Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10190
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王玉麟(Yuh-Lin Wang)
dc.contributor.authorPradeep Sharmaen
dc.contributor.author夏普迪zh_TW
dc.date.accessioned2021-05-20T21:08:37Z-
dc.date.available2011-12-31
dc.date.available2021-05-20T21:08:37Z-
dc.date.copyright2011-07-06
dc.date.issued2011
dc.date.submitted2011-04-28
dc.identifier.citationBibliography
1. M. Kaur, S. Bhattacharya, M. Roy, S. K. Deshpande, P. Sharma, S. K. Gupta, J. V. Yakhmi, Growth of nanostructures of Zn/ZnO by thermal evaporation and their application for room-temperature sensing of H2S gas, Applied Physics A, 87, 91 (2007).
2. G. Yi, C. Wang, and Wong II Park, ZnO nanorods: synthesis, characterization and applications, Semiconductor Science and Technology, 20, S22 (2005).
3. Pradeep Sharma, C. Y. Liu, Chen-Feng Hsu, N. W. Liu, Y. L. Wang, Ordered arrays of Ag nanoparticles grown by constrained self organization, Applied Physics Letters, 89, 163110 (2006).
4. Y. Zhang, L. Sun, Y. Fu, Z. C. Huang, X. J. Bai, Y. Zhai, J. Du, H. R. Zhai, The shape anisotropy in the magnetic filed-assisted self-assembly chain-like structure of magnetite, Journal of Physical Chemistry C, 113, 8152 (2009).
5. J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, H. Park, Strain-induced self organization of metal−insulator domains in single-crystalline VO2 nanobeams, Nano Letters, 6, 2313 (2006).
6. C. Papaseit, N. Pochon, J. Tabony, Micro-tubule self organization is gravity dependent, Proceedings of National Academy of Sciences, 97, 8364 (2000).
7. Y. Yin, Y. Lu, B. Gates, Y. Xia, Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes and structures, Journal of American Chemical Society, 123, 8718 (2001).
8. H. Duan, K.K. Berggren, Directed self assembly at the 10 nm scale by using capillary force-induced nanocohesion, Nano Letters, 10, 3710 (2010).
9. D. Qin, Y. Xia, B. Xu, H. Yang, C. Zhu, G. M. Whitesides, Fabrication of ordered two dimensional arrays of micro- and nanoparticles arrays by using patterned self-assembled monolayers as templates, Advanced Material, 11, 1433 (1999).
10. P. L. Stiles, J. A. Dieringer, N. C. Shah, R. P. Van Duyne, Surface-Enhanced Raman Spectroscopy, Annual Review Analytical Chemistry, 1, 601 (2008).
11. W. A. Murray, J. R. Suckling, W. L. Barnes, Overlayers on Silver Nanotriangles: Field Confinement and Spectral Position of Localized Surface Plasmon Resonances, Nano Letters, 6, 1772 (2006).
12. C.L. Nehl, H. W. Liao, J. H. Hafner, Optical Properties of Star-Shaped Gold Nanoparticles, Nano Letters, 6, 683 (2006).
13. M. J. Bloemer, M. C. Buncick, R. J. Warmack, Surface electromagnetic modes in prolate spheroids of gold, aluminum, and copper, Journal of Optical Society of America B, 5, 2552 (1988).
14. J. A. Creighton, D.G. Eadon, Ultraviolet-visible absorption spectra of the colloidal metallic elements, Journal of Chemical Society Faraday Transactions, 87, 3881 (1991).
15. E. J. Zeman, G. C Schatz, An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium, Journal of Physical Chemistry, 91, 634 (1987).
16. G. H. Chan, J. Zhao, Plasmonic Properties of Copper Nanoparticles Fabricated by Nanosphere Lithography, Nano Letters, 7, 1947 (2007).
17. C. Langhammer, Z. Yuan, I. Zoric, B. Kasemo, Plasmonic Properties of Supported Pt and Pd Nanostructures, Nano Letters, 6, 833 (2006).
18. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment, Journal of Physical Chemistry B, 107, 668 (2003).
19. C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, J. R. Heath, Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition, Science, 277, 1978 (1997).
20. F. Hubenthal, T. Ziegler, C. Hendrich, M. Alschinger, F. Träger, Tuning the surface plasmon resonance by preparation of gold-core/silver-shell and alloy nanoparticles, European Physics Journal D, 34, 165 (2005).
21. H. Makoto, K. Ashok, Wavelength tuning of surface plasmon resonance by annealing silver-copper nanoparticles, Journal of Applied Physics, 100, 014309 (2006).
22. F. J. Beck, K. Catchpole, Red-shifting the surface plasmon resonance of silver nanoparticles for light trapping in solar cells, Material Research Society Symposium Proceedings, 1101, KK03-04 (2008).
23. B. M. Ross, L. P. Lee, Plasmon tuning and local field enhancement maximization of the nanocrescent, Nanotechnology, 19, 275201 (2008).
24. S. Biring, H.-H. Wang, J.-K. Wang, and Y.-L. Wang, Light scattering from 2D arrays of monodispersed Ag-nanoparticles separated by tunable nano-gaps: spectral evolution and analytical analysis of plasmonic coupling, Optics Express, 16, 15312 (2008).
25. P. K. Jain, W. Huang, M. A. El-Sayed, On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation, Nano Letters, 7, 2080 (2007).
26. S. Malynch, G. Chumanov, Light-Induced Coherent Interactions between Silver Nanoparticles in Two-Dimensional Arrays, Journal of American Chemical Society, 125, 2896 (2003).
27. S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2006).
28. H. Raether, Excitation of Plasmons and Interband Transitions by Electrons, (Springer, 1979).

29. M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, M. B. Cortie, Mapping surface plasmons at the nanometre scale with an electron beam, Nanotechnology, 18, 165505 (2007).
30. F. Li, L.Zhang, R. M. Metzer, On the growth of highly ordered pores in anodized aluminum oxide, Chemistry of Materials, 10, 2470 (1998).
31. H. Masuda, K. Fakuda, Ordered metal nanoholes arrays made by a two step replication of honeycomb structures of anodic alumina, Science, 268, 1466 (1998).
32. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura, Highly ordered nanochannel-array architecture in anodic alumina, Applied Physics Letters, 71, 2770 (1997).
33. C. Y. Liu, A. Datta, N. W. Liu, C. Y. Peng, Y. L. Wang, Order-disorder transition of anodic alumina nanochannel arrays grown under the guidance of focused-ion-beam-patterning, Applied Physics Letters, 84, 2509, (2004).
34. Z. Sun, H. K. Kim, Growth of ordered, single-domain, alumina nanopore arrays with holographically patterned aluminum films, Applied Physics Letters, 81, 3458, (2002).
35. W. Lee, R. Ji, C. A. Ross, U. Gosele, K. Nielsch, Wafer-scale nickel imprint stamps for porous alumina membranes based on interference lithography, Small 2, 978 (2006).
36. H.-H. Wang, C.-Y. Liu, S.-B. Wu, N.-W. Liu, C.-Y. Peng, T.-H. Chan, C.-F. Hsu, J.-K. Wang, Y.-L. Wang, Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10 nm Gaps, Advanced Materials, 18, 491 (2006).
37. D. Xu, D. Chen, Y. Xu, X. Shi, G. Guo, L. Gui, Y. Tang, Preparation of II-VI group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates, Pure and Applied Chemistry, 72, 127 (2000).
38. J. E. Weber, W. G. Yelton, A. Kumar; Electrodeposition of Bi1−xSbx Nanowires as an Advanced Material for Thermoelectric Applications, Functionalized Nanoscale Materials, Devices and Systems, page 425 (2008).
39. G. J. Strijkers, J. H. J. Dalderop, M. A. A. Broeksteeg, H. J. M. Swagten, W. J. M. de Jonghe, Structure and magnetization of arrays of elctrodeposited Co wires in anodic alumina, Journal of Applied Physics, 86, 5141 (1999).
40. S. Grimm, R. Giesa, K. Sklarek, A. Langner, U. Gosele, H. W. Schmidt, M. Steinhart, Nondestructive Replication of Self-Ordered Nanoporous Alumina Membranes via Cross-Linked Polyacrylate Nanofiber Arrays, Nano Letters, 8, 1954 (2008).
41. M. Zhang, Y. Bando, K. Wada, K. Kurashima, Synthesis of nanotubes and nanowires of silicon oxide, Journal of Materials Science Letters, 18, 1911 (1999).
42. S. Biring, H. H. Wang, J. K. Wang, Y. L. Wang, Light scattering from 2D arrays of monodispersed Ag-nanoparticles separated by tunable nano-gaps: spectral evolution and analytical analysis of plasmonic coupling, Optics Express, 16, 15312 (2008).
43. C. Carraro, R. Maboudian, L. Magagnin, Metallization nanostructuring of semiconductor surfaces by galvanic displacement processes, Surface Science Reports, 62, 499 (2007).
44. K. P. Pernstich, M. Schenker, F. Weibel, A. Rossi, W. R. Caseri, Electroless Plating of Ultrathin Films and Mirrors of Platinum Nanoparticles onto Polymers, Metals, and Ceramics, ACS Applied Materials Interfaces, 2, 639 (2010).
45. H. W. Kim, N. E. Lee, Conformal electroless filling of Cu into patterned amorphous carbon layer modified by oxygen plasma and aminosilane treatments, Journal of Vacuum Science and Technology B, 28, 715 ( 2010).
46. Y. W. Song, D. Y. Shan, E. H. Han, Corrosion behaviors of electroless plating Ni–P coatings deposited on magnesium alloys in artificial sweat solution, Electrochimica Acta, 53, 2009 ( 2007).
47. J. Skelly, Decorative plating processes for common plastic resins: Resin selection as well as plastic part design is critical to matching the right finishing method with the intended application, Metal Finishing, 106, 61 (2008).
48. M. Hasegawa, N. Yamachika, S. D. Yosi, Y. Okinaka, T. Osaka, Evidence for “superfilling” of submicrometer trenches with electroless copper deposit, Applied Physics Letters, 90, 101916 (2007).
49. A. Gutes, C. Carraro, R. Maboudian, Silver Dendrites from Galvanic Displacement on Commercial Aluminum Foil as an Effective SERS Substrate, Journal of Americal Chemical Society, 132, 1476 (2010).
50. F. M. Liu, M. Green, Efficient SERS substrates made by electroless silver deposition into patterned silicon structures, Journal of Material Chemistry, 14, 1526 (2004).
51. S. H. Lee, K. C. Bantz, N. C. Lindquist, S. H. Oh, L. H. Christy, Self-Assembled Plasmonic Nanohole Arrays, Langmuir, 25, 13685 (2009).
52. M. Mohl, A. Kumar, A. L. M. Reddy, A. Kukovecz, Z. Konya, I. Kiricsi, R. Vajtai, P. M. Ajayan, Synthesis of Catalytic Porous Metallic Nanorods by Galvanic Exchange Reaction, Journal of Physical Chemistry C, 114, 389 (2010).
53. V. Bogush, Application of Electroless Metal Deposition for Advanced Composite Shielding Material, Journal of Optoelectronics and Advanced Material, 7, 1635 ( 2005).
54. N. A. Malvadkar, G. Demirel, M. Poss, A. Javed, W. J. Dressick, M. C. Demirel, Fabrication and Use of Electroless Plated Polymer Surface-Enhanced Raman Spectroscopy Substrates for Viral Gene Detection, Journal of Physical Chemistry C, 114, 10730 (2010).
55. A. S. Paulo, N. Arellano, J. A. Plaza, R. He, C. Carraro, M. Maboudian, R. T. Howe, J. Bokor, P. Yang, Suspended Mechanical Structures Based on Elastic Silicon Nanowire Arrays, Nano Letters, 7, 1100 (2007).
56. G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher, Metal-Nanocluster-Filled Carbon Nanotubes: Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production, Langmuir, 15, 750 (1999).
57. K. Peng, A. Lu, R. Zhang, S.-T. Lee, Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Etching, Advanced Functional Materials, 18, 3026 (2008).
58. X. Li, P. W. Bohn, Metal-assisted Chemical Etching in HF/H2O2 Produces Porous Silicon, Applied Physics Letters, 77, 2572 (2000).
59. D. H. Wan, H. L. Chen, S. Y. Chuang, C. C. Yu, Y. C. Lee, Using Self-Assembled
Nanoparticles to Fabricate and Optimize Subwavelength Textured Structures in Solar Cells, Journal of Physical Chemistry C, 112, 20567 (2008).
60. S. Bauer, J. G. Brunner, H. Jha, Y. Yasukawa, H. Asoh, H.; S. Ono, H. Böhm, J. P. Spatz, P. Schmuki, Ordered Nanopore Boring in Silicon: Metal Assisted Etching using a Self-aligned Block Copolymer Au Nanoparticle Template and Gravity Accelerated Etching, Electrochemistry Communication, 12, 565 (2010).
61. H. Zhipeng, Z. Xuanxiong, R. Manfred, L. Lifeng, L. Woo, S. Tomohiro, S. Stephan, G. Ulrich, Extended Arrays of Vertically Aligned Sub-10 nm Diameter Si Nanowires by Metal-Assisted Chemical Etching, Nano Letters, 8, 3046 (2008).
62. Y. Qu, L. Liao, Y. Li, H. Zhang, Y. Huang, X. Duan, Electrically Conductive and Optically Active Porous Silicon Nanowires, Nano Letters, 9, 4539 (2009).
63. K. Tsujino, M. Matsumura, Boring Deep Cylindrical Nanoholes in Silicon Using Silver Nanoparticles as a Catalyst, Advanced Materials, 17, 1045 (2005).
64. C. Chartier, S. Bastide, C. Levy-Clement, Metal-Assisted Chemical Etching of Silicon in HF-H2O2, Electrochimica Acta, 53, 5509 (2008).
65. Y. Xiu, L. Zhu, D. W. Hess, C. P. Wong, Hierarchical Silicon Etched Structures for Controlled Hydrophobicity/Super Hydrophobicity, Nano Letters, 7, 3388 (2007).
66. O. J. Hildreth, W. Lin, C. P. Wong, Effect of Catalyst Shape and Etchant Composition on Etching Direction in Metal-Assisted Chemical Etching of Silicon to Fabricate 3D Nanostructures, ACS Nano, 3, 4033 (2009).
67. E. H. Anderson, D. Ha, J. A. Liddle, Sub-pixel alignment for direct-write electron beam lithography, Microelectronic Engineering, 73-74, 74-79 (2004).
68. A. A. Tseng, Recent development in micromilling using focused ion beam technology, Journal of Micromechanical Microengineering, 14, R15-R34 (2004).
69. Ernst Meyer, Hans J. Hug , Roland Bennewitz, Scanning Probe Microscopy: The Lab on a Tip (Springer, 2003).
70. Ray F. Egerton, Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM (Springer 2005).
71. Robert Keyse, Introduction to Scanning Transmission Electron Microscopy (Royal Microscopical Society Microscopy Handbooks, 1997).
72. R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, (Springer, 1996).
73. John R. Ferraro, Introductory Raman Spectroscopy (Academic Press, 2002).
74. V. Saptari, Fourier Transform Spectroscopy Instrumentation Engineering (SPIE, 2004).
75. http://www.eaglabs.com/ Evans Analytical Group.
76. N.W. Liu, A. Datta, C. Y. Liu, C. Y. Peng, H. H. Wang, Y. L. Wang, Fabrication of anodic-alumina films with custom designed arrays of nanochannels, Advanced Materials, 17, 222 (2005).
77. Yi Cui, Mikael T. Bjork, J. Alexander Liddle, Carsten Sonnichsen, Benjamin
Boussert, A. Paul Alivisatos, Integration of colloidal nanocrystals into lithographically patterned devices, Nano Letters, 4, 1093 (2004).
78. Takashi Yatsui, Wataru Nomura, Motoichi Ohtsu, Self-assembly of size- and position-controlled ultralong nanodot chains using near-field optical desorption, Nano Letters, 5, 2548, (2005).
79. Y. L. Wang, Z. Shao, Advances in Electronics and Electron Physics (Academic Press, 1991).
80. J. B. Wang, A. Datta, Y. L. Wang, Morphological changes of Si(100) induced by focused ion beam irradiation, 135, 129 (1998).
81. J. F. Zeigler, J. P. Biersack, SRIM (TRIM 90) Simulation Package (IBM Research, 1995), IBM.
82. H. Raether, Springer Tracts in Modern Physics (volume 88): Excitation of Plasmons and Interband Transitions by Electrons (Springer-Verlag, 1980).
83. R. H. Ritchie, Plasma loses by fast electrons in thin films, Physics Review, 106, 874 (1957).
84. E. A. Stern, R. A. Ferrell, Surface plasmon oscillations of a degenerate electron gas, Physics Review, 120, 130 (1960).
85. P. Schwerdtfeger, Gold goes nano-from small clusters to low-dimensional assemblies, Angewandte Chemie International Edition, 42, 1892 (2003).
86. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, Optical properties of coupled metallice nanorods for field-enhanced spectroscopy, Physics Review B, 71, 235420 (2005).
87. I. Romero, J. Aizpurua, G. W. Bryant, F. J. García de Abajo, Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers, Optics Express, 14, 9988 (2006).
88. P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, Plasmon hybridization in nanoparticle dimers, Nano Letters, 4, 899 (2004).
89. J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, Mapping surface plasmons on a single metallic nanoparticle, Nature Physics, 3, 348 (2007).
90. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, F. J. García de Abajo, Optical properties of gold nanorings, Physics Review Letters, 90, 057401 (2003).
91. F. Hao, C. L. Nehl, J. H. Hafner, P. Nordlander, Plasmon resonances of a gold nanostar, Nano Letters, 7, 729 (2007).
92. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, M. Kauranen, Local field assymetry drives second harmonic generation in noncentrosymmetric nanodimers, Nano Letters, 7, 1251 (2007).
93. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, J. Feldmann, Surface-plasmon resonances in single metallic nanoparticles, Physics Review Letters, 80, 4249 (1998).
94. K. Kneip, M. Moskovits, H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications (Springer, 2006).
95. T. Atay, J.-H. Song, A. V. Nurmikko, Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime, Nano Letters, 4, 1627 (2004).
96. I. Khan, D. Cunningham, S. Lazar, D. Graham, W. E. Smith, D. W. McComb, A TEM and electron energy loss spectroscopy (EELS) investigation of active and inactive silver particles for surface enhanced resonance Raman spectroscopy (SERRS), Faraday Discussions, 132, 171 (2006).
97. M. Danckwerts, L. Novotny, Optical frequency mixing at couples gold nanoparticles, Physics Review Letters, 98, 026104 (2007).
98. E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions, Science, 311, 189 (2006).
99. J.-Y. Chu, T.-J. Wang, Y.-C. Chang, Y.-J. Lu, M.-W. Lin, J.-T. Yeh, J.-K. Wang, Multi-wavelength heterodyne-detected scattering-type scanning near-field optical microscopy, Ultramicroscopy, 108, 314 (2008).
100. M.-W. Chu, C. H. Chen, F. Javier García de Abajo, J.-P. Deng, C.-Y. Mou, Surface exciton polaritons in individual Au nanoparticles in the far-ultraviolet spectral regime, Physics Review B, 77, 245402 (2008)
101. M.-W. Chu, V. Myroshnychenko, C. H. Chen, J.-P. Deng, C.-Y. Mou, and F. Javier García de Abajo, Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam, Nano Letters, 9, 399 (299).
102. P. Moreau, N. Brun, C. A. Walsh, C. Colliex, A. Howie, Relativistic effects in electron-energy-loss-spectroscopy observations of the Si/SiO2 interface plasmon peak, Physics Review B, 56, 6774 (1997).
103. M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, M. B. Cortie, Mapping surface plasmons at the nanometer scale with electron beam, Nanotechnology, 18, 165505 (2007).
104. T. L. Ferrell, P. M. Echenique, Generation of surface excitations on dielectric spheres by an external electron beam, Physics Review Letters, 55, 1526 (1985).
105. Edward D. Palik, Handbook of Optical Dielectric Constants of Solids, (Academic Press, 1985).
106. F. Ouyang, P. E. Batson, M. Isaacson, Quantum size effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss-spectroscopy, Physics Review B, 46, 15421 (1992).
107. M. Schlüter, Die Optischen, Eigenschaften von gold, silber, and gold-silber-legierungen zwischen 2 and 40 eV aus energieverlustmessungen, Zeitschrift fur Physik, 250, 87 (1972).
108. F. J. García de Abajo, A. Howie, Retarded field calculation of electrón energy loss in inhomogeneous dielectrics, Physics Review. B, 65, 115418 (2002).
109. J. Aizpurua, A. Rivacoba, S. P. Apell, Electron energy losses in hemispherical particles, Physics Review B, 54, 2091 (1996).
110. N. Zabala, A. Rivacoba, Electron energy loss near supported particles, Physics Review B, 48, 14534 (1993).
111. V. Myroshnychenko, J. Rodríquez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, Modelling the optical response of gold nanoparticles , Chemical Society Review, 37, 1792 (2008).
112. K. S. Lee, M. A. El-Sayed, Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape and metal composition, Journal of Physical Chemistry B, 110, 19220 (2006).
113. N. Yamamoto, S. Ohtani, F. J. García de Abajo, Gap and Mie plasmons in individual silver nanospheres near a silver surface, Nano Letters, 11, 91 (2011).
114. J. W. Liaw, New surface integral equations for the light scattering of multi-metallic nanoscatterers, Engineering Analysis with Boundary Elements, 31, 299 (2007).
115. S. Foteinopoulou, J. P. Vigneron, C. Vandenbem, Optical near-field excitations on plasmonic nanoparticle-based structures, Optics Express, 15, 4253 (2007).
116. D. D. Evanoff Jr., G. Chumanov, Synthesis and optical properties of silver nanoparticles and arrays, Chemical Physics and Physical Chemistry, 6, 1221 (2005).
117. X. Li, J. Zhang, W. Xu, H. Jia, X. Wang, B. Yang, B. Zhao, B. Li, Y. Ozaki, Mercaptoacetic acid-capped silver nanoparticles colloid: formation, morphology, and SERS activity, Langmuir, 19, 4285 (2003).
118. M. Maillard, S. Giorgio, M. P. Pileni, Tuning the size of silver nanodisks with similar aspect ratios: synthesis, and optical properties, Journal of Physical Chemistry B, 107, 2466 (2003).
119. K. P. Velikov, G. E. Zegers, A. V. Blaaderen, Synthesis and characterization of large colloidal silver particles, Langmuir, 19, 1384 (2003).
120. K. Esumi, A. Suzuki, A. Yamahira, K. Torigoe, Role of poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum and silver, Langmuir, 16, 2604 (2000).
121. Y. Sun, Y. Xia, Shape controlled synthesis of gold and silver nanoparticles, Science, 298, 2176 (2002).
122. Y. Plyuto, J. M. Berquier, C. Jackquiod, C. Ricolleau, Ag nanoparticles synthesized in template structured mesoporous silica films on a glass substrate, Chemical Communications, 17, 1653 (1999).
123. Y. P. Zhao, D. X. Ye, G. C. Wang, T. M Lu, Novel nano-column and nanoflower arrays by glancing angle deposition, Nano Letters, 2, 351 (2002).
124. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation, Journal of Physical Chemistry B, 104, 8333 (2000).
125. H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Deng, G. Q. Xu, Photochemical formation of silver nanoparticles in poly(N-vinyl pyrrolidone), Langmuir, 12, 909 (1996).
126. N. A. Kotov, M. E. D. Zaniquelli, F. C. Meldrum, J. H. Fendler, Two-dimensional silver electrocrystallization under monolayers spread on aqueous silver nitrate, Langmuir, 9, 3710 (1993).
127. J. Zhu, S. Liu, O. Palchik, Y. Koltypin, A. Gadenken, Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods, Langmuir, 16, 6396 (2000).
128. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kall, S. Zou, G. C. Schatz, Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions, Journal of Physical Chemistry B, 109, 1079 (2005).
129. J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, M. Kall, Plasmonic properties of silver trimers with trigonal symmetry fabricated by electron-beam lithography, Journal of Physical Chemistry C, 112, 14313 (2008).
130. M. Grzelczak, J. Vermant, E. M. Frust, L. M. Liz-Marzan, Directed self assembly of nanoparticles, ACS Nano, 4, 3591 (2010).
131. M. K. Kinnan, G. Chumanov, Plasmonic coupling in two dimensional arrays of silver nanoparticles: II. Effect of particle size and interparticle distance, Journal of Physical Chemistry C, 114, 7496 (2010).
132. C. Sonnichsen, B. M. Reinhard, J. Liphardt, A. P. Alivisatos, A molecular ruler based on plasmon coupling of single gold and silver nanoparticles, Nature Biotechnology, 23, 741 (2005).
133. L. V. Brown, H. Sobhani, J. B. Lassiter, P. Norlander, N. J. Hallas, Heterodimers: Plasmonic properties of mismatched nanoparticles pairs, ACS Nano, 4, 819 (2010).
134. J. P. Novak, D. L. Feldheim, Assembly of phenylacetylene-bridged silver and gold nanoparticles arrays, Journal of American Chemical Society, 122, 3979 (2000).
135. S. Sheikholeslami, Y. Jun, P. K. Jain, A. P. Alivisatos, Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticles dimer, Nano Letters, 10, 2655 (2010).
136. N. W. Liu, A. Datta, C. Y. Liu, C. Y. Peng, H. H. Wang, Y. L. Wang, Fabrication of anodic alumina films with custom-designed arrays of nanochannels, Advanced Materials, 17, 222 (2005).
137. N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, Y. L. Wang,
Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements, Advanced Material, 20, 2547 (2008).
138. A. Gerlach, W. Keller, J. Schulz, K. Schumacher, Gas permeability of adhesives and their applications for hermetic packaging of microcomponents, Microsystems Technology, 7, 17 (2001).
139. M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, K. Suma, Control factor of native oxide growth on silicon in air or in ultrapure water, Applied Physics Letters, 55, 562 (1989).
140. M. L. Chourou, K. Fukami, T. Sakka, S. Virtanen, Y. H. Ogata, Metal assisted etching of p-type Si under anodic polarization in HF solution with and without H2O2, Electrochimica Acta, 55, 903 (2010).
141. M. L. Zhang , K. Q. Peng , X. Fan , J. S. Jie , R. Q. Zhang , S. T. Lee , N. B. Wong, Preparation of large area uniform silicon nanowires arrays through metal-assisted chemical etching, Journal of Physical Chemistry C, 112, 4444 (2008).
142. O. J. Hildreth, W. Lin, C. P. Wong, Effect of catalyst shape and etchant composition on etching direction in metal-assisted chemical etching of silicon to fabricate 3D nanostructures, ACS Nano, 3, 4033 (2009).
143. K. Tsujino, M. Matsumura, Morphologies of nanoholes formed in silicon by wet etching in solutions containing HF and H2O2 at different concentrations using silver nanoparticles as catalyst, Electrochimica Acta, 53, 28 (2007).
144. Xiaoge Gregory Zhang: Electrochemistry of Silicon and Its Oxide (Springer, New York, 2001).
145. H. Angermann, W. Henrion, A. Roseler, M. Rebien, Wet chemical passivation of Si(111)- and Si(100)- substrates, Material Science B, 73, 178 (2000).
146. S. Wei, W. Li, F. Zhang, X. Zhao, Adsorption of Ag on Si(100) surface, Physica B, 390, 191 (2007).
147. T. Tsuboi, T. Sakka, Y. H. Ogata, Metal deposition into porous silicon layer by immersion plating: influence of halogen ions, Journal of Applied Physics, 83, 4501 (1998).
148. Y. Y. Song, Z. H. Gao, J. H. Kelly, X. H. Xia, Galvanic deposition of nanostructured noble-metal films on silicon, Electrochemical and Solid State Letters, 8, C148 (2005).
149. R.C. Rossi, M. X. Tan, N. S. Lewis, Size dependent electrical behavior of spatially
inhomogeneous barrier height regions on silicon, Appied Physics Letters, 77, 2698 (2000).
150. T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, U. Gosele, Synthesis of vertical high-density epitaxial Si(100) nanowire arrays on a Si(100) substrate using an anodic aluminum oxide template, Advanced Materials, 19, 917, (2007).
151. B. Li, D. Yu, S. L. Zhang, Raman spectral study of silicon nanowires, Physical Review B, 59, 1645 (1999).
152. P. A. Temple, C. E. Hathaway, Multiphonon Raman spectrum of silicon, Physical Review B, 7, 3685 (1973).
153. M. Steinert, J. Acker, M. Krause, S. Oswald, K. Wetzig, Reactive species generated during wet chemical etching of silicon in HF/HNO3 mixtures, Journal of Physical Chemistry B, 110, 11377 (2006).
154. Z. Peng, H. Hu, M. I. B. Utama, L. M. Wong, K. Ghosh, R. Chen, S. Wang, Z. Shen, Q. Xiong, Heteroepitaxial decoration of Ag nanoparticles on Si nanowires: A case study of Raman scattering and mapping, Nano Letters, 10, 3940 (2010).
155. A.K. Kalkan, S. J. Fonash, Electroless synthesis of Ag nanoparticles on deposited nanostructured Si films, Journal of Physical Chemistry B, 109, 20779 (2005).
156. K. T Queeney, H. Fukidome, E. E. Chaban, Y. J. Chabal, In-situ FTIR studies of reactions at silicon/liquid interface: wet chemical etching of ultrathin SiO2 on Si(100), Journal of Physical Chemistry B, 105, 3903 (2001).
157. B. E. Poling, G. H. Thompson, D.G. Friend, R. L. Rowley, W. V. Wilding: Perry’s Chemical Engineers’ Handbook, (MacGraw-Hill Publication, 2008).
158. J. Wang, H. Tu, W. Zhu, Q. Zhou, A. Liu, C. Zhang, A comparative Raman spectroscopy study on silicon surface in HF, HF/H2O2, and HF/NH4F aqueous solutions, Materials Science Engineering B, 72, 193 (2000).
159. I. Vlassiouk, C. D. Park, S. A. Vail, D. Gust, S. Smirnov, Control of nanopore wetting by a photochromic spiropyran: a light controlled valve and electrical switch, Nano Letters, 6, 1013 (2006).
160. S. Venkateswaran, Raman spectrum of hydrogen peroxide, Nature, 127, 406 (1931).
161. S. V. Gaisler, O. I. Semenova, R. G. Sharafutdinov, B. A. Kolesov, Analysis of Raman spectra of amorphous-nanocrystalline silicon films, Physics of the Solid State, 46, 1528 (2004).
162. N. Hosoda, Y. Kyogoku, T. Suga, Effect of the surface treatment on the room temperature bonding of Al to Si and SiO2, Journal of Materials Science, 33, 253 (1998).
163. Y. Nagasawa, H. Ishida, F. Soeda, A. Ishitani, I. Yoshii, K. Yamamoto, FT-IR-ATR observation of SiOH and SiH in the oxide layer on a Si wafer, Mikrochimica Acta, I, 431, (1988).
164. P. Sharma, Y. L. Wang, Directional Etching of Silicon by Silver Nanostructures, Applied Physics Express, 4, 25001 (2011).
165. X. Sun, R. Tao, L. Lin, Z. Li, Z. Zhang, J. Feng, Fabrication and characterization of polycrystalline silicon nanowires with silver-assistance by electroless depositions, Applied Surface Science, 257, 3861 (2011).
166. Z. Huang, T. Shimizu, S. Senz, Z. Zhang. N. Geyer, U. Gosele, Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon, Journal of Physical Chemistry C, 114, 10683 (2010).
167. Y. Q. Jia, L. Z. Zhang, J. S. Fu, B. R. Zhang, J. C. Mao, G. G. Qin, Characterization of stain etched porous silicon with photoluminescence, electron paramagnetic resonance, and infrared absorption spectroscopy, Journal of Applied Physics, 74, 7615 (1993).
168. M. E. Dudley, K. W. Kolasinski, Etching of silicon in fluoride solutions, Surface Science, 603, 1904 (2009).
169. K. W. Kolasinski, Charge transfer and nanostructure formation during electroless etching of silicon, Journal of Physical Chemistry C, 114, 22098 (2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10190-
dc.description.abstract我們用四種方法來成長銀奈米粒子: (1) 蒸鍍銀薄膜在矽基板表面, 經由限制性自組織來形成奈米粒子, (2)在氧化鋁孔洞基板, 經由電化學過程來形成奈米粒子, (3)用電子束顯影蝕刻術, 來製造奈米粒子, (4)直流置換矽為銀奈米粒子. 其中方法 ‘1-3’可形成有序銀奈米粒子, 而方法 ‘4’可長出自組的銀奈米粒子, 特別地, 方法 ‘2’可形成間隙小於5奈米之銀粒子雙連體或三連體陣列. 方法 ‘1,2,4’ 的機制將會討論.
我們使用掃描電子穿透顯微術—也就是電子能量損失能譜術, 對方法 ‘1’長出的銀奈米粒子, 進行表面電漿子掃描分析. 實驗的結果與理論的計算相符合.
藉著不同型態的銀奈米結構, 我們可以對矽(100)基板做方向性蝕刻, 也找到這種蝕刻的關鍵參數.
經由高解析電子顯微鏡, 就地觀測的拉曼光譜術, 以及傅利葉轉換紅外線光譜術等觀測, 我們釐清在矽基板進行置換銀電鍍, 以及藉銀粒子輔助的矽晶蝕刻等現象的機制.
zh_TW
dc.description.abstractSilver nanoparticles have been grown by four different methods viz: (1) constrained self organization of Ag films onto silicon substrates, (2) electrochemical growth of Ag into custom-designed porous anodic alumina templates, (3) electron-beam lithography, and (4) galvanic displacement of Si by Ag. Methods ‘1-3’ yield ordered arrays of Ag nanoparticles whereas method ‘4’ results in growth of self organized Ag nanoparticles. Only method ‘2’ produces arrays of dimers and trimers of silver nanoparticles with sub-5 nm interparticle gap. Mechanisms for growth of Ag nanoparticles by methods ‘1, 2’, and ‘4’ have been discussed.
Surface plasmons of Ag nanoparticles formed by method ‘1’ have been mapped by scanning electron transmission microscope (STEM)–electron energy loss spectroscopy (EELS). Experimental results are found to be consistent with STEM-EELS calculations.
Directional etching of Si(100) substrates by different types of Ag nanostructure is achieved. Key parameters which promote the directional etching have been identified.
Mechanisms of “galvanic displacement mediated Ag plating on Si” and “Ag-assisted etching of Si” are elucidated by high resolution electron microscopy and in-situ Raman and FTIR spectroscopy.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:08:37Z (GMT). No. of bitstreams: 1
ntu-100-D95222036-1.pdf: 8873814 bytes, checksum: 5d1519b595afe98b90916061af5ed5a5 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContents
Chapter 1 Introduction 1
1.1 Constrained self organization………………………………………………1
1.2 Surface plasmon…………………………………………………………….6
1.3 Porous anodic alumina (AAO)…………………………………………… 12
1.4 Electroless metal deposition………………………………………………15
1.5 Metal-assisted silicon etching…..…………………………………………17
1.6 Fabrication and characterization tools…………………………………….19
Chapter 2 Ordered arrays of Ag nanoparticles by constrained self organization 21
2.1 Aim……………………………………………………………………… 21
2.2 Experiments………………………………………………………………21
2.2.1 Focused ion beam (FIB) patterning of Si substrates……………….21
2.2.2 Low temperature Ag deposition……………………………………22
2.2.3 Post deposition annealing of patterned substrates………………….23
2.3 Results and discussion……………………………………………………23
2.3.1 Ordered arrays of aggregation centers on Si substrate……………..23
2.3.2 Self-organized and ordered arrays of Ag nanoparticles……………25
Chapter 3 Probing surface plasmon of individual Ag nanoparticles by scanning
transmission electron microscopy (STEM) 35
3.1 Aim…..…………………………………………………………………..35
3.2 Experiments……………………………………………………………...36
3.2.1 Ag nanoparticles on Si by constrained self organization…………..36
3.2.2 STEM probing of Ag nanoparticles………………………………..37
3.3 Results and discussion…………………………………………………...37
3.3.1 3D tomography of Ag nanoparticle………………………………..37
3.3.2 STEM-EELS spectra of Ag nanoparticle…………………………..39
3.3.3 STEM-EELS mapping of surface plasmons of Ag nanoparticle…..43
Chapter 4 Fabrication of Singlet, doublet, and triplet of Ag nanoparticles
in AAO 46
4.1 Aim………………………………………………………………………46
4.2 Experiments……………………………………………………………...51
4.2.1 Focused ion beam patterning of AAO……………………………..52
4.2.2 Electrochemical growth of Ag in AAO……………………………53
4.3 Results and discussion…………………………………………………...53
4.3.1 AAO nanochannels………………………………………………...53
4.3.2 Selective closing of AAO nanochannels…………………………..54
4.3.3 Singlet, doublet, and triplet of Ag nanoparticles in AAO…………55
4.3.4 Effect of ion beam dose and Ag electrodeposition………………...56
Chapter 5 Directional etching of Si by Ag nanostructures 58
5.1 Aim………………………………………………………………………58
5.2 Experiments……………………………………………………………...59
5.2.1 Electron beam lithography of Ag nanopatterns on Si……………...59
5.2.2 Etching of Si by Ag nanopatterns………………………………….60
5.2.3 Post etching investigation of Ag/Si interface on etching..…………60
5.2.4 Etching of Ag/SiOx/Si substrates with varying oxide thickness…...61
5.3 Results and discussion…………………………………………………...61
5.3.1 Directional etching of nanoholes and nanotrenches into Si………..61
5.3.2 Detection of oxide at Ag/Si interface………………………………63
5.3.3 Effect of Ag/Si interface oxide thickness………………………… 64
5.3.4 Etching mechanism………………………………………………...67
Chapter 6 Electroless Ag plating on Silicon 69
6.1 Aim………………………………………………………………………69
6.2 Experiments……………………………………………………………...69
6.2.1 Cleaning of Si substrates…………………………………………..69
6.2.2 Electroless Ag Plating on Si……………………………………….70
6.2.3 Characterization……………………………………………………70
6.3 Results and Discussion…………………………………………………..71
6.3.1 Morphologies of Plated Ag NP……………………………………71
6.3.2 Raman spectra……………………………………………………...77
6.3.3 FTIR spectra………………………………………………………..79
6.3.4 Mechanism of Ag plating…………………………………………..80
Chapter 7 Ag-assisted etching of Si 82
7.1 Aim………………………………………………………………………82
7.2 Experiments……………………………………………………………...82
7.2.1 Cleaning of Si substrates…………………………………………...82
7.2.2 Ag-assisted Si etching……………………………………………...83
7.2.3 Characterization……………………………………………………83
7.3 Results and Discussion…………………………………………………..85
7.3.1 Morphologies of etched Si…………………………………………85
7.3.2 Raman spectra……………………………………………………...88
7.3.3 FTIR spectra………………………………………………………..90
7.3.4 Mechanism of Ag-assisted Si etching……………………………...93
Chapter 8 Conclusions 96
Bibliography 99
Appendix 119
A.1 List of publications…………………………………………………………………199
A.2 List of acronyms……………………………………………………………………120
dc.language.isoen
dc.title可用來研究電漿子及幫助蝕刻矽晶體的
銀奈米粒子有序陣列
zh_TW
dc.titleOrdered Arrays of Silver Nanoparticles for Plasmonics
and
Silver-Assisted Silicon Etching
en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee王俊凱(Juen-Kai Wang),朱明文(Ming-Wen Chu),宋克嘉(Ker-Jar Song),林景泉(Jiing-Chyuan Lin)
dc.subject.keyword奈米銀粒子的有序陣列,表面電漿子掃描分析,無電極的銀電鍍,銀輔助的矽晶蝕刻,離子和電子顯微觀測術,就地觀測的拉曼和傅利葉轉換紅外線光譜術,zh_TW
dc.subject.keywordOrdered arrays of Ag nanoparticles,Surface plasmon mapping,Electroless Ag plating,Ag-assisted Si etching,ion and electron microscopy,in-situ Raman and FTIR spectroscopy,en
dc.relation.page121
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-05-04
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf8.67 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved