請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101365| 標題: | CMOS-MEMS振撞共振器 CMOS-MEMS Vibro-Impact Resonators |
| 作者: | 蔡淳樸 Chun-Pu Tsai |
| 指導教授: | 李尉彰 Wei-Chang Li |
| 關鍵字: | CMOS-MEMS,振撞共振器共振開關吸引子交換器 CMOS-MEMS,Vibro-impact resonatorResoswitchAttractor exchanger |
| 出版年 : | 2026 |
| 學位: | 博士 |
| 摘要: | 做為微機電振撞共振器的分支,原子力顯微鏡透過共振操作懸臂樑量測樣品奈米尺度元件之表面拓譜與材料性質,從而推動了軟物質、物理學、材料科學和奈米磨擦學巨大的發展;射頻開關透過低損失和高隔離的導通/開路狀態切換操作,成為無線通訊系統與元件快速測試平台中的關鍵元件;能量擷取器、致動器與慣性開關透過設計此一強非線性碰撞操作提高元件輸出、精密度或頻寬。雖然已經有許多文獻探討振撞共振器的系統行為,隨著元件尺度的縮小,靜電非線性、幾何非線性與材料非線性將影響系統行為並使得元件響應複雜而難以設計與優化。
本研究針對微機電振撞共振器進行了深度的探索並拓展對其系統響應於週期驅動下之了解。開發、設計與探討兩種新型元件—微機電共振開關與吸引子交換器—之性能、應用與理論基礎。基於互補式金屬氧化物半導體-微機電系統製程平台,本研究理論與實驗性地揭示了摺疊樑梳狀電極制動微機電振撞共振器於非線性操作下的系統響應。基於平均法與SIMULINK系統級別模型,元件輕敲操作下之頻譜響應、暫態行為、穩態行為與其於穩態峰值排斥力的模型已被分析並與實驗結果比較。 基於操作豐富的非線性行為,本研究設計與應用微機電共振開關—內嵌電性操作地微機電振撞共振器於喚醒接收器與脈波密度調變器,機械式地簡化複雜電子電路元件。此外,透過對系統進一步的了解,本研究提出間隙連續式與振撞擾動式吸引子交換器。此二吸引子交換器透過不同操作原理對元件施加擾動,於開迴路狀況下控制一非線性元件於多穩態條件下之運動狀態。這些結果促進了微機電振撞共振器與共振開關之理解和進步,為開發高性能共振開關與擾動式非線性元件控制奠定了基礎。 In previous few decades, various micromechanical structures and systems that utilize parts with mechanical vibro-impact have been proposed and developed, including vibro-impact energy harvesters, impact actuators, inertial switch, just to name a few. In particular, the tapping-mode atomic force microscopy (AFM) and radio frequency (RF) switch are two of great importance invention in which the AFM spurred on the development of nanoscience and nanotribology while RF switch become the key component on the wireless communications/production test supporting the integration of multiple radios/device that use a single antenna/instrument. Although, some of the underlying mechanism already developed in previous works, there is a gap to develop micro-electro-mechanical systems (MEMS) resoswitch, a particular case of MEMS vibro-impact resonators that incorporate with electrical hot-switching operation, as the device’s dimension shrinks day by day. This work delves into the MEMS vibro-impact resonator under periodic excitation to enhance the understanding of its system response further, motivated by the need for optimizing of the device performance and nonlinear behavior of MEMS resoswitches. Utilizing the CMOS-MEMS process platform, this work theoretically, numerically and experimentally examines the nonlinearity of a folded-beam comb-driven vibro-impact resonator. Based on a 1-DOF lumped governing equation, the work predicts, through the method of averaging and SIMULINK system-level simulation platform, the tapping mode frequency response, transient motion and steady-state peak repulsive force. These predictions are compared to experimental results and show a good agreement. Nevertheless, this work designs, evaluates and develops two novel components— all-mechanical pulse density modulator and attractor exchangers. By leveraging the complex nonlinear behavior, the designed resoswitch is implemented as a pulse density modulator to simplify intricate electronic circuit components mechanically. Additionally, this work proposes innovative devices, namely, gap-continuous and vibro-impact perturbation attractor exchangers. These attractor exchangers control the state of nonlinear devices in a multi-stable region under open-loop operations through distinct operating principles. These findings advance the understanding of MEMS vibro-impact resonators and resoswitch, laying the groundwork for the development of high-performance resoswitch and perturbation-based control of nonlinear devices. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101365 |
| DOI: | 10.6342/NTU202600018 |
| 全文授權: | 同意授權(全球公開) |
| 電子全文公開日期: | 2026-01-28 |
| 顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 25.84 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
