請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1240完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張樹城 | |
| dc.contributor.author | Po-Chieh Chen | en |
| dc.contributor.author | 陳柏傑 | zh_TW |
| dc.date.accessioned | 2021-05-12T09:34:44Z | - |
| dc.date.available | 2018-05-31 | |
| dc.date.available | 2021-05-12T09:34:44Z | - |
| dc.date.copyright | 2018-05-31 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-05-23 | |
| dc.identifier.citation | [1] S. Brendle, Ricci flow and the sphere theorem. Graduate Studies in Mathematics, 111. American Mathematical Society, Providence, RI, 2010
[2] R. Hamiltom, Four-manifolds with positive curvature operator, J. Diff. Geom. 24, 153 - 179 (1988) [3] M.MicallefandM.Wang,Metricswithnonnegativeisotropiccurvature,DukeMath. J. 72, 649-672 (1993) [4] M. Micallef and J.D. Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math (2) 127, 199- 227 (1998) [5] R. Hamiltom, Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17, 255 - 306 (1982) [6] S. Brendle and R. Schoen, Manifolds withe 1/4-pinched curvature are space forems, J. Amer. Math. Soc. 22, 287-307 (2009) [7] M.Berger, Sur quelques variétés riemanniennes suffisamment pincées, Bull. Soc. Math. France 88, 57-71 (1960) [8] S. Brendle, A general convergeenc result for the Ricci flow, Duke Math. J. 145, 585- 601 (2008) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/1240 | - |
| dc.description.abstract | 在黎曼幾何中,一個令人關切的問題是如何分類有正截曲率 的流形。在 1951 年,H.E. Rauch 介紹了 curvature pinch 這個 想法,並提出如果一個簡單連通的流形他的截曲率都界在 (1, 4] 之間,那是否同胚於一個 n 維球。這問題在 1960 年,被 M.Berger 和 W. Klingenberg 利用比較技巧解決了。而之後留 下了另一個問題是這種流形是否會微分同胚於一個 n 維球, 這猜想又稱為可微分球定理。本文主要是在整理 S. Brendle 和 R. Schoen 在 2009 年利用 Hailton's Ricci flow 解決可微分球定 理的工作。 | zh_TW |
| dc.description.abstract | A central problem in Riemannian geometry concerns the classification of manifolds of positive sectional curvature. In 1951, H.E. Rauch introduced the notion of curvature pinching for Riemannian manifolds and posed the question of whether a simply connected manifold M^n whose sectional curvatures all lie in the interval (1, 4] is necessarily home- omorphic to the sphere S^n. This was proven by using comparison techniques due to M. Berger and W. Klingenberg around 1960. However, this theorem leaves open the ques- tion of whether M is diffeomorphic to Sn. This conjecture is known as the Differentiable Sphere Theorem. The goal of this survey is to present this work via Hamilton's Ricci flow due to S. Brendle and R. Schoen around 2009. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-12T09:34:44Z (GMT). No. of bitstreams: 1 ntu-107-R02221004-1.pdf: 1220439 bytes, checksum: 913d505aae82824e21fc632dab22e414 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii 英文摘要 iv 1 Introduction 1 2 Preliminary and Background Knowledge 1 3 Hamilton's convergence criterion 4 4 Curvature Pinching in Dimension Three 10 5 1/4-pinched Differentiable Sphere Theorem 13 6 An Improved Convergence Theroem 17 參考文獻 19 | |
| dc.language.iso | en | |
| dc.subject | 瑞曲流 | zh_TW |
| dc.subject | 可微分球定理 | zh_TW |
| dc.subject | Differentiable Sphere Theorem | en |
| dc.subject | Ricci Flow | en |
| dc.title | 漢米爾頓瑞曲流與可微分球定理 | zh_TW |
| dc.title | A Survey on Hamilton's Ricci Flow and Differentiable Sphere Theorem | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 崔茂培,吳進通 | |
| dc.subject.keyword | 瑞曲流,可微分球定理, | zh_TW |
| dc.subject.keyword | Ricci Flow,Differentiable Sphere Theorem, | en |
| dc.relation.page | 19 | |
| dc.identifier.doi | 10.6342/NTU201800200 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2018-05-24 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf | 1.19 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
