請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15531
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 莊東漢 | |
dc.contributor.author | Kuan-Ting Lee | en |
dc.contributor.author | 李冠廷 | zh_TW |
dc.date.accessioned | 2021-06-07T17:47:32Z | - |
dc.date.copyright | 2013-07-26 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-06-21 | |
dc.identifier.citation | [1] http://web.nchu.edu.tw/~lschang/Thermoelectric.htm
[2] 朱旭山,「熱電材料與元件之發展與應用」,工業材料雜誌,220期,第93-103 頁(2005)。 [3] T.J. Seebeck, 'Magnetic polarization of metals and minerals.', Abhandlungender Deutschen Akademie der Wissenschaftenzu Berlin, Vol. 265, 1821, pp. 1822-1823. [4] J.C. Peltier, 'Nouvelles experience sur la caloricite des courans electrique.', Ann. Chim. 1834, LV1, pp. 371. [5] W. Thomson, 'in On a mechanical theory of thermoelectric currents.', Edinburgh, 1851, pp. 91-98. [6] H. J. Goldsmid and R. W. Douglas, 'The use of semiconductors in thermoelectric refrigeration.', British Journal of Applied Physics, Vol. 5, 1954, pp. 386-390. [7] G.S. Nolas,G.A. Slack,J.L. Cohn and S.B. Schujman, 'The Next Generation of Thermoelectric Materials.', Proceeding of the 17th International Conference in Thermoelectrics, 1998, pp. 294-297. [8] Hsu, K. F. et al. 'Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit.', Science, Vol. 303, 2004, pp.818-821. [9] Harman, T. C., Taylor, P. J., Walsh, M. P. and LaForge, 'B. E. Quantum dot superlattice thermoelectric materials anddevices.', Science, Vol. 297, 2002, pp. 2229-2232. [10] Venkatasubramanian, R., Siivola, E., Colpitts, T. & O'Quinn, B. “Thin-film thermoelectric devices with high room-temperature figures of merit”.Nature (2001), 413, pp.597-602. [11] A. I. Boukai, Yuri Bunimovich, Jamil Tahir-Kheli, Jen-Kan Yu, William A. Goddard III,and James R. Heath, 'Silicon Nanowires as Efficient Thermoelectric Materials.', Nature, Vol. 451, 2008, pp.168-171. [12] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, 'Enhanced thermoelectric performance of rough silicon nanowires.', Nature, Vol. 451, 2008, pp. 163-167. [13] 中央研究院週報 第1169期 [14] Soon-Chul Ur, Philip Nash, Il-Ho Kim,”Solid-state syntheses and properties of Zn4Sb3 thermoelectric materials” [15] N. K. Dutta, etc, Tunable InGaAs/GaAs/InGaP laser, APL, 1997, pp.1219-1220. [16] A. Borshchevsky, D. T. Morelli, G. P. Meisner, J. P. Fleurial, T. Caillat, NASA Tech Brief, NPO-19909, 25(6), 2001. [17] H .W. Mayer, I. Mikhail, K. Schubert, J. Less-Common Met. Vol. 59, 1978, pp. 43. [18] 李雅明,固態電子學 [19] J. Androulakis, K. F. Hsu, R. Pcionek,”Nanostructuring and High Thermoelectric Efficiency in p-Type Ag(Pb1-ySny)mSbTem+2.” Advanced Materials, Vol.18 2006, pp.1770-1773. [20] https://commons.wikimedia.org/wiki/File:Seebeck_effect_circuit.svg [21] http://china-heatpipe.net/heatpipe04/05/2006-10-2/0610253875_0_210.htm [22] http://www.transtutors.com/physics-homework-help/current-electricity/thomson-effect.aspx [23] Seijiro Sano, Hiroyuki Mizukami, and Hiromasa Kaibe, 'Development of High-Efficiency Thermoelectric Power Generation System.', KOMATSU Technical Report, 2003, Vol.49, No.152. [24] CRC Handbook of Thernoeletric, Edited by D.M. Rowe, CRC Press LLC, USA. [25] G. Jeffrey Snyder, Mogens Christensen, Eiji Nishibori, Thierry Caillat and Bo Brummerstedt Iversen, 'Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties.', Nature Materials, Vol 3, 2004, pp.458-463. [26] Wen P. Lin, Daniel E. Wesolowski, and Chin C. Lee, 'Barrier/bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules.' Journal of Materials Science:Materials in Electronics, Vol. 22, 2011, pp.1313-1320. [27] 黃育智, 楊清峰, 陳信文, '軟銲', 科學期刊, 2007, 416期, pp. 58-63. [28] 莊東漢博士, '擴散軟銲技術在電子封裝之應用', 封裝技術電子月刊第五卷第十一期. [29] D. M. Jacobson and G. Humpston, 'Diffusion Soldering.', Soldering and Surface Mount Technology, No. 10, 1992, pp. 27-32. [30] M. Abtew and G. Selvadury, 'Lead-Free Solders in Microelectronics', Materials Science & Engineering R-Reports', Vol. 27, 2000, pp. 96-141. [31] AWS Brazing Manual, 4thed, American Weling Society, Miami, Florida. [32] Chao-hong Wang, Hsien-hsin Chen, 'Study of the Effects of Zn Content on the Interfacial Reactions Between Sn-Zn Solders and Ni Substrates at 250°C.', Journal of Electronic Materials, Vol. 39, 2010, pp. 2375-2381. [33] H. Wada, K. Takahashi and T. Nishizaka, 'Electroless nickel plating to Bi-Te sintered alloy and its properties.' Journal of Materials Science Letters, Vol. 9, 1990, pp. 810-812. [34] R. M. Redstall and Studd, in CRC Handbook of Thermoelectrics,edited by D.M. Rowe(CRC, Boca Raton, FL, 1995), pp. 641-643. [35] James L. Bierschenk, Richard A. Howarth and Norbert J. Socolowski, United States Patent: 'Thermoelectric Cooler.', Num5441576(1995). [36] Y. C. Lan, D. Z. Wang, G. Chen, and Z. F. Ren, 'Diffusion of Nickel and Tin in P-type(Bi,Sb)2Te3 and N-type Bi2(Te,Se)3 Thermoelectric Materials.', Applied Physics Letters, Vol. 92, 101910(2008). [37] Takehiko Sato, Mino, Kazuo Kamada, Hirakata, United StatesPatent:'Thermoelectric Piece and Process of Making the Same.', Num.6083770(2000). [38] T. H. Chuang, H. J. Lin, and C. W. Tsao, 'Intermetallic Compounds Formed During Diffusion Soldering of Au/Cu/Al2O3 and Cu/Ti/Si with Sn/In interlayer.', Journal of Electronic Materials, Vol. 35, 2006, pp. 1566-1570. [39] Jing-Chie Lin, Long-Wei Huang, Guh-Yaw Jang and Sheng-Long Lee, 'Solid liquid interdiffusion bonding between In-coated silver thick films.', Thin solid Film, Vol. 410, 2002, pp. 212-221. [40] G. Humpston, D. M. Jacobson and S. P. S. Sangha, ' Diffusion Soldering :A new low temperature process for joining carat gold jewellery.', Gold Bulletin, Vol. 26, 1993, pp. 90-104. [41] G. Humpston, D. M. Jacobson and S. P. S. Sangha, 'Diffusion soldering for electronics manufacturing.', Endeavour, Vol. 18, 1994, pp. 55-60. [42] S. Bader, W. Gust and H. Hieber, 'Rapid formation of intermetallic compounds interdiffusion in the Cu-Sn and Ni-Sn systems.', Acta Metallurgica et Materialia, Vol. 43, 1995, pp. 329-337. [43] Chao-Hong Wang, Hsien-Hsin Chen, Wei-Han Lai, 'Effects of Minor Amounts of Zn on the Sn-Zn/Ni Interfacial Reactions and Phase.', Journal of Electronic Materials, Vol. 40, No. 12, 2011, pp. 2436-2444. [44] Chao-hong Wang, Hsien-hsin Chen, Po-yi Li, Po-yen Chu, 'Kinetic analysis of Ni5Zn21 growth at the interface between Sn-Zn solders and Ni.', Intermetallics Vol. 22, 2012, pp. 166-175. [45] Chao-hong Wang, Hsien-hsin Chen, Po-yi Li, 'Interfacial reactions of high-temperature Zn-Sn solders with Ni substate.', Materials Chemistry and Physics, Vol. 136, 2012, pp. 325-333. [46] Sinn-Wen Chen, Chia-Ming Hsu, Chin-yi Chou, Che-Wei Hsu, 'Isothermal section of ternary Sn-Zn-Ni phase wquilibria at 250°C.', Materials International Vol. 21, 2011, pp. 386-391. [47] W. Zhu, H. Liu, J. Wang, G. Ma, and Z. Jin, 'Interfacial Reactions Between Sn-Zn Alloys and Ni Substrates.', Journal of Electronic Materials, Vol. 39, No. 2, 2010, pp. 209-214. [48] J. Mittal, S. M. Kuo, Y. W. Lin,and K. L. Lin, 'Diffusion Behavior of Zn During Reflow of Sn-9Zn Solder on Ni/Cu Substrate.', Journal of Electronic Materials, Vol. 38, No. 12, 2009. [49] G. P. Vassilev, T. G. Acebo, and J. C. Tedenac, 'Thermodynamic optimization of the Ni-Zn system.', Journal of Phase Equilibria, Vol. 21, 2000, pp. 287-301. [50] S,Budurov, G. Vassilev, and N. Kuck:Z. Metallkd., 1978, Vol. 68, pp.226. [51] J. Schramm: Z. Metallkd., 1938, Vol. 30, pp. 122. [52] F. Lihl: Z. Metallkd., 1952, Vol. 43, pp. 310. [53] F. Lihl: Z. Metallkd., 1955, Vol. 46, pp. 438. [54] A. Malaruka and V. Melihov: Proc. Nucl. Phys. Inst., Akad. Nauk Kazakh. SSR, 1969, Vol. 9, pp. 78. [55] A. Morton: Phys. Status Solidi, 1977, Vol. 44 (1), pp. 205. [56] G. Nover and K. Schubert: J. Less-Common Met., Vol. 75, 1980, pp. 51. [57] W. Eckman: Z. Phys. Chem., 1931, vol. B12, pp. 57. [58] Y. C. Chan, M. Y. Chiu, and T. H. Chuang, 'Intermetallic Compounds formed during the Soldering Reactions of Eutectic Sn-9Zn with Cu and Ni Substrates.', Z. Metallkd, 2002, pp. 93,95-98. [59] C. Y. Chou, S. W. Chen, and Y. S. Chang, 'Interfacial reactions in the Sn-9Zn-(xCu)/Cu and Sn-9Zn-(xCu)/Ni Couples.', Journal of Materials Research, Vol. 21,No. 7, 2006, pp. 1849-1856. [60] W. G. Bader, 'Dissolution and Formation of Intermetallics in the Soldering Process.', IAHS-AISH Publication International Association of Hydrological Science-Association Internationnale des Sciences Hydrologiques, 1980, pp. 257-268. [61] J. A. V. Beek, S. A. Stolk, and F. J. J. V. Loo, 'Multiphase Diffusion in the Systems Fe-Sn and Ni-Sn.', Zeitschrift Fur Metallkunde, Vol. 73, 1982, pp. 439. [62] C. E. Ho, Y. W. Lin, S. C. Yang, C. R. Kao, and D. S. Jiang, 'The effect of limited Cu supply on the soldering reactions between SnAgCu and Ni.', Journal of Electronic Materials, Vol. 35, 2006, pp.1017. [63] H. D. Blair, T. Y. Pan and J. M. Nicholson, 'Intermetallic Compound Growth on Ni, Au/Ni, and Pd/Ni Substrates with Sn/Pb, Sn/Ag, and Sn Solders.', Electronic Components and Technology Conference, 1998, pp.259-267. [64] Chwan-Ying Lee, Kwang-Lung Lin, 'The interaction kinetics and compound formation between electroless Ni-P and solder.', Thin Soild Films, Vol. 249, No. 2, 1994, pp.201-206. [65] Kwang-Lung Lin and Chun-Jen Chen, 'The interactions between In-Sn solders and an electroless Ni-P deposit upon heat treatment.', Journal of Materials Science: Materials in Electronics, Vol. 7, No. 6, 1996, pp.397-401. [66] Paul G. Harris and Kaldev S. Chaggar, 'The role of intermetallic compounds in lead-free soldering.', Soldering & Surface Mount Technology, Vol. 10, No. 3, 1998, pp.38-52. [67] V. Simic and Z. Marinkovic, 'Room temperature interactions in Ag-metals thin films couples.', Thin Solid Film, Vol. 61, 1979, pp.149. [68] Z. Marinkovic and V. Simic, 'Kinetics of reaction at room temperature in thin silver-metal couple.', Thin Solid Film, Vol. 195, 1991, pp.127. [69] G. Humpston, D. M. Jacobson and S. P. S. Sangha, 'Diffusion soldering for electronics manufacturing.', Endeavour, Vol. 18, 1994, pp.55-60. [70] S. K. Sen, A. Ghorai and A. K. Bandyopadhyay 'Interfacial Reactions in Bimetallic Ag-Sn Thin Film Couples.', Thin Solid Films, Vol. 155, 1987, pp.243-253. [71] J. F. Li, P. A. Agyakwa and C. M. Johnson, 'Kinetics of Ag3Sn Growth in Ag-Sn-Ag System During Transient Liquid Phase Soldering Process.', Acta Materialia, Vol. 58, 2010, pp.3429-3443. [72] P. Skrzyniarz, A. Sypien, J. Wojewoda-Budka, 'Microstructure and Kinectic of Intermetallic Phases Growth in Ag/Sn/Ag Join Obtain as the Result of Diffusion Soldering.', Archives of Metallurgy and Materials, Vol. 55, 2010, pp.123. [73] K. N. Tu and R. D. Thompson, 'Kinetics of Interfacial Reaction in Bimetallic Cu-Sn Thin Films.', Acta Metallurgica, Vol.30, 1982, pp.947-952. [74] H. K. Kim and K. N. Tu, 'Kinetic Analysis of Soldering Reaction Between Eutectic SnPb Alloy and Cu Accompanied by Ripening.' Physical Review B, Vol. 53, No. 23, 1996, pp.16027-16034. [75] H. K. Kim and K. N. Tu, 'Ripening-Assisted Asymmetric Spalling of Cu-Sn Compound Spheroids in Solder Joints on Si Wafers.', Applied Physics Letters, Vol. 66, 1995, pp.2004-2006. [76] K. N. Tu, 'Cu/Sn Interfacial Reaction:Thin-Film Case Versus Bulk Case.', Materials Chemistry and Physics, Vol. 46, 1996, pp.217-223. [77] U. Gosele and K. N. Tu, 'Growth kinetics of planar binary diffusion couples: Thin-film case versus Bulk cases.', Journal of Applied. Physics, Vol.53, 1982, pp.3252-3260. [78] H. K. Kim and K. N. Tu, 'Rate of consumption of Cu in soldering accompanied by ripening.', Applied Physics Letters, Vol.67, 1995, pp.2002-2004. [79] J. S. Kang, R. A. Gagliano, G. Ghosh and M. E. Fine, 'Isothermal Solidification of Cu/Sn Diffusion Couples to Form Thin-Solder Joints.', Journal of Electronic Materials, Vol. 31, 2002, pp.1238-1243. [80] F. Bartels, J.W. Morris, JR., G. Dalke and W. Gust, 'Intermetallic Phase Formation in Thin Solid-Liquid Diffusion Couples.', Journal of Electronic Materials, Vol. 23, 1994, pp.787-790. [81] C. C. Lee, C. Y. Wang and G. Matijasevic, 'A Fluxless Oxidation-Free Bonding Technology. ', Electronic Components and Technology Conference, 1994, pp.595-599. [82] T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprazk, 'Binary Alloy Phase Diagrams. ', ASM International, 1990. [83] J. Chang, S. K. Seo, and H. M. Lee, 'Phase Equilibria in the Sn-Ni-Zn Ternary System: Isothermal Sections at 200°C, 500°C, and 800°C. ' Journal of Electronic Materials, Vol. 39, No. 12, 2010, pp.2643-2652. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15531 | - |
dc.description.abstract | 隨著能源及環保兩大議題的重要性日漸提升,研究廢熱回收與再利用成為讓地球永續發展的一項重要環節;另外,當電子元件功能快速提升的同時尺寸卻大幅縮小,造成發熱密度增加,意味著熱管理技術備受重視。熱電材料利用其可將熱與電互相轉換的特性,應用在廢熱回收極具潛力及發展性;熱電致冷元件也具有多項優點可用來解決小尺寸電子元件的散熱問題。
熱電材料的轉換效率隨著熱電優值(ZT值)的增加而有所提升,依其工作溫度可分為低溫、中溫、以及高溫熱電材料三種。然而單一熱電材料之熱電轉換效率有限,因此工業上以P型和N型交互串聯做成的熱電模組應用最具優勢,本研究選用中溫P型的熱電材料Zn4Sb3為母材、Cu為電極,以Ni作為擴散阻隔層,Ag、Sn分別作為高熔點及低熔點金屬進行固液擴散接合,在不同時間及溫度的接合參數下,比較在熱電材料Zn4Sb3與Ni擴散阻隔層間有無預鍍錫所造成的接合強度差異,同時分析各不同金屬間之介面反應以及進行動力學分析。 實驗結果顯示,預鍍Sn系統經固液擴散接合後,在Zn4Sb3/Sn/Ni的界面會有裂縫的產生,此部位即為強度測試時發生斷裂的位置,其強度也較無預鍍錫系統的實驗結果低,約10MPa~15MPa左右;然而無預鍍Sn系統之接合結果顯示,Zn4Sb3會提供Zn直接與Ni形成一介金屬Ni5Zn21,此相與Zn4Sb3間的界面平整且連續,使得系統整體強度值較高,約達15~20MPa以上,甚至超過20MPa。雖然無預鍍錫的系統接合情形良好,但經時效測試後之成份元素分佈分析的結果顯示,於長時間的反應下,熱電材料Zn4Sb3可無限量的提供Zn使得Ni5Zn21不斷增厚直到Ni被完全消耗殆盡,隨後便沒有Ni作為擴散阻隔層來阻擋各層金屬原子間的互相擴散,最終導致整體元件的破裂與失效。 | zh_TW |
dc.description.abstract | With the importance of energy and environmental issues increase, recycling and reuse of waste heat become an important part of sustainable development.Additionly, when the electronic component size quickly significantly reduced, resulting in heat density increases, which means thermal management technology has attracted more attention. Thermoelectric material has a feature that it can convert heat and electricity into each other, which means a great potential for applications in waste heat recovery and development; thermoelectric cooler also has a number of advantages that can be used to solve the heat dissipation problem of small size electronic components.
The conversion efficiency of thermoelectric materials increases with the thermoelectric figure of merit (ZT) increases, and they can be divided into three types according to their operating temperature. However, the conversion efficiency of one single thermoelectric material is limited, so the most conmmon application is connecting the P-type and N-type thermoelectric materials in series to become modules. In this study,we choose the P-type thermoelectric material Zn4Sb3 as a base material, Cu as an electrode , Ni as a diffusion barrier layer; elecroplate Ag and Sn layer on bonding interface respectively, as high and low melting point metal for solid-liquid interdiffusion bonding. Bonding the sample with different parameters,and analses the two systems:preheating & non-preheating. Experimental results show that the preheating system will generate cracks between the interface of Zn4Sb3/Sn/Ni, and cuase the sample fail at this position; their strength are lower than those without preheating, about 10MPa ~ 15MPa. However, the non-preheating system shows that Zn4Sb3 can provides Zn to react with Ni and form an intermetallic Ni5Zn21 directly.The interface between Ni5Zn21 and Zn4Sb3 is smooth and continuous, providing the system a higher strength value, about 15 ~ 20MPa, even more than 20MPa. Although the non-preheating system shows better bonding results, Ni still can’t be used as a barrier layer for SLID between Zn4Sb3 and Cu electrode. After aging, Ni will be completely exhausted since Zn4Sb3 can provide an unlimited amount of Zn to react with it to form Ni5Zn21. Once the Ni layer disappear, all metal atoms will interdiffuse to whole system and cause the sample fail eventually. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T17:47:32Z (GMT). No. of bitstreams: 1 ntu-102-R00527063-1.pdf: 4853729 bytes, checksum: 3b1997c8dc3f3bd819f1c7d247d1286f (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 摘要 I
Abstract II 目錄 IV 圖目錄 VI 表目錄 VIII 壹、前言 1 貳、理論及文獻回顧 3 2.1熱電材料之發展與應用 3 2.2常見之材料接合製程 11 2.2.1軟銲(Soldering)[27] 11 2.2.2硬銲(Brazing) 12 2.2.3固液擴散接合(Solid-Liquid Interdiffusion Bonding,SLID) 13 2.3擴散阻隔層 18 2.4界面反應動力學 19 2.4.1界面控制反應 21 2.4.2擴散控制反應 21 2.4.3 Sn-Zn-Ni系統 23 2.4.4 Ni-Zn系統 24 2.4.5 Ni-Sn系統 25 2.4.6 Ag-Sn系統 26 2.4.7 Cu-Sn系統 27 參、實驗方法 32 3.1 試片前處理 32 3.2固液擴散接合 33 3.3強度測試與介面分析 33 3.4時效測試 33 肆、實驗結果與討論 45 4.1 中溫熱電材料Zn4Sb3預鍍Sn後利用Sn系統與Cu電極接合 45 4.1.1 Zn4Sb3/Sn/Ni/Ag-Sn/Ag/Cu之界面反應 45 4.1.2 Zn4Sb3/Sn/Ni/Ag-Sn/Ag/Cu之介金屬長動力學 47 4.1.3 Zn4Sb3/Sn/Ni/Ag-Sn/Ag/Cu之接合強度測試 47 4.2 中溫熱電材料Zn4Sb3在無預鍍Sn情況利用Sn系統與Cu電極接合 48 4.2.1 Zn4Sb3/Ni/Ag-Sn/Ag/Cu之界面反應 48 4.2.2 Zn4Sb3/Ni/Ag-Sn/Ag/Cu之介金屬成長動力學 49 4.2.3 Zn4Sb3/Ni/Ag-Sn/Ag/Cu之接合強度測試 50 4.2.4 Zn4Sb3/Ni/Ag-Sn/Ag/Cu之時效測試 51 伍、結論 70 陸、參考文獻 71 | |
dc.language.iso | zh-TW | |
dc.title | Zn4Sb3中溫熱電材料與銅電極之薄膜固液擴散接合研究 | zh_TW |
dc.title | Thin Film Solid-Liquid Interdiffusion Bonding of Zn4Sb3 Thermoelectric Material with Cu Electrode | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝慧霖,王彰盟,鄭智元,黃振東 | |
dc.subject.keyword | 熱電材料,固液擴散接合,強度測試,界面反應,擴散阻隔層, | zh_TW |
dc.subject.keyword | thermoelectric material,SLID,strength test,interface reaction,barrier layer, | en |
dc.relation.page | 78 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2013-06-21 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 4.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。