Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1294
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李玲玲
dc.contributor.authorChih-Chin Shihen
dc.contributor.author石芝菁zh_TW
dc.date.accessioned2021-05-12T09:35:43Z-
dc.date.available2021-03-02
dc.date.available2021-05-12T09:35:43Z-
dc.date.copyright2018-03-02
dc.date.issued2018
dc.date.submitted2018-02-07
dc.identifier.citation(Chapter 1)
Beebee TJC, Rowe G (2008) An introduction to molecular ecology. Oxford University Press, Oxford, UK
Chen Y-L, Yang C-C (2002) Mitochondrial DNA-sequences of wild and captive Asian black bears (Ursus thibetanus Cuvier) in Taiwan. Endemic Species Research 4:73-77
Chu J-H, Wu H-Y, Lin Y-S (2000) A preliminary result inferred from mitochondrial DNA sequences of black bears (Selenarctos thibetanus) in Taipei Zoo. Taipei Zoo Bulletin 12:25-34
CITES (2017) CITES Appendices I, II and III (valid from 4 October 2017). https://cites.org/sites/default/files/eng/app/2017/E-Appendices-2017-10-04.pdf.
DeMay SM, Becker PA, Eidson CA, Rachlow JL, Johnson TR, Waits LP (2013) Evaluating DNA degradation rates in faecal pellets of the endangered pygmy rabbit. Molecular Ecology Resources 13:654-662
Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge, UK
Garshelis DL, Steinmetz R (2016) Ursus thibetanus. (errata version published in 2017) The IUCN Red List of Threatened Species 2016: e.T22824A114252336. http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22824A45034242.en. Downloaded on 24 June 2017
Heptner VG, Naumov NP, Yurgenson PB, Sludskii AA, Chirkova AF, Bannikov AG (1998) White-chested, black bear. In: Hoffmann RS (ed) Mammals of the Soviet Union Vol II Part 1a, Sirenia and Carnivora (Sea cows; Wolves and Bears). Smithsonian Insitution Libraries and The National Science Foundation, Washington, D.C., USA, pp 713-733
Hou W-R, Hu J-C (1997) The present situations of China's bear resources and protection. Journal of Sichuan Teachers College (Natural Science) 18:287-291
Hu J-C (1995) The bear resource and its protection in southwest China. Journal of Sichuan Teachers College (Natural Science) 16:273-277
Hung C-M, Li S-H, Lee L-L (2004) Faecal DNA typing to determine the abundance and spatial organisation of otters (Lutra lutra) along two stream systems in Kinmen. Animal Conservation 7:301-311
Hwang D-S, Ki J-S, Jeong D-H, Kim B-H, Lee B-K, Han S-H, Lee J-S (2008) A comprehensive analysis of three Asiatic black bear mitochondrial genomes (subspecies ussuricus, formosanus and mupinensis), with emphasis on the complete mtDNA sequence of Ursus thibetanus ussuricus (Ursidae). DNA Sequence 19:418-429
Hwang M-H, Wang Y (2006) The status and management of Asiatic black bears in Taiwan. In: Yamazaki K (ed) Understanding Asian bears to secure their future. Japan Bear Network, Japan, pp 107-110
Kitahara E, Isagi Y, Ishibashi Y, Saitoh T (2000) Polymorphic microsatellite DNA markers in the Asiatic black bear Ursus thibetanus. Molecular Ecology 9:1661-1662
Kitchener AC (2010) Taxonomic issues in bears: impacts on conservation in zoos and the wild, and gaps in current knowledge. International Zoo Yearbook 44:33-46
Ma Y-Q, Xu L, Hu J-C (1998) On the resources and conservation of bears in China. Life Science Research 2:205-211
Meredith EP, Rodzen JA, Banks JD, Jones KC (2009) Characterization of 29 tetranucleotide microsatellite loci in black bear (Ursus americanus) for use in forensic and population applications. Conservation Genetics 10:693-696
Moritz C (1994) Defining 'evolutionarily significant units' for conservation. Trends in Ecology & Evolution 9:373-375
Murphy MA, Kendall KC, Robinson A, Waits LP (2007) The impact of time and field conditions on brown bear (Ursus arctos) faecal DNA amplification. Conservation Genetics 8:1219-1224
Murphy MA, Waits LP, Kendall KC, Wasser SK, Higbee JA, Bogden R (2002) An evaluation of long-term preservation methods for brown bear (Ursus arctos) faecal DNA samples. Conservation Genetics 3:435-440
O'Brien SJ, Mayr E (1991) Bureaucratic mischief: recognizing endangered species and subspecies. Science 251:1187-1189
Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology 4:347-354
Paetkau D, Shields GF, Strobeck C (1998) Gene flow between insular, coastal and interior populations of brown bears in Alaska. Molecular Ecology 7:1283-1292
Renan S, Speyer E, Shahar N, Gueta T, Templeton AR, Bar-David S (2012) A factorial design experiment as a pilot study for noninvasive genetic sampling. Molecular Ecology Resources 12:1040-1047
Roon DA, Waits LP, Kendall KC (2003) A quantitative evaluation of two methods for preserving hair samples. Molecular Ecology Notes 3:163-166
Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends in Ecology & Evolution 1:9-10
Sanderlin JS, Faircloth BC, Shamblin B, Conroy MJ (2009) Tetranucleotide microsatellite loci from the black bear (Ursus americanus). Molecular Ecology Resources 9:288-291
Servheen C, Herrero S, Peyton B, Pelletier K, Moll K, Moll J (1999) Bears: status survey and conservation action plan. IUCN, Gland, Switzerland
Stenglein JL, M DB, Ausband DE, Waits LP (2010) Impacts of sampling location within a faeces on DNA quality in two carnivore species. Molecular Ecology Resources 10:109-114
Taberlet P, Camarra JJ, Griffin S, UhrÈS E, Hanotte O, Waits LP, Dubois-Paganon C, Burke T, Bouvet J (1997) Noninvasive genetic tracking of the endangered Pyrenean brown bear population. Molecular Ecology 6:869-876
Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends in Ecology & Evolution 14:323-327
Van Dike F (2008a) Genetic diversity – understanding conservation at genetic levels. In: Van Dike F (ed) Conservation biology: foundations, concepts, applications. Springer Science and Business Media, Berlin/Heidelberg, pp 153-184
Van Dike F (2008b) Genetic management – managing genetic diversity for conservation goals. In: Van Dike F (ed) Conservation biology: foundations, concepts, applications. Springer Science and Business Media, Berlin/Heidelberg, pp 185-211
Waits LP, Sullivan J, O'Brien SJ, Ward RH (1999) Rapid radiation events in the family Ursidae indicated by likelihood phylogenetic estimation from multiple fragments of mtDNA. Molecular Phylogenetics and Evolution 13:82-92
Wang Y (1990) The current status of Formosan black bear in Taiwan. Bears: Their Biology and Management 8:1-4
Wang Y (1999) Status and management of the Formosan black bear in Taiwan. In: Servheen C, Herrero C, Peyton B (eds) Bears: status survey and conservation action plan. IUCN, Gland, Switzerland, pp 213-215
Wozencraft WC (2005) Order Carnivora. In: Wilson DE, Reeder DM (eds) Mammal species of the world: a taxonomic and geographic reference, 3 edn. John Hopkins University Press, Baltimore, pp 532-628
Wu H, Zhang S-N, Wei F-W (2010) Twelve novel polymorphic microsatellite loci developed from the Asiatic black bear (Ursus thibetanus). Conservation Genetics 11:1215-1217
Wu J, Kohno N, Mano S, Fukumoto Y, Tanabe H, Hasegawa M, Yonezawa T (2015) Phylogeographic and demographic analysis of the Asian black bear (Ursus thibetanus) based on mitochondrial DNA. PLoS ONE 10:e0136398
(Chapter 2)
Boutin-Ganache I, Raposo M, Raymond M, Deschepper CF (2001) M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. Biotechniques 31:24–28
Hsu Y-C, Severinghaus LL, Lin Y-S, Li S-H (2003) Isolation and characterization of microsatellite DNA markers from the Lanyu scops owl (Otus elegans botelensis). Mol Ecol Notes 3:595-597
Hwang M-H, Wang Y (2006) The status and management of Asiatic black bears in Taiwan. In: Yamazaki K (ed) Understanding Asian bears to secure their future. Japan Bear Network, Japan, pp 107-110
Kitahara E, Isagi Y, Ishibashi Y, Saitoh T (2000) Polymorphic microsatellite DNA markers in the Asiatic black bear Ursus thibetanus. Mol Ecol 9:1661-1662
Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655
Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347-354
Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J of Hered 86:248–249
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, USA
Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18(2):233–234
Taberlet P, Camarra JJ, Griffin S et al (1997) Noninvasive genetic tracking of the endangered Pyrenean brown bear population. Mol Ecol 6:869-876
van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535-538
Wang Y (1999) Status and management of the Formosan black bear in Taiwan. In: Servheen C, Herrero C, Peyton B (eds) Bears: status survey and conservation action plan. IUCN, Gland, Switzerland. pp 213-215
Wozencraft WC (2005) Order Carnivora. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd edn. John Hopkins University Press, Baltimore, pp 532-628

(Chapter 3)
Albaugh GP, Iyengar V, Lohani A, Malayeri M, Bala S, Nair PP (1992) Isolation of exfoliated colonic epithelial cells, a novel, non-invasive approach to the study of cellular markers. International Journal of Cancer 52:347-350
Bayes MK, Smith KL, Alberts SC, Altmann J, Bruford MW (2000) Testing the reliability of microsatellite typing from faecal DNA in the savannah baboon. Conservation Genetics 1:173-176
Beja-Pereira A, Oliveira R, Alves PC, Schwartz MK, Luikart G (2009) Advancing ecological understandings through technological transformations in noninvasive genetics. Molecular Ecology Resources 9:1279-1301
Berger A, Bruschek M, Grethen C, Sperl W, Kofler B (2001) Poor storage and handling of tissue mimics mitochondrial DNA depletion. Diagnostic Molecular Pathology 10:55-59
Broquet T, Ménard N, Petit E (2007) Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates. Conservation Genetics 8:249-260
Buchan JC, Archie EA, Van Horn RC, Moss CJ, Alberts SC (2005) Locus effects and sources of error in noninvasive genotyping. Molecular Ecology Notes 5:680-683
De Barba M, Waits LP, Garton EO, Genovesi P, Randi E, Mustoni A, Groff C (2010) The power of genetic monitoring for studying demography, ecology and genetics of a reintroduced brown bear population. Molecular Ecology 19:3938-3951
DeMay SM, Becker PA, Eidson CA, Rachlow JL, Johnson TR, Waits LP (2013) Evaluating DNA degradation rates in faecal pellets of the endangered pygmy rabbit. Molecular Ecology Resources 13:654-662
Farrell LE, Roman J, Sunquist ME (2000) Dietary separation of sympatric carnivores identified by molecular analysis of scats. Molecular Ecology 9:1583-1590
Flagstad Ø, Røed K, Stacy JE, Jakobsen SK (1999) Reliable noninvasive genotyping based on excremental PCR of nuclear DNA purified with a magnetic bead protocol. Molecular Ecology 8:879-883
Foran DR (2006) Relative degradation of nuclear and mitochondrial DNA: an experimental approach. Journal of Forensic Sciences 51:766-770
Frantzen MAJ, Silk JB, Ferguson JWH, Wayne RK, Kohn MH (1998) Empirical evaluation of preservation methods for faecal DNA. Molecular Ecology 7:1423-1428
Hoffman JI, Amos W (2005) Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion. Molecular Ecology 14:599-612
Hung C-M, Li S-H, Lee L-L (2004) Faecal DNA typing to determine the abundance and spatial organisation of otters (Lutra lutra) along two stream systems in Kinmen. Animal Conservation 7:301-311
Hwang M-H, Garshelis DL (2007) Activity patterns of Asiatic black bears (Ursus thibetanus) in the Central Mountains of Taiwan. Journal of Zoology 271:203-209
Hwang M-H, Garshelis DL, Wang Y (2002) Diet of Asiatic black bears in Taiwan, with methodological and graphical comparison. Ursus 13:111-125
Hwang M-H, Garshelis DL, Wu Y-H, Wang Y (2010) Home ranges of Asiatic black bears in the Central Mountains of Taiwan: Gauging whether a reserve is big enough. Ursus 21:81-96
Hwang M-H, Wang Y (2006) The status and management of Asiatic black bears in Taiwan. In: Yamazaki K (ed) Understanding Asian bears to secure their future. Japan Bear Network, Japan, pp 107-110
Ishibashi Y, Saitoh T (2004) Phylogenetic relationships among fragmented Asian black bear (Ursus Thibetanus) populations in western Japan. Conservation Genetics 5:311-323
Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences 86:6196-6200
Lucchini V, Fabbri E, Marucco F, Ricci S, Boitani L, Randi E (2002) Noninvasive molecular tracking of colonizing wolf (Canis lupus) packs in the western Italian Alps. Molecular Ecology 11:857-868
Matsuhashi T, Masuda R, Mano T, Yoshida MC (1999) Microevolution of the mitochondrial DNA control region in the Japanese brown bear (Ursus arctos) population. Molecular Biology and Evolution 16:676-684
Michalski F, Valdez FP, Norris D, Zieminski C, Kashivakura CK, Trinca CS, Smith HB, Vynne C, Wasser SK, Metzger JP, Eizirik E (2011) Successful carnivore identification with faecal DNA across a fragmented Amazonian landscape. Molecular Ecology Resources 11:862-871
Murphy MA, Kendall KC, Robinson A, Waits LP (2007) The impact of time and field conditions on brown bear (Ursus arctos) faecal DNA amplification. Conservation Genetics 8:1219-1224
Murphy MA, Waits LP, Kendall KC (2000) Quantitative evaluation of fecal drying methods for brown bear DNA analysis. Wildlife Society Bulletin 28:951-957
Murphy MA, Waits LP, Kendall KC (2003) The influence of diet on faecal DNA amplification and sex identification in brown bears (Ursus arctos). Molecular Ecology 12:2261-2265
Murphy MA, Waits LP, Kendall KC, Wasser SK, Higbee JA, Bogden R (2002) An evaluation of long-term preservation methods for brown bear (Ursus arctos) faecal DNA samples. Conservation Genetics 3:435-440
Nsubuga AM, Robbins MM, Roeder AD, Morin PA, Boesch C, Vigilant L (2004) Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method. Molecular Ecology 13:2089-2094
Panasci M, Ballard WB, Breck S, Rodriguez D, Densmore LD, Wester DB, Baker RJ (2011) Evaluation of fecal DNA preservation techniques and effects of sample age and diet on genotyping success. The Journal of Wildlife Management 75:1616-1624
Parsons KM, Dallas JF, Claridge DE, Durban JW, Balcomb III KC, Thompson PM, Noble LR (1999) Amplifying dolphin mitochondrial DNA from faecal plumes. Molecular Ecology 8:1766-1768
Piggott MP (2004) Effect of sample age and season of collection on the reliability of microsatellite genotyping of faecal DNA. Wildlife Research 31:485-493
Piggott MP, Bellemain E, Taberlet P, Taylor AC (2004) A multiplex pre-amplification method that significantly improves microsatellite amplification and error rates for faecal DNA in limiting conditions. Conservation Genetics 5:417-420
Piggott MP, Taylor AC (2003) Remote collection of animal DNA and its applications in conservation management and understanding the population biology of rare and cryptic species. Wildlife Research 30:1-13
Renan S, Speyer E, Shahar N, Gueta T, Templeton AR, Bar-David S (2012) A factorial design experiment as a pilot study for noninvasive genetic sampling. Molecular Ecology Resources 12:1040-1047
Roon DA, Waits LP, Kendall KC (2003) A quantitative evaluation of two methods for preserving hair samples. Molecular Ecology Notes 3:163-166
Santini A, Lucchini V, Fabbri E, Randi E (2007) Ageing and environmental factors affect PCR success in wolf (Canis lupus) excremental DNA samples. Molecular Ecology Notes 7:955-961
Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends in Ecology & Evolution 22:25-33
Shih C-C, Huang C-C, Li S-H, Hwang M-H, Lee L-L (2009) Ten novel tetranucleotide microsatellite DNA markers from Asiatic black bear, Ursus thibetanus. Conservation Genetics 10:1845-1847
Sloane MA, Sunnucks P, Alpers D, Beheregaray LB, Taylor AC (2000) Highly reliable genetic identification of individual northern hairy-nosed wombats from single remotely collected hairs: a feasible censusing method. Molecular Ecology 9:1233-1240
Soto-Calderon ID, Ntie S, Mickala P, Maisels F, Wickings EJ, Anthony NM (2009) Effects of storage type and time on DNA amplification success in tropical ungulate faeces. Molecular Ecology Resources 9:471-479
Stenglein JL, M DB, Ausband DE, Waits LP (2010) Impacts of sampling location within a faeces on DNA quality in two carnivore species. Molecular Ecology Resources 10:109-114
Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends in Ecology & Evolution 14:323-327
Valiere N, Taberlet P (2000) Urine collected in the field as a source of DNA for species and individual identification. Molecular Ecology 9:2150-2152
Vallet D, Petit EJ, Gatti S, Levréro F, Ménard N (2008) A new 2CTAB/PCI method improves DNA amplification success from faeces of Mediterranean (Barbary macaques) and tropical (lowland gorillas) primates. Conservation Genetics 9:677-680
Vigilant L (1999) An evaluation of techniques for the extraction and amplification of DNA from naturally shed hairs. Biological Chemistry 380:1329-1331
Vigilant L, Hofreiter M, Siedel H, Boesch C (2001) Paternity and relatedness in wild chimpanzee communities. Proceedings of the National Academy of Sciences 98:12890-12895
Vynne C, Baker MR, Breuer ZK, Wasser SK, Reed D (2012) Factors influencing degradation of DNA and hormones in maned wolf scat. Animal Conservation 15:184-194
Waits LP, Paetkau D (2005) Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. The Journal of Wildlife Management 69:1419-1433
Waits LP, Sullivan J, O'Brien SJ, Ward RH (1999) Rapid radiation events in the family ursidae indicated by likelihood phylogenetic estimation from multiple fragments of mtDNA. Molecular Phylogenetics and Evolution 13:82-92
Wasser SK, Houston CS, Koehler GM, Cadd GG, Fain SR (1997) Techniques for application of faecal DNA methods to field studies of Ursids. Molecular Ecology 6:1091-1097
Wasser SK, Keim JL, Taper ML, Lele SR (2011) The influences of wolf predation, habitat loss, and human activity on caribou and moose in the Alberta oil sands. Frontiers in Ecology and the Environment 9:546-551
Woods JG, Paetkau D, Lewis D, McLellan BN, Proctor M, Strobeck C (1999) Genetic tagging of free-ranging black and brown bears. Wildlife Society Bulletin 27:616-627
Wozencraft WC (2005) Order Carnivora. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: A Taxonomic and Geographic Reference, 3 edn. John Hopkins University Press, Baltimore, pp 532-628
(Chapter 4)
Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics 18:489-522
Choi E-H, Kim S-K, Ryu S-H, Jang K-H, Hwang U-W (2010) Mitochondrial genome phylogeny among Asiatic black bear Ursus thibetanus subspecies and comprehensive analysis of their control regions. Mitochondrial DNA 21:105-114
Chu J-H, Wu H-Y, Lin Y-S (2000) A preliminary result inferred from mitochondrial DNA sequences of black bears (Selenarctos thibetanus) in Taipei Zoo. Taipei Zoo Bulletin 12:25-34
CITES (2017) CITES Appendices I, II and III (valid from 4 October 2017). https://cites.org/sites/default/files/eng/app/2017/E-Appendices-2017-10-04.pdf.
Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends in Ecology & Evolution 15:290-295
Delisle I, Strobeck C (2002) Conserved primers for rapid sequencing of the complete mitochondrial genome from carnivores, applied to three species of bears. Molecular Biology and Evolution 19:357-361
Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4:359-361
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14:2611-2620
Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567-1587
Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge, UK
Garshelis DL, Steinmetz R (2016) Ursus thibetanus. (errata version published in 2017) The IUCN Red List of Threatened Species 2016: e.T22824A114252336. http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22824A45034242.en. Downloaded on 24 June 2017
Hedmark E, Ellegren H (2006) A test of the multiplex pre-amplification approach in microsatellite genotyping of wolverine faecal DNA. Conservation Genetics 7:289-293
Heptner VG, Naumov NP, Yurgenson PB, Sludskii AA, Chirkova AF, Bannikov AG (1998) White-chested, black bear. In: Hoffmann RS (ed) Mammals of the Soviet Union Vol II Part 1a, Sirenia and Carnivora (Sea cows; Wolves and Bears). Smithsonian Insitution Libraries and The National Science Foundation, Washington, D.C., USA, pp 713-733
Hu J-C (1995) The bear resource and its protection in southwest China. Journal of Sichuan Teachers College (Natural Science) 16:273-277
Hung C-M, Li S-H, Lee L-L (2004) Faecal DNA typing to determine the abundance and spatial organisation of otters (Lutra lutra) along two stream systems in Kinmen. Animal Conservation 7:301-311
Hwang D-S, Ki J-S, Jeong D-H, Kim B-H, Lee B-K, Han S-H, Lee J-S (2008) A comprehensive analysis of three Asiatic black bear mitochondrial genomes (subspecies ussuricus, formosanus and mupinensis), with emphasis on the complete mtDNA sequence of Ursus thibetanus ussuricus (Ursidae). DNA Sequence 19:418-429
Hwang M-H, Wang Y (2006) The status and management of Asiatic black bears in Taiwan. In: Yamazaki K (ed) Understanding Asian bears to secure their future. Japan Bear Network, Japan, pp 107-110
Ishibashi Y, Saitoh T (2004) Phylogenetic relationships among fragmented Asian black bear (Ursus Thibetanus) populations in western Japan. Conservation Genetics 5:311-323
Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16:1099-1106
Kim Y-K, Hong Y-J, Min M-S, Kim KS, Kim Y-J, Voloshina I, Myslenkov A, Smith GJD, Cuong ND, Tho HH, Han S-H, Yang D-H, Kim C-B, Lee H (2011) Genetic status of Asiatic black bear (Ursus thibetanus) reintroduced into south Korea based on mitochondrial DNA and microsatellite loci analysis. Journal of Heredity 102:165-174
Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120
Kitahara E, Isagi Y, Ishibashi Y, Saitoh T (2000) Polymorphic microsatellite DNA markers in the Asiatic black bear Ursus thibetanus. Molecular Ecology 9:1661-1662
Kitchener AC (2010) Taxonomic issues in bears: impacts on conservation in zoos and the wild, and gaps in current knowledge. International Zoo Yearbook 44:33-46
Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences 86:6196-6200
Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870-1874
Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451-1452
Luo S-J, Kim J-H, Johnson WE, van der Walt J, Martenson J, Yuhki N, Miquelle DG, Uphyrkina O, Goodrich JM, Quigley HB, Tilson R, Brady G, Martelli P, Subramaniam V, McDougal C, Hean S, Huang S-Q, Pan W, Karanth UK, Sunquist M, Smith JLD, O'Brien SJ (2004) Phylogeography and genetic ancestry of tigers (Panthera tigris). PLoS Biology 2:e442
Matsuhashi T, Masuda R, Mano T, Yoshida MC (1999) Microevolution of the mitochondrial DNA control region in the Japanese brown bear (Ursus arctos) population. Molecular Biology and Evolution 16:676-684
Moritz C (1994) Defining 'evolutionarily significant units' for conservation. Trends in Ecology & Evolution 9:373-375
O'Brien SJ, Mayr E (1991) Bureaucratic mischief: recognizing endangered species and subspecies. Science 251:1187-1189
Ohnishi N, Uno R, Ishibashi Y, Tamate HB, Oi T (2009) The influence of climatic oscillations during the Quaternary Era on the genetic structure of Asian black bears in Japan. Heredity 102:579-589
Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology 4:347-354
Parsons KM, Dallas JF, Claridge DE, Durban JW, Balcomb III KC, Thompson PM, Noble LR (1999) Amplifying dolphin mitochondrial DNA from faecal plumes. Molecular Ecology 8:1766-1768
Posada D (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25:1253-1256
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945-959
Raymond M, Rousset F (1995) Genepop (version 1.2), population genetics software for exact tests and ecumenicism. The Journal of Heredity 86:248-249
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574
Rousset F (2008) GENEPOP’007: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources 8:103-106
Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends in Ecology & Evolution 1:9-10
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, USA
Servheen C, Herrero S, Peyton B, Pelletier K, Moll K, Moll J (1999) Bears: status survey and conservation action plan. IUCN, Gland, Switzerland
Shih C-C, Huang C-C, Li S-H, Hwang M-H, Lee L-L (2009) Ten novel tetranucleotide microsatellite DNA markers from Asiatic black bear, Ursus thibetanus. Conservation Genetics 10:1845-1847
Shih C-C, Wu S-L, Hwang M-H, Lee L-L (2017) Evaluation on the effects of ageing factor, sampling and preservation methods on Asiatic black bear (Ursus thibetanus) noninvasive DNA amplification. Taiwania 62:363-370
Swofford DL (2002) Paup*: Phylogenetic analysis using parsimony (*and other methods) verson 4.0.b10. Sinauer Associates, Sunderland, Massachusetts
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4:535-538
Wang Y (1990) The current status of Formosan black bear in Taiwan. Bears: Their Biology and Management 8:1-4
Wang Y (1999) Status and management of the Formosan black bear in Taiwan. In: Servheen C, Herrero C, Peyton B (eds) Bears: status survey and conservation action plan. IUCN, Gland, Switzerland, pp 213-215
Wozencraft WC (2005) Order Carnivora. In: Wilson DE, Reeder DM (eds) Mammal species of the world: a taxonomic and geographic reference, 3 edn. John Hopkins University Press, Baltimore, pp 532-628
Wu J, Kohno N, Mano S, Fukumoto Y, Tanabe H, Hasegawa M, Yonezawa T (2015) Phylogeographic and demographic analysis of the Asian black bear (Ursus thibetanus) based on mitochondrial DNA. PLoS ONE 10:e0136398
Yasukochi Y, Nishida S, Han S-H, Kurosaki T, Yoneda M, Koike H (2009) Genetic structure of the Asiatic black bear in Japan using mitochondrial DNA analysis. Journal of Heredity 100:297-308
Yu L, Li Y-W, Ryder OA, Zhang Y-P (2007) Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation. BMC Evolutionary Biology 7:198
(Chapter 5)
Chen Y-L, Yang C-C (2002) Mitochondrial DNA-sequences of wild and captive Asian black bears (Ursus thibetanus Cuvier) in Taiwan. Endemic Species Research 4:73-77
Chu J-H, Wu H-Y, Lin Y-S (2000) A preliminary result inferred from mitochondrial DNA sequences of black bears (Selenarctos thibetanus) in Taipei Zoo. Taipei Zoo Bulletin 12:25-34
Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567-1587
Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge, UK
Hwang M-H, Wang Y (2006) The status and management of Asiatic black bears in Taiwan. In: Yamazaki K (ed) Understanding Asian bears to secure their future. Japan Bear Network, Japan, pp 107-110
Ishibashi Y, Saitoh T (2004) Phylogenetic relationships among fragmented Asian black bear (Ursus Thibetanus) populations in western Japan. Conservation Genetics 5:311-323
IUCN (1987) The IUCN policy statement on captive breeding. IUCN (World Conservation Union) Gland, Switzerland
Kitchener AC (2010) Taxonomic issues in bears: impacts on conservation in zoos and the wild, and gaps in current knowledge. International Zoo Yearbook 44:33-46
Matsuhashi T, Masuda R, Mano T, Yoshida MC (1999) Microevolution of the mitochondrial DNA control region in the Japanese brown bear (Ursus arctos) population. Molecular Biology and Evolution 16:676-684
O'Brien SJ, Joslin P, Smith GL, Wolfe R, Schaffer N, Heath E, Ott‐Joslin J, Rawal PP, Bhattacharjee KK, Martenson JS (1987) Evidence for African origins of founders of the Asiatic lion species survival plan. Zoo Biology 6:99-116
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945-959
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574
Shih C-C, Huang C-C, Li S-H, Hwang M-H, Lee L-L (2009) Ten novel tetranucleotide microsatellite DNA markers from Asiatic black bear, Ursus thibetanus. Conservation Genetics 10:1845-1847
Shih C-C, Wu S-L, Hwang M-H, Lee L-L (2017) Evaluation on the effects of ageing factor, sampling and preservation methods on Asiatic black bear (Ursus thibetanus) noninvasive DNA amplification. Taiwania 62:363-370
Swofford DL (2002) Paup*: Phylogenetic analysis using parsimony (*and other methods) verson 4.0.b10. Sinauer Associates, Sunderland, Massachusetts
Wang Y (1990) The current status of Formosan black bear in Taiwan. Bears: Their Biology and Management 8:1-4
Wang Y (1999) Status and management of the Formosan black bear in Taiwan. In: Servheen C, Herrero C, Peyton B (eds) Bears: status survey and conservation action plan. IUCN, Gland, Switzerland, pp 213-215
WAZA (2005) Building a future for wildlife - the world zoo and aquarium conservation strategy. WAZA Executive Office, Bern, Switzerland
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/1294-
dc.description.abstract臺灣黑熊(Ursus thibetanus formosanus)是亞洲黑熊(U. thibetanus)分布於臺灣的特有亞種。臺灣黑熊的族群數量與分布範圍因為棲地的縮減、破碎化及獵捕而持續減少,分布於其他地理區域的亞洲黑熊也遭遇同樣的生存威脅。為了建立適當的保育策略,我們必須優先了解這個物種在族群內與族群間的遺傳多樣性與親緣關係。由於不同地理區的亞洲黑熊亞種間外表型態的差異並不明顯,難以利用表型的差異來區分,這樣的研究資料更顯得重要。
本研究主要的目的是釐清臺灣黑熊與其他地區亞洲黑熊的遺傳變異程度與親緣關係,以了解臺灣黑熊族群的遺傳定位與分化狀況。論文有四項主要的工作,首先是篩選適當的亞洲黑熊微衛星體基因座分子標記;其次是量化評估黑熊毛髮與排遺樣本在不同採樣時間與保存方法下DNA萃取的成功率,以建立黑熊樣本採集與保存的標準作業流程;接著利用粒線體DNA控制區域及篩選出的微衛星體分子標記進行臺灣黑熊與其他地區亞洲黑熊的遺傳分析;最後也利用同樣遺傳方法釐清臺灣地區圈養黑熊的遺傳狀況。
論文首先自33個具有微衛星體基因座的臺灣黑熊DNA序列中,篩選出10個具有專一性及多型性的4重複序列微衛星體分子標記。量化評估黑熊毛髮與排遺採樣與保存方法的結果,顯示了在亞熱帶環境下,DNA增幅的成功率隨樣本放置於野外的時間及增幅標的DNA的長度增加而下降;但採集排遺內外不同位置並不影響排遺樣本中DNA增幅的成功率。另外,浸泡酒精的排遺樣本於採集後有否進行冷凍保存處理,對一週內樣本小片段DNA的增幅沒有影響,但將影響長片段DNA的增幅效果。粒線體DNA控制區域部分序列的遺傳分析結果顯示,日本黑熊與臺灣黑熊形成兩個單系群;東北黑熊在與西南黑熊混雜的支序中自成一群;而東南亞的西藏黑熊樹型複雜、並未形成單系群。微衛星體分子標記的遺傳結構分析顯示,臺灣黑熊、西南黑熊、東北黑熊與東南亞的西藏黑熊這4個黑熊亞種各自分群。最後,針對圈養黑熊的遺傳分析顯示,7隻圈養黑熊具有臺灣黑熊獨特的粒線體單型,其中3個體的微衛星體分析確認其臺灣黑熊的亞種分類。
本研究的結果提供了亞洲黑熊亞種鑑別與擬定保育管理單位的明確基礎,並可做為臺灣黑熊保育與經營管理重要的參考資料。
zh_TW
dc.description.abstractThe Formosan black bear (Ursus thibetanus formosanus) is an endemic subspecies of the Asiatic black bear (U. thibetanus) inhabiting Taiwan. Habitat degradation and fragmentation, as well as poaching have caused a decrease in its population and distribution. Similar threats to populations of Asian black bears have taken place elsewhere in their range. To establish proper conservation strategies for the species, a priority research is to reconstruct its evolutionary history and examine genetic diversity within and among its populations, especially when identification of Asiatic black bear subspecies by morphological characters is vague and controversial.
The objectives of my study were to apply molecular techniques to delineate the phylogenetic relationships of Formosan black bears and other subspecies, and to assess genetic status of the Formosan black bears. My dissertation included 4 major aspects. The first part was to select appropriate microsatellite genetic markers for genetic analyses of Asiatic black bears. The second part was to quantitatively evaluate the effects of sample age and storage techniques on success rates of DNA extraction from various types of samples, i.e. bear hair and feces. Such results would facilitate the development of standard operation procedures for collection and storage of these samples before analysis. Thirdly, I applied the mitochondrial DNA control region and microsatellite markers developed in this study as genetic markers to delineate the phylogenetic relationship and genetic status of Formosan black bears and Asiatic black bears from other areas. Lastly, the same genetic analyses were conducted in captive bears to reveal the genetic ancestry of captive Asiatic black bears in Taiwan.
In my study, ten polymorphic microsatellite markers were developed for the Formosan black bear from a partial genomic library enriched for GAAA repeat and were used to examine the polymorphism in bear populations. The evaluation results showed that the amplification success rates decreased with sample age and amplicon size in both hair and faecal DNA, but did not show differences among different sampling locations of faeces in subtropical Taiwan. The immediate freezing of ethanol-soaked faecal samples in the field were not so critical in affecting DNA quality of short fragments from samples collected within a week but the effect of immediate freezing was significant for longer mtDNA fragments. The mitochondrial DNA analyses indicated that the Japanese black bears (U. thibetanus japonicus) and the Formosan black bears (U. thibetanus formosanus) formed two distinct clades. The northeastern Asia population (U. thibetanus ussuricus) formed a group within the clade containing a mixture of bears from southwestern China (U. thibetanus mupinensis). And the bears from southeastern Asia were not monophyletic. In addition, the population structure analysis of tetramicrosatellite loci showed a clear subdivision scenario of U. thibetanus formosanus, U. thibetanus mupinensis, U. thibetanus ussuricus, and U. thibetanus thibetanus. Finally, in the results of captive bear analyses, seven captive bears of unknown origin showed the unique mtDNA haplotypes of the Formosan black bear. And three of them were verified as the Formosan black bear subspecies according to microsatellite data.
The results of this study have provided an explicit basis for subspecies identification for Asiatic black bears and important information for conservation and management of Formosan black bears.
en
dc.description.provenanceMade available in DSpace on 2021-05-12T09:35:43Z (GMT). No. of bitstreams: 1
ntu-107-D94b44002-1.pdf: 12743710 bytes, checksum: 05576c04a14ff7464d45b753b71e8140 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsTable of Contents
誌謝 i
摘要 iv
Abstract vi
Chapter 1 Overview of the dissertation 1
1.1 Overview of the dissertation 1
1.2 References 9
Chapter 2 Ten novel tetranucleotide microsatellite DNA markers from Asiatic black bear, Ursus thibetanus 15
2.1 Abstract 15
2.2 Introduction and methods 15
2.3 Results and discussions 17
2.4 References 18
Tables 21
Chapter 3 Evaluation on the effects of ageing factor, sampling and preservation methods on Asiatic black bear (Ursus thibetanus) noninvasive DNA amplification 22
3.1 Abstract 22
3.2 Introduction 23
3.3 Materials and methods 28
3.3.1 Experiment design, sample collection and preservation 28
3.3.2 DNA extraction and PCR amplification 29
3.3.3 Data analyses 31
3.4 Results 32
3.4.1 Influence of faecal sampling locations 32
3.4.2 Influence of preservation methods, age of faecal samples and amplicon size 33
3.4.3 Influence of hair age and amplicon size 34
3.5 Discussions 35
3.6 References 41
Figures 49
Tables 51
Chapter 4 Genetic comparison and subspecies delineation of the Asiatic black bears (Ursus thibetanus) and their conservation implications 53
4.1 Abstract 53
4.2 Introduction 54
4.3 Materials and methods 59
4.3.1 Sample collection and genomic DNA extraction 59
4.3.2 mtDNA DNA amplification and sequencing 61
4.3.3 Microsatellite Genotyping 63
4.3.4 Data analysis 64
4.4 Results 67
4.4.1 Genetic diversity of the mtDNA control region 67
4.4.2 Genetic distance of subspecies 69
4.4.3 Phylogenetic relationship of mtDNA haplotypes 69
4.4.4 Genetic diversity of microsatellite loci 70
4.4.5 Subdivision of subspecies from STRUCTURE 71
4.5 Discussions 72
4.6 References 77
Figures 85
Tables 93
Chapter 5 Genetic status of captive Asiatic black bears in Taiwan and the conservation implication of ex situ population management 101
5.1 Abstract 101
5.2 Introduction 101
5.3 Materials and methods 104
5.3.1 Sample collection and DNA extraction 104
5.3.2 mtDNA sequencing and Microsatellite Genotyping 105
5.3.3 Data analysis 105
5.3.4 Subspecies assignment 106
5.4 Results 107
5.5 Discussions 109
5.6 References 111
Figures 114
Tables 118
Appendix Publications 122
A. Shih C-C, Huang C-C, Li S-H, Hwang M-H, Lee L-L (2009) Ten novel tetranucleotide microsatellite DNA markers from Asiatic black bear, Ursus thibetanus. Conservation Genetics 10:1845-1847 122
B. Shih C-C, Wu S-L, Hwang M-H, Lee L-L (2017) Evaluation on the effects of ageing factor, sampling and preservation methods on Asiatic black bear (Ursus thibetanus) noninvasive DNA amplification. Taiwania 62:363-370 126
dc.language.isoen
dc.subject粒線體DNAzh_TW
dc.subject臺灣黑熊zh_TW
dc.subject遺傳親緣zh_TW
dc.subject微衛星體zh_TW
dc.subject非侵入式採樣zh_TW
dc.subject域外保育zh_TW
dc.subjectex situ conservationen
dc.subjectphylogenetic relationshipen
dc.subjectFormosan black bearen
dc.subjectmitochondrial DNAen
dc.subjectmicrosatelliteen
dc.subjectnoninvasive genetic samplingen
dc.title臺灣黑熊(Ursus thibetanus formosanus)之保育遺傳研究zh_TW
dc.titleConservation genetics of Formosan black bears(Ursus thibetanus formosanus)en
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.oralexamcommittee王穎,李壽先,黃美秀,洪志銘
dc.subject.keyword臺灣黑熊,遺傳親緣,非侵入式採樣,域外保育,粒線體DNA,微衛星體,zh_TW
dc.subject.keywordFormosan black bear,phylogenetic relationship,noninvasive genetic sampling,ex situ conservation,mitochondrial DNA,microsatellite,en
dc.relation.page134
dc.identifier.doi10.6342/NTU201800373
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-02-08
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf12.45 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved