請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10417完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪宏基 | |
| dc.contributor.author | Yu-Tang Huang | en |
| dc.contributor.author | 黃裕堂 | zh_TW |
| dc.date.accessioned | 2021-05-20T21:27:54Z | - |
| dc.date.available | 2010-08-20 | |
| dc.date.available | 2021-05-20T21:27:54Z | - |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-18 | |
| dc.identifier.citation | [1] Muskhelishvili, N.I., Some Basic Problem of the Mathematical Theory of Elasticity,
Noordhooff, Groningen, the Netherlands, 1953. [2] Muskhelishvili, N.I., Einige Grundaufgaben zur mathematischen Elastizit ¨atstheotir, Carl Hanser Verlag, M¨unchen, Germany, 1971. [3] Muskhelishvili, N.I., Singular Integral Equations, Dover, New York, 1953/1990. [4] Ting T.C.T, Anisotropic Elasticity: Theory and Applications, Oxford, 1996. [5] Lekhnitskii S.G., Theory of Elasticity of an Anisotropic Elastic body, olden- Day, 1963. [6] Lekhnitskii S.G., Anisotropic Plates, Gorden and Breach Science Publishers, 1968. [7] Stroh A.N., Dislocatios and cracks in anisotropic elasticity, Philos. Mag, Vol. 3, pp. 625-646, 1958. [8] Stroh A.N., Steady-state problems in anisotropic elasticity, j. Math. Phys., Vol. 41, pp. 77-103, 1962. [9] Tisseur F., Meerbergen K., The Quadratic Eigenvalue Problem, SIAM Review, Vol. 43, No. 2, pp. 235-286, 2001. [10] Wu K.-C., Generalization of the Stroh Formalism to 3-Dimensional Anisotropic Elasticity, Journal of Elasticity, Vol. 51, No. 3, pp. 213-225, 1998. [11] Piltner R., The use of complex valued functions for the solution of threedimensional elasticity problems, Journal of Elasticity, Vol. 18, No. 3, pp. 191- 225, 1986. [12] Piltner R., The Application of a Complex 3-Dimensional Elasticity Solution Representation for the Analysis of a Thick Retangular Plate, Acta Mechanica, Vol. 75, No. 1, pp. 77-91, 1988. [13] Piltner R., The representation of three-dimensional elastic displacement fields with the aid of complex valued function, Journal of Elasticity, Vol. 22, No. 1, pp. 45-55, 1989. [14] Ting T.C.T., Barber J.R., Three-dimensional solution for general anisotropy, Journal of the Mechanics and Physics of Solids, Vol. 55, No. 9, pp. 1993-2006, 2007. [15] Malonek H.R., Ren G., Almansi-type theorems in Clifford analysis, Mathematical Methods in the Applied Sciences, Vol. 25, No. 16-18, pp. 1541-1552, 2002. [16] Bhangele R.K., Ganesan N., Static analysis of simply supported functionally graded and layered magneto-electro-elastic plates, International journal of solids and structures, Vol. 43, No. 10, pp. 3230-3253, 2006. [17] Huang J.H., Kuo W.S., The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions, Journal of Applied Physics, Vol. 81, No. 3, pp. 1378-1386, 1997. [18] 洪宏基, 劉立偉, 林冠甫, 彈塑力問題超複變分析與實驗研究成果報告, 行政院國家科 學委員會專題研究計畫成果報告, NSC 95-2221-E-002-316-MY2, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10417 | - |
| dc.description.abstract | For the two dimentional problem of static anisotropic elasticity, we use a viewpoint of coordinate transformation. As long as we take appropriate coordinate transformation. The general solution will be appear, and not only a coordinate transformation can let general solution appear. In generality, there exist three coordinate transformation which can let general solution appear. Each coordinae transformation get a pair conjugate vector field. Therefore, the general solution of the anisotropic elastic governing equation will be summation of three pair conjugate vector feild. And then we compare above result and Stroh formalism. It is the same. Besides, we can prove the quadratic eigenvalue problem of two method. it is the same. But the method is restricted by two dimentional problem. For the static anisotropic elastic problem, we propose other method. We do twice eigenvalue problem for the fourth order tensor of elastic modulus. And then we can find the orthogonal property in second eigenvalue problem. According to the orthogonal property, we can choose appropriate the form of general solution. The advantage of second method is not restricted by two dimentional problem.
For the problem of dynamic anisotropic elasticity or static anisotropic magneto-electroelasticity, we only rewrite the governing equation. And then, we do singular value decomposition for new fourth order tensor. And then, we do eigenvalue decomposition again. The orthogonal property will be appear. Therefore, we can choose appropriate the form of general solution of dynamic anisotropic elasticity or static anisotropic magneto-electro-elasticity according to the orthogonal property. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T21:27:54Z (GMT). No. of bitstreams: 1 ntu-99-R97521245-1.pdf: 940655 bytes, checksum: 2c97cb96cbbfb63fd619b501c480c969 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii 英文摘要 iii 1 導論 1 1.1 文獻回顧. . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機與目的. . . . . . . . . . . . . . . . . . 1 2 數學基礎 2 2.1 特徵分解. . . . . . . . . . . . . . . . . . . . . 2 2.1.1 譜分解. . . . . . . . . . . . . . . . . . . 3 2.1.2 奇異值分解. . . . . . . . . . . . . . . . . 4 2.2 Stroh 方法. . . . . . . . . . . . . . . . . . . . 4 2.3 複變、四元數及克氏分析. . . . . . . . . . . . . . 6 2.3.1 複變代數及複變分析. . . . . . . . . . . . . 7 2.3.2 四元數代數及四元數分析. . . . . . . . . . . 8 2.3.3 複數四元數. . . . . . . . . . . . . . . . . 9 2.3.4 純四元數及Moisil-Teodorescu 算子. . . . . . 10 2.3.5 簡化四元數及Riesz 算子. . . . . . . . . . . 11 2.3.6 克氏代數及克式分析. . . . . . . . . . . . . 12 2.3.7 克氏代數Cℓ0;n−1 及Cℓ0;n−1 之克式分析. . . 14 2.3.8 克氏代數Cℓ0;n 及在Cℓ0;n 之克氏分析. . . . 15 3 異向性材料之分析 16 3.1 不同觀點下的Stroh 方法. . . . . . . . . . . . . . 16 3.1.1 由座標轉換看Stroh 方法. . . . . . . . . . . 16 3.1.2 由克氏代數Cℓ0;1 分析Stroh 方法 . . . . . . 19 3.1.3 由二維克氏代數Cℓ0;2 分析Stroh 方法 . . . . 19 3.1.4 由二維克氏代數Cℓ2;0 分析Stroh 方法 . . . . 21 3.2 靜態異向性線彈性材料之通解. . . . . . . . . . . . 24 3.2.1 二維等向性線彈性通解. . . . . . . . . . . . 27 3.2.2 三維等向性線彈性通解. . . . . . . . . . . . 32 3.3 動態異向性線彈性材料之通解. . . . . . . . . . . . 42 3.4 異向性電磁彈性材料之通解. . . . . . . . . . . . . 46 4 各層異向性材料分析 51 5 結論 54 參考文獻 56 | |
| dc.language.iso | zh-TW | |
| dc.title | 異向性彈性力學之複變通解初探 | zh_TW |
| dc.title | The preliminary study for complex-valued general solution of anisotropic elasticity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭茂坤,馬劍清 | |
| dc.subject.keyword | 異向性彈性力學,電磁彈異向性彈性力學,克氏分析,複變分析,四元數分析,Stroh方法,二次特徵值問題, | zh_TW |
| dc.subject.keyword | anisotropic elasticity,anisotropic magneto-electro-elasticity,clifford analysis,complex analysis,quaternion analysis,Stroh formalism,quadratic eigenvalue problem, | en |
| dc.relation.page | 57 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2010-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf | 918.61 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
