請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15574
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉安義(An-I Yeh) | |
dc.contributor.author | Yuan-Chun Lai | en |
dc.contributor.author | 賴源鈞 | zh_TW |
dc.date.accessioned | 2021-06-07T17:48:08Z | - |
dc.date.copyright | 2013-04-25 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-04-11 | |
dc.identifier.citation | 王兆梅、李琳與郭祈遠。活性多醣購效關係研究評述。現代化工。2002,22, 18-22
王業軍、安巍、石志剛和趙建華。枸杞藥用價值的研究進展。安徽農業科學。2008, 36,13213-13214。 王曉娟、魏傳晚、徐淑永、呂梅香、曾和平。生物活性多醣結構與功效關係研究 進展。廣州化工。2004,32,6-10。 田庚元。枸杞醣綴合物的結構與生物活性研究。世界科學技術-中醫藥現代化。2003, 5,22-28。 何進和張聲華。枸杞與枸杞多醣研究(I)。食品科學。1995,16,14-21。 何晉浙、胡飛華、孫培龍、張安強、紹平。枸杞多醣結構及其單醣組成之分析研 究。食品與發酵工業。2008,34,48-50。 林念蓁。巴西洋菇發酵物對BALB/c 鼠之非特異性免疫調節及其免疫調節蛋白純化與生理活性之探討。國立台灣大學食品科技 研究所碩士論文:台北市,2006。 段昌令、喬善義、王乃利、趙毅民、齊春會和姚新生。枸杞活性多醣研究。藥學 學報。2001,36,196-199。 陳時欣。糖酯對奈米/次微米纖維素懸浮液穩定性之研究。國立台灣大學食品科技 研究所碩士論文:台北市,2006。 齊春會、黄琳娟、張永祥、趙修南、田庚元、茹祥斌和沈倍奮。枸杞糖缀合物及 糖鏈的化學結構與免疫活性。中國藥理學與毒理學雜誌。2001。 塗文琴。介質研磨對枸杞水溶性多醣及其組成之影響。國立台灣大學食品科技研 究所碩士論文:台北市,2011。 穆靜。枸杞漫談。寧夏醫學院中醫學院。2007。 Alderton, W.K.; Cooper C.E.; Knowles R. G. Nitric oxide synthases: structure, function and inhibition. Biochem. J.. 2001, 357, 593-615. Arend, W. P. Interluekin-1 receptor antagonist. Adv. Immunol. 1993, 54, 167-227. Arend, W. P. The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Rev. 2002, 13, 323-340. Autumn, K.; Liang, Y. A.; Hsieh, S. T.; Zesch, W.; Chan, W. P.; Kenny, T. W.; Fearing, R.; Full, R. J. Adhesive force of a single gecko foot-hair. Nature. 2000, 405, 681-685. Bian, L.; She, X.; Wang, Y. Morphological study of CCl4 induced liver damage of mouse and its treatment with Lycium barbarum polysaccharides. Ningxia Medical Journal. 1996, 18(4), 196-198. Blecher, L.; Schwedes, J. Elnergy distribution and particle trajectories in a grinding chamber of a stirred ball mill. Int. J. Miner. Process. 1996, 44-45, 617-627. Bradford, M. M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-Dye binding. Anal. Biochem. 1976, 72, 248-254. Buttery, L. D.; Evans, T. J.; Springall, D. R.; Carpenter A.; Cohen J.; Polak, J. M. Immunochemical localization of inducible nitric oxide synthase in endotoxin-treated rats. Lab. Invest. 1994, 71, 755-64. Burney, S.; Tamir, S.; Gal, A.; Tannenbaum, S. R. A mechanistic analysis of nitric oxide-induced cellular toxicity, nitric oxide. Biology Chemistry. 1997, 1, 130-44. Campling, B. G.; Pym, J.; Galbraith, P. R.; Cole, S. P. C. Use of the MTT assay for rapid determination of chemosensitivity of human leukemic blast cell. Leuk. res. 1988, 12, 823-831. Chen, Z.; Tan, B. K.; Chan, S.H. Activation of T lymphocytes by polysaccharide– protein complex from Lycium barbarum L. Int Immunopharmacol . 2008.8, 1663– 1671. Chen, Z.; Soo, M. Y.; Srinivasan, N.; Tan, B. K. H.; Chan, S. H. Activation of Macrophages by Polysaccharide–protein Complex from Lycium barbarum L.. Phytother. Res. 2009. 8, 1663–1671. Chen, Z.; Lu, J.; Srinivasan, N.; Tan, B. K.; Chan, S. H. Polysaccharideprotein complex from Lycium barbarum L. is a novel stimulus of dendritic cell immunogenicity. J. Immunol. 2011, 182, 3503−3509. Date, A. A.; Patravale, V. B. Current strategies for engineering drug nanoparticles. Curr. Opin. Colloid Interface Sci. 2004, 9, 222-235. Dinarello, C. A. Interleukin-1 and interleukin-1 antagonism. Blood . 1991, 77, 1627-52. Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350-356. Forstermann, U.; Kleinert, H. Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn-Schmiedebergs Arch. Pharmacol. 1995, 352, 351-64. Fugen A. iNOS-mediated nitric oxide production and its regulation. Life Sciences. 2004, 75, 639-53. Gan L.; Zhang S. H.; Liu Q. A polysaccharide–protein complex from Lycium barbarum upregulates cytokine expression in human peripheral blood mononuclear cells. Eur. J. Pharmacol. 2003, 471, 217–222. Gan L.; Zhang S. H.; Yang X. L. Immunomodulation and antitumor activity by a polysaccharide–protein complex from Lycium barbarum. Int Immunopharmacol. 2004, 4, 563–569. Gao, M. W.; Forssberg, E. A study on the effect of parameters in stirred ball milling. Int. J. Miner. Process. 1993, 37, 45-59. Gu, S.; Wang, P. L.; Jiang, R. A study on the preventive effect of Lycium barbarum polysaccharide on the development of alcoholic fatty liver in rats and its possible mechanisms. Zhonghua Gan Zang Bing Za Zhi (Chinese Journal of Hepatology). 2007, 15(3), 204−208. He, M.; Wang, Y.; Forssberg, E. Parameter effects on wet ultrafine grinding of limestone through slurry rheology in a stirred media mill. Powder Technol. 2006, 161 (1), 10-21. Hennart, S. L. A.; Domingues, M. C.; Wildeboer, W. J.; Hee, P. V.; Meesters, G. M. H. Study of the process of stirred ball milling of poorly water soluble organic products using factorial design. Powder Technol. 2010, 198, 56-60. Huang, L.J.; Lin, Y.; Tian G.Y.. Isolation, purification and physico-chemical properties of immunoactive constituents from the fruit of Lycium barbarum L. Acta. Pharm. Sin. 1998, 33, 512–516. Joseph, T.; Morrison, M. Nanotechnology in agriculture and food. 2006 Kato, Y.; Habu, N.; Yamaguchi, J.; Kobayashi, Y.; Shibata, I.; Isogai. A.; Smejima, M. Biodegradation of β-1,4-linked polyglucuronic acid (cellouronic acid). Cellulose. 2002, 9, 75-81. Kindt, T. J.; Goldsby, R. A.; Osborne, B. A. Kuby immunology. Sixth edition. W. H. Freeman and company, United State of America. 2007. Knill, C. J. and Kennedy, J. F. Degradation of cellulose under alkaline conditions. Carbohydr. Polym. 2003, 51, 281-300. Li, W.; Wang, L.; Deng, X.; Jiang, L.; Zhang, C.; Zhang, C. Study of the fragility and abnormality rate of red blood cells in patients with type-2 diabetes and the effects of Lycium barbarum polysaccharides. Hebei Journal of Traditional Chinese Medicine, 2000, 22(8), 585-586. Li, X. M.; Ma, Y. L.; Liu, X. J. Effect of the Lycium barbarum polysaccharide on age-relate oxidative stress in aged mice. J. Ethnopharmacol. 2007a, 111, 504-511. Li, X. M. Protective effect on Lycium barbarum polysaccharides on streptozotocin-induced oxidative stress in rat. Int. J. Biol. Macromol. 2007b, 40, 461-465 Luo, Q.; Cai, Y-Z.; Yan, J.; Sun, M.; Corke, H. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit of extracts from Lycium barbarum. Life Sci. 2004, 76, 137-149. Miao, Y.; Xiao, B.; Jiang, Z.; Guo, Y.; Mao, F.; Zhao, J. Growth inhibition and cell-cycle arrest of human gastric cancer cells by Lycium barbarum polysaccharide. Med. Oncol. 2010, 27(3), 785-790. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983, 65, 55-63. Nel, A. Toxic potential of materials at the nanolevel. Science. 2006, 311 (5761), 622-627. Neinhuis, C., Barthlott, W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 1997, 79, 667-677. Peng, X. M.; Tian, G. Y. Structural characterization of the glycan part of glycoconjugate LbGp2 from Lycium barbarum L. Carbohydr. Res. 2001, 331, 95-99. Pradeep, P. R.; Pitchumani, B. Effect of operating variables on the production of nanoparticles by stirred media milling. Asia-Pac. J. Chem. Eng. 2011, 6, 154-162. Pylkkanen, L.; Gullsten, H.; Majuri, M. L.; Andersson, U.; Vanhala, E.; Maatta, J.; Meklin, T.; Hirvonen, M. R. Exposure to Aspergillus fumigatus spores induces chemokine expression in mouse macrophages. Toxicology. 2004, 200, 255–263. Qian, J-Y.; Liu, D.; Huang, A. G. The efficiency of flavonoids in polar extracts of Lycium chinese Mill. fruits as free radical scavenger. Food Chem. 2004, 87, 283-288. Ravichandran, R. Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. International Journal of Green Nanotechnology: Physics and Chemistry. 2010, 1 (2), 72-96. Redgwell, R. J.; Curti, D.; Wang, J.; Dobruchowska, J. M.; Gerwig, G. J. G.; Kamerling, J. P.; Bucheli, P. Cell wall polysaccharides of chinese Wolfberry (Lycium barbarum): Part 1. Characterization of arabinogalactan-proteins. Carbohydr. Polym. 2011a, 84, 1075-1083. Redgwell, R. J.; Curti, D.; Wang, J.; Dobruchowska, J. M.; Gerwig, G. J. G.; Kamerling, J. P.; Bucheli, P. Cell wall polysaccharides of chinese Wolfberry (Lycium barbarum): Part 2. Characterization of soluble and insoluble polymer fractions. Carbohydr. Polym. 2011b, 84, 1344-1349. Samanli, S.; Cuhadaroglu, D.; Ucbas, Y.; Ipek, H. Investigation of breakage behavior of coal in a laboratory-scale stirred media mill. Int. J. Coal Prep. Util. 2010, 30 (1), 20-31. Shekunov, B. Y.; Chattopadhyay, P.; Tong, H.H.Y.; Chow, A. H. L. Particle size analysis in pharmacyeutics: principle, methods and application. Pharmaceutical Res.2007, 24(2), 203-227. Tang, X.; Fenton, M. J.; Amar, S. Identification and functional characterization of a novel binding site on TNF- promoter. Proc. Natl. Acad. Sci. 2003, 100.4096-4101. Teeri, T. T. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol. 1997, 15(5), 160-167. Tian, M.; Wang, M. Studies on extraction, isolation and composition of Lycium barbarum polysaccharides. Zhongguo Zhong Yao Za Zhi (China Journal of Traditional Chinese Medicine and Pharmacy). 2006, 31(19), 1603−1607. Twentyman, P. R.; Luscombe, M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br. J. Cancer. 1987, 56, 275-279. Taylor, P.R.; Martinez-Pomares, L.; Stacey, M.; Lin, H-H.; Brown, G.D.; Gordon, S. Macrophage receptors and immune recognition. Annu Rev Immunol . 2005, 23, 901-944. Wang, Y.; Hollingsworth, R.I.; Kasper, D. L. Ozonolytic depolymerization of polysaccharides in aqueous solution. Carbohydr. Res. 1999, 319, 141-147. Watford, W. T.; Moriguchi, M.; Morinobu, A.; O’Shea, J. J. The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine Growth Factor Rev. 2003, 14, 361–368. Wu, H.; Guo, H.; Zhao, R. Effec of Lycium barbarum polysaccharide on the improvement of antioxidant ability and DNA damage in NIDDM rats. Yakugaku Zasshi-J. Pharm. Soc. Jpn.2006, 126, 365-371. Xu, Y.; He, L.; Xu, L.; Liu, Y. Advances in immunopharmacological study of Lycium barbarum L. Journal of Chinese Medicinal Materials. 2000, 23, 295−298. Zhang, M.; Wang, J.; Zhang, S. Study on the composition of Lycium barbarum polysaccharides and its effects on the growth of weanling mice. Wei Sheng Yan Jiu (Journal of Hygiene Research). 2002, 31(2), 118−119. Zhang, M.; Chen, H.; Huang, J.; Li, Z.; Zhu, C.; Zhang, S. Effect of Lycium barbarum polysaccharide on human hepatoma QGY7703 cells: Inhibition of proliferation and induction of apoptosis. Life Sci. 2005, 76(18), 2115-2124. Zhang, Y. P.; Lynd, L. R. Cellodextrin preparation by mixed-acid hydrolysis and chromatographic separation. Anal. Biochem. 2003, 322, 225-232. Zhang, W.; Chen, Z.; Li, F.; Kamencic, H.; Juurlink, B.; Gordon, j. R.; Xiang, J. Tumour necrosis factor-α (TNF-α) transgene-expressing dendritic cells (DCs) undergo augmented cellular maturation and induce more robust T-cell activation and anti-tumour immunity than DCs generated in recombinant TNF-α. Immunology. 2003, 108, 177–188. Zhao, R.; Li, Q.; Xiao, B. (). Effect of Lycium barbarum polysaccharide on the improvement of insulin resistance in NIDDM rats. Yakugaku Zasshi-J. Pharm. Soc. Jpn. 2005, 125(12), 981-988 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15574 | - |
dc.description.abstract | 摘要
枸杞為東方傳統藥食同源中草藥,可以增添食品風味外,且具有許多生理功能,枸杞多醣-蛋白質複合物 (Lycium barbarum polysaccharide-protein complex, LBP) 是主要活性物質之一,具有免疫調節、降血糖、改善糖尿病、抗氧化、抗腫瘤和延緩老化等多種功能。以介質研磨 (Media milling)製備奈米/次微米枸杞懸浮液,有助於枸杞活性成分釋出。本研究之目的主要為評估介質研磨對於枸杞蛋白質免疫調節能力之影響。經過介質研磨 90 分鐘之枸杞,粒數平均粒徑為0.111 μm,小於 1 μm 之粒子數佔總粒子數的 99.9%,小於 0.1 μm 之粒子數佔總粒子數的 57.8%,電子顯微鏡影像亦可證實枸杞懸浮液具有奈米/次微米尺度之粒子,枸杞蛋白含量提高了 21.05%。利用陰離子交換層析,分離出枸杞蛋白質區分物一 (goji protein fraction 1, GPF1) 與枸杞蛋白質區分物二 (goji protein fraction 2, GPF2),細碎組 GPF1 與 GPF2 比例為 17.59 : 82.41,介質研磨組別 GPF1 與 GPF2 比例為 5.12 : 94.88。以枸杞粗蛋白處理 RAW264.7 小鼠巨噬細胞株,結果顯示,研磨組刺激細胞增生之能力優於細碎組別。在 1000 μg/mL 濃度下,刺激一氧化氮產生能力研磨組比細碎組高了46.9%,刺激細胞產生 TNF-α 之能力研磨組比細碎組增加 13.86%,刺激細胞激素 IL-1β 之能力研磨組比細碎組提高 12.24%。以陰離子交換層析分離之枸杞蛋白質區分物處理 RAW264.7 小鼠巨噬細胞株,結果顯示,只有 GPF2 具有刺激細胞增生之能力。GPF1 與 GPF2 均具可刺激一氧化氮及 TNF-α 濃度上升,而 GPF2 在 500 μg/mL 濃度下,研磨組刺激 RAW264.7 產生一氧化氮比細碎組高了 15.91%,研磨組刺激 RAW264.7 產生 TNF-α 比細碎組高了 23.2%。只有 GPF2 可刺激 IL-1β 和 IL-12 濃度提升,在濃度 500 μg/mL 時,研磨組刺激 RAW264.7 產生 IL-12 比細碎組高了 16.25%。 | zh_TW |
dc.description.abstract | Abstract
Goji is a traditional medicine and food in Chinese and had multiple biological activities, Lycium barbarum polysaccharide-protein complex (LBP) are one of the main active compounds of goji. LBP have several positive health effects such as immunomodulating, hypoglycemic effect, anti-diabetes, antioxidant activity, antitumor activity and anti-aging. The objective of this study was to evaluate the effect of media milled on immunoregulatory response of goji protein and it’s different fractions. At first, media milled for 90 min, the number average diameter of goji suspension particle was reduced from 3.44 μm to 0.111 μm, the percentage of particle smaller than 1μm was 99.9% and the percentage of particle smaller than 0.1 μm was 57.8%. The quantity of goji prtein could be increased 21.05% by media milled. Blended and milled goji protein could be separated into protein fraction 1 (GPF1) and protein fraction 2 (GPF2) by DEAE. The protein content of GPF1 and GPF2 in blended goji protein was 17.59 : 82.41, and 5.12 : 94.88 in milled goji protein. In addition, goji was studied for its immunoregulatory response by using murine macrophages RAW264.7 cell line. In the first part, goji protein were treated with RAW264.7 and the results showed that milled goji protein could stimulate the proliferation of RAW264.7 better than blended goji protein. At 1000 μg/mL, milled goji protein had increased the concentration of nitric oxide, TNF-α and IL-1β compared with blended goji protein, by 46.9%, 13.86% and 12.24%. In the second part, two protein fractions which were separated by DEAE were treated with RAW264.7. Results revealed that only GPF2 could induce the proliferation of RAW264.7. However, both of the protein fractions had increased the concentration of nitric oxide and TNF-α, when treated GPF2 at 500 μg/mL, the nitric oxide and TNF-α concentration of milled sample was 15.91% and 23.2% higher than that of blended one, respectively. Only GPF2 can induce the secretion of IL-1β and IL-12, when treated GPF2 at 500 μg/mL, the IL-12 concentration of milled sample was 16.25% higher than that of blended one. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T17:48:08Z (GMT). No. of bitstreams: 1 ntu-102-R99641030-1.pdf: 3169959 bytes, checksum: ca30f48b0d2667aca3fdcb231d637721 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 摘要.....I
Abstract.....III 目錄.....V 圖目錄.....VIII 表目錄.....X 壹、前言.....1 貳、文獻回顧.....2 2.1 枸杞.....2 2.1.1 枸杞簡介.....2 2.1.2 枸杞多醣.....4 2.1.3 枸杞多醣結構.....7 2.2 免疫系統.....11 2.2.1 巨噬細胞.....11 2.2.2一氧化氮.....12 2.2.3細胞激素與免疫.....12 2.3 奈米科學與技術.....14 2.3.1 奈米之定義.....15 2.3.2 奈米與生活.....15 2.3.3 奈米材料製備.....17 2.3.4 介質研磨.....19 參、實驗架構.....21 3.1 實驗目的.....23 3.2 實驗架構.....23 肆、材料與方法.....23 4.1 試驗材料 .....24 4.2 試驗藥品.....24 4.2.1 碳水化合物含量測定.....24 4.2.2 蛋白質含量測定.....24 4.2.3 細胞培養與繼代.....24 4.2.4 細胞存活率.....24 4.2.5 一氧化氮測定.....25 4.2.6 細胞激素測定.....25 4.3 儀器設備.....25 4.4 實驗方法.....26 4.4.1 樣品製備.....28 4.4.2 細碎與介質研磨枸杞懸浮液.....28 4.4.3 枸杞粗蛋白製備與分析.....29 4.4.4 細胞株的活化、繼代培養、保存與計數.....31 4.4.5 細胞存活率分析.....36 4.4.6 一氧化氮測定.....38 4.4.7 細胞激素含量測定.....40 4.4.8 統計分析.....41 伍、結果與討論.....43 5.1 枸杞懸浮液特性分析.....44 5.1.1 粒徑分析.....44 5.1.2 型態觀察.....44 5.1.3 穩定性分析.....48 5.2 枸杞蛋白質分析.....51 5.2.1 枸杞粗蛋白產率、蛋白質和總醣含量分析.....53 5.2.2 枸杞蛋白質之帶電性分析.....53 5.3 枸杞粗蛋白質免疫調節能力評估.....55 5.3.1 枸杞粗蛋白對 RAW264.7 細胞存活率之影響.....57 5.3.2 枸杞粗蛋白對 RAW264.7 一氧化氮分泌能力之影響.....57 5.3.3 枸杞粗蛋白對 RAW264.7 細胞激素 TNF-α 分泌能力之影響.....59 5.3.4 枸杞粗蛋白對 RAW264.7 細胞激素 IL-1β 分泌能力之影響.....61 5.4 枸杞蛋白質 DEAE-650M 陰離子交換樹酯區分物免疫調節能力評估.....63 5.4.1 枸杞蛋白質區分物對 RAW264.7 細胞存活率之影響.....65 5.4.2 枸杞蛋白質區分物對 RAW264.7 一氧化氮分泌能力之影響.....65 5.4.3 枸杞蛋白質區分物對 RAW264.7 細胞激素 TNF-α 分泌能力之影響.....68 5.4.4 枸杞蛋白質區分物對 RAW264.7 細胞激素 IL-1β 分泌能力之影響.....70 5.4.5 枸杞蛋白質區分物對 RAW264.7 細胞激素 IL-12 分泌能力之影響.....72 陸、結論.....74 柒、參考文獻.....76 | |
dc.language.iso | zh-TW | |
dc.title | 介質研磨對於枸杞蛋白質免疫調節能力之影響 | zh_TW |
dc.title | Effect of media milling on immunoregulatory response of goji protein | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蕭寧馨,王仁助 | |
dc.subject.keyword | 奈米科技,介質研磨,枸杞,蛋白質,免疫調節, | zh_TW |
dc.subject.keyword | nanotechnology,media milling,goji,Lycium barbarum L.,protein, | en |
dc.relation.page | 84 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2013-04-11 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 3.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。