression by glucocorticoids. Biochem. Biophys. Res. Commum. 2002, 296, 129-133.
Stricker-Krongrad A.; Burlet C.; Beck B. Behavioral deficits in monosodium glutamate rats:specific changes in the structure of feeding behavior. Life Sciences. 1998, 62, 2127-2132.
Stellar, E. The physiology of motivation. Psychol. Rev. 1954, 101, 301-311.
Swanson L. W.; Sawchenko P. E. Hypothalamic integratio: Organization of the paraventricular and supraoptic nuclei. Annual Review of Neuroscience. 1983, 6, 269-324.
Tanida M.; Niijima A.; Shen J.; Nakamura T.; Katsuya N. Olfactory stimulation with scent of grapefruit affects autonomic neurotransmission and blood pressure. Brain. Res. 2005, 1058, 44-55.
Tanida, M.; Shen, J.; Niijima, A.; Yamatodani, A.; Oishi, K.; Ishida, N.; Nagai, K. Effects of olfactory stimulations with scents of grapefruit and lavender oils on renal sympathetic nerve and blood pressure in Clock mutant mice. Auton Neurosci. 2008, 139, 1-8.
Tatemoto, K. Neuropepetide Y: complete amino acid sequence of the brain peptide. Proc Natl Acad Sci USA. 1982, 79, 5485-5489.
Ubink, R.; Hokfelt, T. Expression of neuropeptide Y in olfactory ensheathing cells
during prenatal development. J. Comp. Neurol. 2000, 423, 13–25.
Valassi E.; Scacchi M.; Cavagnini F. Neuroendocrine control of food intake. Nutrition, Metabolism & Cardiovascular Diseases. 2008, 18, 158-168.
Waagepetersen HS, Sonnewald U, Schousboe A. The GABA paradox: multiple roles as metabolite, neurotransmitter, and neurodifferentiative agent. J Neurochem 1999;73:1335–42.
White MF, Kahn CR. The insulin signaling system. M Biol Chem. 1994, 269, 1–4.
Walindera, R.; Ernstgardb, L.; Norbacka, Dan.; Wieslandera, G.; Johansonb, G. Acute effects of 1-octen-3-ol, a microbial volatile organic compound (MVOC)—An experimental study. Toxicology Letters. 2008, 181, 141-147.
Zarjevski N.; Cusin I.; Vettor R.; Rohner-Jeanrenaud F.; Jeanrenaud B. Chronic intracerebroventricular neuropeptide Y administration to normal rats mimics hormonal and metabolic changes of obesity. Endocrinology. 1993, 133, 1753-1758.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15798-
dc.description.abstract文獻指出葡萄柚精油(檸檬油烯)及薰衣草精油(沈香醛),以調控交感及副交感神經方式,達到抑制或增加大鼠食慾,此部分與NPY所引起的生理反應相似,故推測香氣成分能刺激或抑制嗅覺神經細胞分泌NPY,進而影響攝食行為。另一方面,由脂肪細胞所表現及分泌的瘦體素,則是調控攝食以及能量代謝的主要荷爾蒙,瘦體素與NPY為相互拮抗的關係。
本研究主要利用嗅覺神經細胞受到香氣刺激後,其NPY mRNA的表現,建立具有減少/增加食慾潛力的香氣篩選平台。培養2天的嗅覺神經細胞Rolf B1.T,以檸檬油烯及沈香酫處理之,發現刺激10分鐘的沈香酫,顯著增加嗅覺神經細胞NPY mRNA表現量,而刺激10分鐘的檸檬油烯,則具有相反的結果;此部分實驗結果與大鼠的初代嗅覺神經細胞,受到香氣刺激後的NPY mRNA表現量趨勢相同,故Rolf B1.T細胞株可以作為香氣篩選平台的試驗細胞株,藉此篩選具有潛力的香氣成分。
最後,以人體試驗的模式,探討具有調節食慾潛力的香氣成分,在不同試驗時間(5、10及15分鐘)對相關食慾因子(NPY、胰島素、瘦體素、食慾素A及食慾素B)的影響。實驗分別予以水、蘑菇醇、蒎烯、檸檬油烯以及沈香醛。結果發現,受試者在沈香醛10分鐘刺激後,顯著增加周邊血中血清NPY的濃度,而檸檬油烯,則能顯著減少血清NPY的濃度,因此,嗅覺神經細胞Rolf B1.T的NPY mRNA表現平台,能作為篩選具有潛力影響食慾的香氣成分,另外,比較香氣成分對其他食慾因子,如胰島素、瘦體素、食慾素A及食慾素B的影響。結果發現:1.蒎烯比蘑菇醇更具有調節食慾潛力,無論在5、10及15分鐘,蒎烯都能增加NPY的變化量,2.受試者在蒎烯刺激10分鐘下,胰島素、瘦體素、食慾素A及食慾素B的變化量為正,顯示蒎烯為具有促進食慾潛力的香氣成分。而生理指標部分,受試者的血壓及耳溫,無顯著改變。最後,10 min試驗組別的問卷結果,顯示食慾因子食慾素B、NPY可作為評估10分鐘香味刺激影響食慾因子的指標。
zh_TW
dc.description.abstractLiteratures indicated that the scent of grapefruit oil and lavender oil could decrease / increase appetite in the rats. Limonene and linalool, the major component of grapefruit oil and lavender oil, demonstrated similar results. It is also known that the secretion of neuropeptide Y (NPY) can regulate appetite. Therefore, we suspect that NPY could be induced by aroma compound in olfactory cells, thus affecting food intake behavior of animals. On the other hand, leptin is synthesised by adipocytes in proportion to the level of stored triglycerides. Contrary to NPY, it is the key hormone of decreasing food intake and energy expenditure.
This study aimed to establish an in vitro NPY mRNA expression model for screening essences to determine if they are appetite stimulator or inhibitor. We cultured the olfactory nerve cells Rolf B1.T for 2 days, and then treated the cells with the known appetite inhibitor s-(-)-limonene and stimulator (+/-)-Linalool. It was found that (+/-)-Linalool could significantly stimulate NPY mRNA expression in 10 minutes, and limonene had opposite effect. Similar results were also found in primary olfactory ensheathing cells isolated from rats. Further clinical trials using human subjects found that when 10 min treatment was applied, (+/-)-Linalool indeed increased serum NPY level in human peripheral blood. S-(-)-limonene, on the other hand, decreased serum NPY level. Thus, NPY mRNA expression in Rolf B1.T cells could be used as an in vitro model for screening essences which may affect appetite.
Further clinical trials were conducted to investigate several flavor compounds on all of the important appetite factors, including NPY, leptin, orexin A, orexin B and insulin in different experimental period (5, 10, 15 mins) and the results were as follows: 1) when the experimental period were 5, 10 and 15 min, (-)-α-Pinene could increase serum NPY level, indicating that it is a potent stimulators of food intake, 2) when the experimental period was 10min, (-)-α-Pinene could increase serum insulin, Orexin A and Orexin B level. Blood pressure and ear temperature of the subjects were not significantly changed at any experimental time. The results of questionnaire indicated that after 10 min of smelling, the appetite factors Orexin B and NPY could be used as the appetite indicators.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:52:22Z (GMT). No. of bitstreams: 1
ntu-101-D95641007-1.pdf: 6606350 bytes, checksum: 7cc70f532c5d72153313537bcc8e2c14 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
口試委員審定書 I
謝誌 II
中文摘要 III
Abstract IV
目錄 i
圖目錄 iii
表目錄 v
壹、文獻回顧 2
一、攝食行為、神經傳導物質、瘦體素及胰島素 2
二、精油、功能性成分及芳香療法 14
三、嗅覺器官、嗅覺訊號傳遞及神經胜肽相關表現 17
四、自主神經系統及精油對於攝食的影響 21
貳、實驗架構 23
一、研究目的 23
二、研究架構 24
叁、材料與方法 27
一、實驗材料 27
二、實驗方法 30
(一)細胞培養 30
(二)細胞計數 30
(三)揮發性成分對於 Rolf B1.T細胞存活率試驗 31
(四)以揮發性成分刺激Rolf B1.T細胞 31
(五)初代嗅覺細胞之分離 31
(六)基因表現引子設計及表現 32
(七)人體試驗 37
(八)統計分析 40
肆、結果與討論 43
第一部分:以Rolf B1.T細胞模式建立揮發性成分刺激嗅覺神經細胞NPY mRNA表現平台 43
一、Rolf B1.T細胞株基本特性 43
二、揮發性成分刺激嗅覺神經細胞NPY mRNA表現的濃度 49
三、比較初代嗅覺神經細胞與Rolf B1.T細胞差異 52
四、建立具誘導或抑制NPY mRNA表現量之揮發性成分篩選平台 58
五、NPY專一性引子及RNA品質鑑定 62
第二部分:以Rolf B1.T細胞模式之揮發性成分篩選平台,篩選具有刺激嗅覺神經細胞NPY mRNA表現的揮發性成分 66
第三部分:以人體試驗評估揮發性成分,對食慾因子NPY、leptin、insulin、orexin A及orexin B的影響 67
一、人類血清NPY濃度變化 69
二、人類血清leptin濃度變化 73
三、人類血清insulin濃度變化 73
四、人類血清orexin A濃度變化 74
五、人類血清orexin B濃度變化 74
六、接受各種香氣刺激5、10及15分鐘後食慾因子含量之變化 74
七、受試者經揮發性成分刺激5、10及15分鐘後血壓及耳溫之變化 81
八、問卷結果與受試者血清中食慾因子(NPY、leptin、orexin A、orexin B和insulin)含量變化之相關性 83
伍、結論 113
陸、參考文獻 115
柒、附錄 128
捌、縮寫表 133
圖目錄
圖一、調控攝食行為及能量代謝的物質。 4
圖二、食慾素的系統orexin結構以及表現系統。 8
圖三、Leptin receptor活化後細胞訊號傳遞機制。 12
圖四、香味成分化學式。 16
圖五、嗅覺訊號傳遞路徑。 18
圖六、神經胜肽Y在嗅覺系統的分泌表現。 19
圖七、利用含血清之培養基培養Rolf B1.T其顯微鏡下型態。 44
圖八、本實驗室培養不同天數之Rolf B1.T顯微鏡下型態。 45
圖九、Rolf B1.T細胞生長曲線。 46
圖十、Rolf B1.T嗅覺細胞在37°C 培養不同天之NPY mRNA表現。 48
圖十一、不同濃度沈香酫 ( linanool )處理下,Rolf B1.T細胞存活率。 50
圖十二、不同濃度檸檬油烯處理下,Rolf B1.T細胞存活率。 51
圖十三、不同溫度梯度,Rolf B1.T NPY基因表現。 55
圖十四、初代嗅覺細胞及Rolf B1.T細胞NPY基因表現。 55
圖十五、初代嗅覺細胞及Rolf B1.T細胞NPY mRNA表現。 57
圖十六、Rolf B1.T細胞以不同樣品處理5分鐘後之NPY mRNA表現。 59
圖十七、Rolf B1.T細胞以不同樣品處理10分鐘後之NPY mRNA表現。 60
圖十八、Rolf B1.T細胞以不同樣品處理15分鐘後之NPY mRNA表現。 61
圖十九、不同溫度梯度,Rolf B1.T NPY基因表現 64
圖二十、(A)甲醛洋菜膠體電泳(B)RNA之品質及濃度 64
圖二十一、NPY-1專一性引子產物的定序結果。 65
圖二十二、香味分子刺激5分鐘後,食慾因子(NPY, leptin, orexin A, orexin B and insulin) 變化情形。 70
圖二十三、香味分子刺激10分鐘後,食慾因子(NPY, leptin, orexin A, orexin B and insulin) 變化情形。 71
圖二十四、香味分子刺激15分鐘後,食慾因子(NPY, leptin, orexin A, orexin B and insulin) 變化情形。 72
圖二十五、受試者接受各種香氣刺激5、10及15分鐘後,血清中NPY含量之變化。 76
圖二十六、受試者接受各種香氣刺激5、10及15分鐘後,血清中Leptin含量之變化。 77
圖二十七、受試者接受各種香氣刺激5、10及15分鐘後,血清中insulin含量之變化。 78
圖二十八、受試者接受各種香氣刺激5、10及15分鐘後,血清中Orexin A含量之變化。 79
圖二十九、受試者接受各種香氣刺激5、10及15分鐘後,血清中Orexin B含量之變化。 80
表目錄
表一、下視丘中有關攝食行為的物質 5
表二、本實驗所設計NPY及內標Actb、GAPDH之PCR引子組 41
表三、本實驗所引用之NPY及內標Actb之PCR引子組。 42
表四、本實驗所引用之NPY及內標RPL32之PCR引子組。 42
表五、各物種NPY cDNA轉譯區域序列之同一性比較。 56
表六、受試者基本資料 68
表七、以揮發性成分刺激受試者5、10及15分鐘後之血壓變化 82
表八、以揮發性成分刺激受試者5、10及15分鐘後之耳溫變化 82
表九、5分鐘香味刺激後問卷結果與受試者血清中食慾因子含量變化之相關性 94
表十、10分鐘香味刺激後問卷結果與受試者血清中食慾因子含量變化之相關性 95
表十一、15分鐘香味刺激後問卷結果與受試者血清中食慾因子含量變化之相關性 96
表十二、5、10及15分鐘香味刺激後問卷結果 97
表十三、Water刺激5分鐘後問卷結果與受試者血清中食慾因子含量變化之相關性 98
表十四、(-)-α-Pinene刺激5分鐘後問卷結果與受試者血清中食慾因子含量變化之相關性 99
表十五、1-octen-3-ol刺激5分鐘後問卷結果與受試者血清中食慾因子含量變化之相關性 100
表十六、(+/-)-Linalool刺激5分鐘後問卷結果與受試者血清中食慾因子含量變化之相關性 101
表十七、S-(-)-limonene刺激5分鐘後問卷結果與受試者血清中食慾因子含量變化之相關性 102
表十八、Water刺激10分鐘後問卷結果與受試者血清中食慾因子含量變化之相關性 103
表十九、(-)-α-Pinene刺激10分鐘後問卷結果與受試者血清中食慾因子含量變化之相關性 104
表二十、1-octen-3-ol刺激10分鐘後問卷結果與受試者血清中食慾因子含量變化之相關性 105
表二十一、(+/-)-Linalool刺激10分鐘後問卷結果與受試者血清中食慾因子含量變化之相關性 106
表二十二、S-(-)-limonene刺激10分鐘後問卷結果與受試者血清中食慾因子含量變化之相關性 107
表二十三、Water刺激15分鐘後問卷結果與受試者血清中食慾因子含量變化之相關性 108
表二十四、(-)-α-Pinene刺激15分鐘後問卷結果與受試者血清中食慾因子含量變化之相關性 109
表二十五、1-octen-3-ol刺激15分鐘後問卷結果與受試者血清中食慾因子含量變化之相關性 110
表二十六、(+/-)-Linalool刺激15分鐘後問卷結果與受試者血清中食慾因子含量變化之相關性 111
表二十七、S-(-)-limonene刺激15分鐘後問卷結果與受試者血清中食慾因子含量變化之相關性 112
dc.language.isozh-TW
dc.subject揮發性成分zh_TW
dc.subject神經胜&#32957zh_TW
dc.subject嗅覺細胞zh_TW
dc.subject食慾zh_TW
dc.subjectNPYen
dc.subjectessencesen
dc.subjectappetiteen
dc.subjectolfactory nerve cellsen
dc.title揮發性成分對嗅覺神經系統調節食慾因子之影響zh_TW
dc.titleVolatilie compounds stimulate olfactory nervous system to influence the expression of appetite factorsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee胡海國,梁庚辰,何其儻,孫璐西
dc.subject.keyword神經胜&#32957,Y,嗅覺細胞,食慾,揮發性成分,zh_TW
dc.subject.keywordNPY,olfactory nerve cells,appetite,essences,en
dc.relation.page133
dc.rights.note未授權
dc.date.accepted2012-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
6.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved