請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15565
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳文方(Wen-Fang Wu) | |
dc.contributor.author | Jia-Wei Wu | en |
dc.contributor.author | 吳家瑋 | zh_TW |
dc.date.accessioned | 2021-06-07T17:48:00Z | - |
dc.date.copyright | 2020-08-21 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-13 | |
dc.identifier.citation | [1] 鄭冠淳,全球電動車產業現況與發展趨勢。車輛研測專刊,第11-28頁,2020。 [2] Kennedy, S., Qiu, M. China's Expensive Gamble on New Energy Vehicles. Center for Strategic and International Studies 2018. [3] 財團法人車輛研究測試中心,知識庫,https://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=13442。(2020年05月22日瀏覽) [4] Regulation (EU) 2019/631 of the European Parliament and of the Council, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R0631 (Browsed on May. 22, 2020). [5] 行政院,空氣污染防制大作戰—修正法條+行動方案,https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/23c411a0-1b20-42e7-9843-daf6cdedc61b。(2020年05月22日瀏覽) [6] DDCAR網站,https://www.ddcar.com.tw/。(2020年05月22日瀏覽) [7] 財團法人車輛研究測試中心,國際電動車充電介面共通性探討,https://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=13457。(2020年05月22日瀏覽) [8] 交通部統計處,自用小客車使用狀況調查報告。交通部統計處報告,2019。 [9] 財團法人車輛研究測試中心,我國公共充電站建置現況,https://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=2401 nPage=1 syear=0 skind1=0 skind2=0 skeyword=%e6%88%91%e5%9c%8b。(2020年05月22日瀏覽) [10] Mirchandani, P., Adler, J., Madsen, O.B, New logistical issues in using electric vehicle fleets with battery exchange infrastructure. Procedia Social and Behavioral Sciences 2014; 108: 3–14. [11] Kunith, A., Mendelevitch, R., Goehlich, D, Electrification of a city bus network—An optimization model for cost-effective placing of charging infras- tructure and battery sizing of fast-charging electric bus systems. International Journal of Sustainable Transportation 2017; 11 (10): 707–720. [12] Rahman, I., Vasant, P.M., Singh, B.S.M., Abdullah-Al-Wadud, M., Adnan, N, Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures. Renewable and Sustainable Energy Reviews 2016; 58: 1039–1047. [13] Rogge, M., van der Hurk, E., Larsen, A., Sauer, D.U, Electric bus fleet size and mix problem with optimization of charging infrastructure. Applied Energy 2018; 211: 282–295. [14] Hodgson, M.J., A flow-capturing location-allocation model. Geographical Analysis 1990; 22 (3): 270–279. [15] Kuby, M., Lim, S., The flow-refueling location problem for alternative-fuel vehicles. Socio-Economic Planning Sciences 2005; 39 (2): 125–145. [16] Kim, J.G., Kuby, M., The deviation-flow refueling location model for optimizing a network of refueling stations. International Journal of Hydrogen Energy 2012; 37(6): 5406–5420. [17] Kim, J.G., Kuby, M., A network transformation heuristic approach for the deviation flow refueling location model. Computers Operations Research 2013; 40(4): 1122–1131. [18] Jung, J., Chow, J.Y.J., Jayakrishnan, R., Park, J.Y., Stochastic dynamic itinerary interception refueling location problem with queue delay for electric taxi charging stations. Transportation Research Part C: Emerging Technologies 2014; 40: 123–142. [19] Tu, W., Li, Q., Fang, Z., Shaw, S.L., Zhou, B., Chang, X., Optimizing the locations of electric taxi charging stations: a spatial–temporal demand coverage approach. Transportation Research Part C: Emerging Technologies 2016; 65: 172–189. [20] Mak, H.-Y., Rong, Y., Shen, Z.-J.M., Infrastructure planning for electric vehicles with battery swapping. Management Science 2013; 59 (7): 1557–1575. [21] Yang, J., Sun, H., Battery swap station location-routing problem with capacitated electric vehicles. Computers Operations Research 2015; 55: 217–232. [22] Hof, J., Schneider, M., Goeke, D., Solving the battery swap station location-routing problem with capacitated electric vehicles using an AVNS algorithm for vehicle-routing problems with intermediate stops. Transportation Research Part B: Methodological 2017; 97: 102–112. [23] Yang, J., Guo, F., Zhang, M., Optimal planning of swapping charging station network with customer satisfaction. Transportation Research Part E: Logistics and Transportation Review 2017; 103: 174–197. [24] David, S. L. and Philip, K., Designing and managing the Supply Chain Concepts, Strategies, and Case Studies. McGraw-Hill 1998, Singapore. [25] 許志義,多目標決策,五南圖書出版公司,台北,民國83年。 [26] Lingo官方網站,https://www.lindo.com/。(2020年06月09日瀏覽) [27] Tesla官方網站,https://www.tesla.com/zh_TW。(2020年06月09日瀏覽) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15565 | - |
dc.description.abstract | 考量電動車使用者面對充電需求所需決策及不同充電服務商的競爭關係,本研究在特定充電需求情況下,採用一多目標規劃數學模型,探討電動車充電時間、充電費用、服務商收益三個目標的最佳化。透過合乎實情參數的收集以及Lingo軟體的求解,該模型可讓我們獲得服務商所提供充電站在不同目標考量下之使用變化率,也可讓我們依據參數敏感度分析結果,向服務商解釋商業上的意涵,並提出管理上的建議。本研究特別藉由情境模擬,探討台北市當前電動車使用者與充電服務商之互動關係。數值模擬分析結果顯示,如僅考量電動車充電時間、充電費用、服務商收益等單一目標時,將使充電站使用率集中於具有特定競爭優勢的服務商,無法反應電動車使用者在面對充電需求時的不同選擇;採用多目標規劃數學模型分析的結果,可讓充電服務商在使用者充電需求時,能透過適當策略與充電功率的提升,有效增加充電站的使用率。 | zh_TW |
dc.description.abstract | Taking into account the charging demand of electric vehicle users and the competition among charging service providers, this study proposes a model based on multi-objective programming to explore the optimization problem of charge time, charge cost and profit of service provider under the constraint of a specific charge demand. Through the collection of actual parametric values and the solution of Lingo software, the model allows us to obtain the occupation rate of all charge stations of service providers in consideration of various objectives. It also allows us to explain to the service provider the business insights and management suggestions based on analytical results. In particular, this study uses scenario simulation to explore the relation between electric vehicle users and charge-service providers in Taipei. Numerical results indicate that when a single objective among charge time, charge fare and profit of service provider is considered, the occupation rate of charge station as well as its benefit falls into a few competitive service providers, which may not be beneficial to individual users who need the service. The use of the proposed multi-objective programming model allows us to obtain optimal solutions between the service providers and the users. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T17:48:00Z (GMT). No. of bitstreams: 1 U0001-0408202010103200.pdf: 1756559 bytes, checksum: bf914c99f335aa1b2b4baef1d14f5929 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝 I 摘要 II Abstract III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 7 1.3 論文架構 7 第二章 文獻回顧 8 2.1 國內電動車之發展背景 8 2.2 電動車最佳化問題相關文獻 11 2.3 多目標規劃法 13 2.4 Lingo軟體 15 第三章 模型建構 16 3.1 模型基本假設 16 3.2 符號定義 16 3.3 多目標規劃模型 17 第四章 情境模擬 21 4.1 參數設定 21 4.2 測試結果 27 4.3 敏感度分析 29 第五章 結論與建議 33 5.1 研究結論 33 5.2 研究建議與未來研究方向 33 參考文獻 34 | |
dc.language.iso | zh-TW | |
dc.title | 以多目標規劃探討我國電動車之充電服務方式 | zh_TW |
dc.title | A Study of Charging Service of Electric Vehicles in Taiwan by Multi-Objective Programming | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 詹魁元(Kuei-Yuan Chan),劉霆(Tyng Liu) | |
dc.subject.keyword | 電動車,充電服務,充電時間,充電費用,多目標規劃, | zh_TW |
dc.subject.keyword | Electric Vehicle,Charging Service,Charge Time,Charge Fare,Multi-Objective Programming, | en |
dc.relation.page | 36 | |
dc.identifier.doi | 10.6342/NTU202002341 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-08-14 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
顯示於系所單位: | 工業工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0408202010103200.pdf 目前未授權公開取用 | 1.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。