Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10236
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉淑鶯
dc.contributor.authorMeng-Yu Chanen
dc.contributor.author詹孟諭zh_TW
dc.date.accessioned2021-05-20T21:12:47Z-
dc.date.available2011-03-01
dc.date.available2021-05-20T21:12:47Z-
dc.date.copyright2011-02-20
dc.date.issued2011
dc.date.submitted2011-02-13
dc.identifier.citationReference
Brinson, G. P., B. D. Singer, and G. L. Beebower (1991), “Determinants of Portfolio Performance: An Update”, Financial Analysts Journal, Vol. 47, pp. 40-48.
Chopra, V. K. and W. T. Ziemba (1993), “The Effect of Errors in Means, Variances and Covariance on Optimal Portfolio Choice”, Journal of Portfolio Management, Vol. 19, pp. 6-11.
Elam, E. and B. L. Dixon (1988), “Examining the Validity of a Test of Futures Market Efficiency, Journal of Futures Markets, Vol. 8, pp. 365-372
Engle, R. F. and C. W. J. Granger (1987), “Co-integration and Error Correction: Representation, Estimation and Testing,” Econometrica, Vol. 55, pp. 251-276.
Granger, C. W. J. and P. Newbold (1974), “Spurious Regressions in Economics.” Journal of Econometrics, Vol. 2, pp. 111-120.
Li, D. and W. L. Ng (2000), “Optimal Dynamic Portfolio Selection: Multiperiod Mean-Variance Formulation”, Mathematical Finance, Vol. 10, pp. 387-406
Markowitz, H. M. (1952), “Portfolio Selection”, Journal of Finance, Vol. 7, pp. 77-91.
Melanie, B. R. (2008), “A Dynamic Programming Approach to Two-Stage Mean-Variance Portfolio Selection in Cointegrated Vector Autoregressive Systems”, 47th IEEE Conference on Decision and Control Cancun, Mexico, Dec. 9-11.
Michaud, R. O. (1989), “The Markowitz Optimization Enigma: Is Optimized Optimal?” Financial Analysts Journal, Vol. 45, pp. 31-42.
Nelson, C. R. and C. Plosser (1982), “Trends and Random Walks in Macroeconomic Time Series: Some Evidence and Implications,” Journal of Monetary Economics, Vol. 10, pp. 139-167.
Scherer, B. (2002), “Portfolio Resampling: Review and Critique”, Financial Analysts Journal, Vol. 58, pp. 98-109.
Wolf, M. (2006), “Resampling vs. Shrinkage for Benchmarked Managers”, Working paper, No. 263, Institute for Empirical Research in Economics University of Zurich, Working Paper Series, ISSN 1424-0459.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10236-
dc.description.abstract本文的資產價格數列模型,採用PCB 共整合模型,將它整理成VAR(1)的型式,式子中的參數,必須符合本文的公式,然後我們藉由這個模型,使用Markowitz(1952)提出的平均數-變異數最佳化方法(Mean-Variance optimization approach)-固定風險、求報酬最大化的目標下,延伸作多期資產配置,再分別對一階段方法、二階段方法作討論。在有交易成本及截距項的情況下,比較這二種方法,同樣風險下的淨期望報酬。另外也比較,在特殊例子下,一階段方法與二階段方法,何種方法在同樣的風險下,能為我們帶來較大的淨期望報酬。zh_TW
dc.description.abstractThis paper uses the PCB Cointegration Model to organize the sequence information of the price of financial commodity into the VAR(1) type. The parameters in the formula VAR(1) must meet the formulas in this paper. We extend Markowitz’s mean-variance optimization approach published in 1952, which is to maximize the return under the fixed risk, to multi-stage asset allocation, and use this new model to discuss the one-stage method and the two-stage method. The paper then compares the net returns of the two methods when undertaking the same risk, under the condition of transaction cost and intercept. We will also examine the one-stage method and the two-stage method in the special cases to determine which one can bring the better net expected return under the same risk.en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:12:47Z (GMT). No. of bitstreams: 1
ntu-100-R96221043-1.pdf: 1306558 bytes, checksum: 69b1c6f926ad1a434598384e2b284345 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContents
Chapter 1 Introduction 1
1.1 Motivation and purpose 1
1.2 Framework 5
Chapter 2 The Cointegration model 8
Chapter 3 Research Method 10
3.1 Notations 10
3.2 Objective functions 11
3.3 Dynamic portfolio selection methods 13
3.3.1 One-stage method 13
3.3.2 Two-stage method 15
3.4 Special cases 20
Chapter 4. Numerical Illustrations 25
4.1 Unit root test and cointegration test 25
4.2 Parameter estimation 26
4.3 Transaction costs 27
4.4 Numerical results 28
4.4.1 Results of one-stage method 28
4.4.2 Results of two-stage method 29
4.5 Method comparisons 30
Chapter 5 Conclusions and Recommendations 33
Reference 36
Appendix 38
Contents of Appendix
Appendix 1. One-stage method 38
Appendix1.1. 38
Appendix1.1.1.Obtained the initial estimate by Taylor expansion 38
Appendix1.1.2.The identical equation sorts out from the formula 39
Appendix1.2. 39
Appendix1.3. ....................................................................................40
Appendix1.3.1.One-stage method of the maximum return method 40
Appendix1.3.2.One-stage method of the minimum variance method 42
Appendix1.4. 42
Appendix2. Two-stage method 43
Appendix2.1. 43
Appendix2.1.1.Deriving the vector of expected return and the matrices of variance and expected transaction cost 43
Appendix2.1.2.Obtained the initial estimate by Taylor expansion 47
Appendix2.1.3.The identical equation sorts out from the formula 48
Appendix2.2. 49
Appendix2.3. 51
Appendix2.3.1.Two-stage method of the maximum return method 51
Appendix2.3.2.Two-stage method of the minimum variance method.…….52
Appendix2.4. 55
Contents of Figure
Figure 1. Framework………………………………………………………………….. ...7
Contents of Table
Table 1. Comparison of expected net return……..…………………………..................31
Table 2. Comparison of expected net return……..…………………………..................32
Table 3. Comparison of expected net return……..…………………………..................33
Table 4. Comparison of net return and the return per risk unit under ……..…………………………...............................................33
dc.language.isoen
dc.title共整合向量模型之平均數-變異數動態投資組合方法探討zh_TW
dc.titleDynamic Approaches to Mean-Variance Portfolio Selection
in Cointegrated Vector Autoregressive Systems
en
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee彭柏堅,鄭天澤
dc.subject.keywordPCB 共整合模型,Markowitz平均數-變異數最佳化方法,多期資產配置,一階段方法,二階段方法,zh_TW
dc.subject.keywordPCB Cointegration Model,Markowitz Mean-Variance OptimizationApproach,Multi-stage Asset Allocation,One-stage Method,Two-stageMethod,en
dc.relation.page55
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-02-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf1.28 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved