Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10323
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王昭男
dc.contributor.authorCheng-Wei Linen
dc.contributor.author林正偉zh_TW
dc.date.accessioned2021-05-20T21:20:20Z-
dc.date.available2011-12-10
dc.date.available2021-05-20T21:20:20Z-
dc.date.copyright2010-12-10
dc.date.issued2010
dc.date.submitted2010-11-18
dc.identifier.citation[1] 朱紹鎔譯,'材料力學',東華書局,71年4月
[2] M.K. Yoon, D. Heider, J.W. Gillespie, C.P. Ratcliffe, R.M. Crane, “Local damage detection using the two-dimensional gapped smoothing method,” Journal of Sound and Vibration, Vol. 279, No.1–2, pp.119–139. ,2005
[3] 夏紀真,1988,”無損檢測導論”,勞動部鍋爐壓力容器安全雜誌
[4] Darryll Pines, Liming Salvino, 'Health monitoring of one dimensional structures using empirical mode decomposition and the Hilbert-Huang Transform', Proceedings of SPIE - The International Society for Optical Engineering, vol.4701, pp 127-143, 2002
[5] Darryll Pines, Liming Salvino, 'Structural health monitoring using empirical mode decomposition and the Hilbert phase', Journal of Sound and Vibration, vol.294, no.1-2, pp 97-124, June 27, 2006
[6] J.A. Oliver, J.B. Kosmatka, 'Evaluation of the Hilbert-Huang Transform for Modal-Based Structural Health Monitoring Applications', Proceedings of SPIE - The International Society for Optical Engineering, vol.5767, pp 274-285, 2005
[7] H.G. Chen, Y.J. Yan, J.S. Jiang, 'Vibration-based damage detection in composite wingbox structures by HHT', Mechanical Systems and Signal
Processing, vol.21, no.1, pp 307-321, January 2007
[8] H. Inoue, K. Kishimoto, T. Shibuya, 'Experimental wavelet analysis of flexural waves in beams', Experimental Mechanics, vol.36, no.3, pp 212
-217, Sep 1996
[9] S.T. Quek, Q. Wang, L. Zhang and K.H. Ong, “Practical issues in the detection of damage in beams using wavelets”, Smart Materials and Structures, Vol.10, No.5, pp 1009-1017, 2001
[10] Jiayong Tian, Zheng Li, Xianyue Su, 'Crack detection in beams by wavelet analysis of transient flexural waves', Journal of Sound and Vibration, vol.261, no.4, pp 715-727, April 3, 2003
[11] S.T. Quek, P.S. Tua, Q. Wang, 'Detecting anomalies in beams and plate based on the Hilbert-Huang transform of real signals', Smart Materials and Structures, vol.12, no.3, pp 447-460, June 2003
[12] P.S. Tua, S.T. Quek, Q. Wang, 'Detection of cracks in plates using piezo-actuated Lamb waves', Smart Materials and Structures, vol.13, no.4,
pp 643-660, August 2004
[13] Cooley, J. W., and Turkey, J. W,“An Algorithm for the Machine Calculation of Complex Fourier Series”, Mathematics of Computation, Vol. 19, Issue 90, pp 297-201., 1965
[14] Julius S. Bendat, Allan G. Piersol , 'Random Data: Analysis & Measurement Procedures', Wiley, 2000
[15] Shie Qian, Dapang Chen, 'Joint time-frequency analysis : methods and applications', Prentice Hall, 1996
[16] Yves Meyer, 'Wavelets : algorithms & applications ', Philadelphia : Society for Industrial and Applied Mathematics, 1993
[17] Huang, N. E., Shen, Z., Lomg, S. R., Wu, M. C., Shih, S. H., Zheng, Q., Tung, C. C.,and Liu, H. H., “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis”, Proceedings of the Royal Society A, Vol.454, No.1971, pp 903-995, 1998
[18] Norden E Huang, Samuel S Shen, 'The Hilbert-huang Transform And Its Applications', World Scientific Pub Co Inc, 2005
[19] Veltcheva, A. D., ”Wave groupiness in the near shore by Hilbert spectrum”, Proc.4th Int. Symp. Ocean Wave Meas. Anal. (WAVES 2001), San Francisco,pp 367-376., 2001
[20] Veltcheva, A. D, ” Wave and group transformation by a Hilbert spectrum”, Coastal Eng. J. Vol. 44, No. 4, pp 289-300., 2002
[21] Echeverria, J.C., Crowe, J.A., Woolfson, M. S. HayesGill, B. R.,” Application of empirical mode decomposition to heart rate variability analysis”, Med. Eng. Comput. Vol.39, No.4 , pp 471-479., 2001
[22] Chen, K. Y., Yeh, H. C., Su, S. Y., Liu, C.H., Huang, N.E., ” Anatomy of plasma structures in an equatorial spread F event”, Geophys. Res. Lett. Vol. 28, No.16, pp. 3107-3110., 2001
[23] Komm, R. W., Hill, F., Howe, R., ” Empirical mode decomposition and Hilbert analysis applied to rotation residuals of the solar convection zone”, Astrophys. J. Vol.558, No.1, pp 428-441., 2001
[24] L. Gaul and S. Herlebus, “Identification of Impact Location On A Plate Using Wavelets”, Mechanical System & Signal Processing, Vol.12, No.6, pp 783-795, 1998
[25] Yoon Young Kim and Eung-Hun Kim, “Effectiveness of the continuous wavelet transform in the analysis of some dispersive elastic waves”, Journal of the Acoustical Society of America, Vol.110, No.1, pp 86-94 , 2001
[26] A.Apostoloudia, E.Douka, L.J.Hadjileontiadis, I.T.Rekanos, A.Trochidis, “Time-frequency analysis of transient dispersive waves: A comparative study”, Applied Acoustics, Vol.68, No.3, pp 296-309, 2007
[27] Karl F. Graff , “Wave motion in elastic solids”, Oxford University Press, 1975
[28] L. Cohen, “Time-Frequency Analysis”, Prentice Hall PTR, Englewood Cliffs, 1995
[29] Schwartz, M., Bennett, W. R., and Stein, S., “Communications Systems and Techniques”, New York, McGraw-Hill., 1966
[30] Rice, s. o., “Mathematical Analysis of Random Noise”, Bell System Technical Journal, No. 23,pp. 282-310, 1994
[31] Gabor, D., “Communication Theory and Physics”, IEEE Transactions on Information Theory, Vo. 1, No. 1, pp 48-59, 1953
[32] Bedrosian, E., “A Product Theorem for Hilbert Transforms”, Proceedings of the IEEE, Vol.51, No. 5, pp 868-869., 1963
[33] Huang, N. E., Z. Shen, R. S. Long, “A new view of nonlinear water waves – theHilbert spectrum”, Ann. Rev. Fluid Mech., Vol.31, pp 417-457., 1999
[34] Huang, N. E., M. L. Wu, S. R.Long, S. S. Shen, W. D. Qu, p. Gloersen, and K. L. Fan, “A confidence limit for the empirical mode decomposition and the Hilbert spectral analysis”, Proc, of Roy. Soc. London, Vol. 459A, pp 2317-2345, 2003
[35] Nuttall, A. H., “On the quadrature approximation to the Hilbert transform of modulated signals”, Proc. IEEE, Vol. 54, pp. 1458–1459., 1966
[36] Huang, N. E., Z. Wu, S. R. Long, K. C. Arnold, K. Blank, and T. W. Liu , “On instantaneous frequency”, Adv. Adapt. Data Anal., in press., Vol. 1, No. 2, pp. 177–229, 2008
[37] Huang, N. E., Z. Wu, “A Review on Hilbert-Huang Transform:Method and its Applications to Geophysical Studies”, Reviews of Geophysics, Vol.46, pp.1-23, 2008
[38] Z. Wu and Huang, N. E., “Ensemble empirical mode decomposition: A noise-assisted data analysis method,” Center for Ocean-Land-Atmosphere Studies, Technical Report series, Vol. 193, No.173., 2005
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10323-
dc.description.abstract結構的損傷預測一直是工業界的重要課題,要達到這個目的,必需有適當的訊號處理方法,近年來迅速發展的希爾伯特黃轉換(Hilbert-Huang Transform, HHT)可能提供了一個有效的訊號分析方法。本文討論一維細長方樑上之彎曲波振動訊號,以HHT進行分析,判斷結構是否損壞,並推估其位置。首先,介紹HHT的基本理論,其使用經驗模態分解法,以訊號本身隨時間變化的時間尺度來提出基底,能夠用於非線性與非穩態之訊號分析。接著探討彎曲波之Bernoulli-Euler theory和Timoshenko theory的差異,並計算波速得知彎曲波為頻散波。在實驗部份,選用鋁合金、黃銅以及不鏽鋼作為實驗材料,樑經敲擊產生彎曲波,量測得到加速度訊號,再由 HHT得到時頻圖,從圖上能辨識出邊界反射波和缺陷反射波之峰值,並分別探討波速之計算和缺陷發生位置,而實驗結果得到之誤差(Absolute relative error)平均值皆不超過2.5%。此外,若缺陷深度較深,在時頻圖上之反射波振幅也會較大,可以作為破壞程度之參考依據。zh_TW
dc.description.abstractIn the industry, the damage detection of structures is an important research subject. To this end, a proper method for the vibration signal processing is indispensable. The Hilbert-Huang Transform (HHT), which has been successfully applied to many different fields in the last ten years, may provide a promising method for this purpose. The purpose of this research is to detect the crack on beams by HHT of transient flexural waves. First of all, the basic method named “Empirical Mode Decomposition” of HHT was introduced. Its basis of expansion is adaptive, so that it can produce physically meaningful representations of data from nonlinear and non-stationary processes. And then the difference of Bernoulli-Euler theory and Timoshenko theory associated with flexural waves were then discussed. It will be found that the flexural waves are dispersive by considering the wave velocity. Besides, the beams of Aluminum, Brass and Stainless Steel were considered in the experiments. The flexural waves were made by the impact force on beams. Applying the HHT on the measured acceleration data, the Hilbert spectrum can be obtained. From the figure the ridges represented the reflected waves from the boundary and the crack. By estimating the wave arrival time, the wave velocity and the crack location can be determined. The mean values of absolute relative error are all less than 2.5%. In addition, the characteristics on Hilbert spectrum of the damage size were also studied. This study may contribute to the damage size estimation in the near future.en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:20:20Z (GMT). No. of bitstreams: 1
ntu-99-R97525059-1.pdf: 1882261 bytes, checksum: cb0702f06310fcc248ef5e04a3f30bc3 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究內容及大綱 5
第二章 HHT理論基礎 7
2.1 瞬時頻率和解析訊號 7
2.2 希爾伯特黃轉換(Hilbert-Huang Transform, HHT) 14
2.2.1 本質模態函數(Intrinsic Mode Function, IMF) 15
2.2.2 經驗模態分解(Empirical Mode Decomposition, EMD) 16
2.2.3 希伯特頻譜與邊際頻譜 20
2.3 瞬時頻率之計算方法 20
2.4 總體經驗模態分解法(Ensemble EMD,EEMD) 24
2.5 HHT之特性 26
第三章 在樑上傳遞之彎曲波 28
3.1 Bernoulli-Euler theory 28
3.2 Timoshenko beam theory 30
3.3 wave velocity 34
第四章 實驗設備與系統架構 37
4.1 訊號量測系統 37
4.2 訊號量測儀器 39
4.3 訊號量測過程 41
4.3.1 彎曲波波速之量測 44
4.3.2 缺陷位置之反算 45
第五章 訊號分析與處理 47
5.1 彎曲波之波速分析 47
5.1.1 鋁合金(3000mm×10mm×10mm) 48
5.1.2 鋁合金(3000mm×8mm×8mm) 52
5.1.3 黃銅(2500mm×10mm×10mm) 56
5.1.4 不鏽鋼(2700mm×10mm×10mm) 59
5.1.5 分析與討論 63
5.2 缺陷位置之反算 64
5.2.1 黃銅:全長2500mm,缺陷位於1250mm 65
5.2.2 不鏽鋼,全長2700mm,缺陷位於900mm 68
5.2.3 不鏽鋼,全長2700mm,缺陷於1800mm 71
5.2.4 分析與討論 74
5.3 破壞程度之訊號分析 75
第六章 結論與未來展望 84
6.1 結論 84
6.2 未來展望 85
參考文獻 86
dc.language.isozh-TW
dc.title希爾伯特黃轉換於樑上之破壞檢測分析zh_TW
dc.titleCrack detection on beams by Hilbert-Huang transform of transient flexural wavesen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee謝傳璋,鐘裕亮,何信宗
dc.subject.keyword破壞檢測,希爾伯特黃轉換,經驗模態分解法,彎曲波,頻散波,Timoshenko樑,zh_TW
dc.subject.keywordcrack detection,Hilbert-Huang Transform,Empirical Mode Decomposition,flexural wave,dispersive wave,Timoshenko beam,en
dc.relation.page88
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-11-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf1.84 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved