Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10180
標題: 在二項式模型中的高階誤差分析
Analysis of Higher Order Error in the Binomial Model
作者: Kuan-Min Huang
黃冠閔
指導教授: 彭柏堅(Kenneth-James Palmer)
關鍵字: 歐式買權價格,二元樹模型,
binomial model,option value,Black-Scholes price,digital call option,
出版年 : 2011
學位: 碩士
摘要: 本文主要在探討在二元樹模型中的歐式買權價格收斂到Black-Scholes(BS)模型中價格的速度,當每一分割期間的長度愈縮小。在在二元樹模型中,選擇權的價格是由股價的未來變動百分比u和d及風險中立機率(Risk-Neutral Probability)來決定。文獻一(Chang-Palmer)給出在誤差項中1/n的確切係數。在這篇論文中,我們考慮更一般化的u和d來證明我們的主要定理,應用主要定理加強文獻一所提出的結果,將誤差項提高項並給出高項的確切係數。我們也利用加強的結果在Joshi模型中來說明二元樹模型中的價格與BS模型中的價格兩者的誤差。我們也應用主要定理在Leisen-Reimer模型中得到一個收斂定理,在Tian模型中得到一個新定理。
In this paper, we study the rate of convergence of the European call option price by the binomial model to the Black-Scholes price as the number of period n tends to
infinity. The binomial option pricing is determined by the jump sizes u and d and the risk-neutral probability p. Chang and Palmer [1] gives an explicit formula for the coefficient of 1/n in the expansion of the error. This paper discusses the higher order in the expansion of the error. We consider more general u and d to prove
the Main Theorem and apply it to strengthen the Chang-Palmer result, expanding up to the higher term in the expansion of the error and also giving an explicit formula for the coefficient of the higher term. We use the strengthened Chang-Palmer result to prove the error between the binomial price and the Black-Scholes price in Joshi's model [4]. We also use the Main Theorem to obtain a proof of the convergence rate in Leiser-Reimer's model [5] and a new theorem in Tian's model [7].
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10180
全文授權: 同意授權(全球公開)
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf661.07 kBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved