請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101318完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳耀銘 | zh_TW |
| dc.contributor.advisor | Yaow-Ming Chen | en |
| dc.contributor.author | 伊樂漢 | zh_TW |
| dc.contributor.author | Irham Fadlika | en |
| dc.date.accessioned | 2026-01-14T16:14:20Z | - |
| dc.date.available | 2026-01-15 | - |
| dc.date.copyright | 2026-01-14 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2026-01-05 | - |
| dc.identifier.citation | [1]. S. Patel, A. Ghosh, P. K. Ray, and V. Gurugubelli, “Effective power management strategy and control of a hybrid microgrid with hybrid energy storage systems,” IEEE Trans. Ind. Appl., vol. 59, no. 6, pp. 7341–7355, Nov.–Dec. 2023.
[2]. E. Naderi, B. K. C., M. Ansari, and A. Asrari, “Experimental validation of a hybrid storage framework to cope with fluctuating power of hybrid renewable energy-based systems,” IEEE Trans. Energy Convers., vol. 36, no. 3, pp. 1991–2001, Sep. 2021. [3]. A. Joshi, A. Suresh, and S. Kamalasadan, “Grid frequency regulation based on point of common coupling angle deviation control of distributed energy resources with fully active hybrid energy storage system,” IEEE Trans. Ind. Appl., vol. 57, no. 5, pp. 4473–4485, Sep.–Oct. 2021. [4]. P. Roy, J. He, T. Zhao, and Y. V. Singh, “Recent advances of wind–solar hybrid renewable energy systems for power generation: A review,” IEEE Open J. Ind. Electron. Soc., vol. 3, pp. 81–104, 2022. [5]. D. E. Olivares et al., “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905–1919, Jul. 2014. [6]. P. García, C. A. García, L. M. Fernández, F. Llorens, and F. Jurado, “ANFIS-based control of a grid-connected hybrid system integrating renewable energies, hydrogen and batteries,” IEEE Trans. Ind. Inform., vol. 10, no. 2, pp. 1107–1117, May 2014. [7]. S.-K. Kim, J.-H. Jeon, C.-H. Cho, J.-B. Ahn, and S.-H. Kwon, “Dynamic modeling and control of a grid-connected hybrid generation system with versatile power transfer,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1677–1688, Apr. 2008. [8]. F. Rojas et al., “An overview of four-leg converters: Topologies, modulations, control and applications,” IEEE Access, vol. 10, pp. 61277–61325, 2022. [9]. Q. Liu, T. Caldognetto, and S. Buso, “Review and comparison of grid-tied inverter controllers in microgrids,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7624–7639, Jul. 2020. [10]. Z. Lin, X. Ruan, L. Jia, W. Zhao, H. Liu, and P. Rao, “Optimized design of the neutral inductor and filter inductors in three-phase four-wire inverter with split DC-link capacitors,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 247–262, Jan. 2019. [11]. R. Mandrioli, A. Viatkin, M. Hammami, M. Ricco, and G. Grandi, “Variable switching frequency PWM for three-phase four-wire split-capacitor inverter performance enhancement,” IEEE Trans. Power Electron., vol. 36, no. 12, pp. 13674–13685, Dec. 2021. [12]. R. Ghosh and G. Narayanan, “Control of three-phase, four-wire PWM rectifier,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 96–106, Jan. 2008. [13]. A. Hintz, U. R. Prasanna, and K. Rajashekara, “Comparative study of the three-phase grid-connected inverter sharing unbalanced three-phase and/or single-phase systems,” IEEE Trans. Ind. Appl., vol. 52, no. 6, pp. 5156–5164, Nov.–Dec. 2016. [14]. H. Zhang, C.-da Sun, Z.-x. Li, J. Liu, H.-y. Cao, and X. Zhang, “Voltage vector error fault diagnosis for open-circuit faults of three-phase four-wire active power filters,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2215–2226, Mar. 2017. [15]. S. M. Tayebi, H. Hu, and I. Batarseh, “Advanced DC-link voltage regulation and capacitor optimization for three-phase microinverters,” IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 307–317, Jan. 2019. [16]. T.-W. Tsai, Y.-C. Li, C.-J. Yang, and Y.-M. Chen, “Per-phase active power distribution strategy for three-phase grid-tied inverters under unbalanced conditions without DC sources,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 9, no. 6, pp. 6624–6636, Dec. 2021. [17]. D. Bozalakov, B. Meersman, A. Bottenberg, J. Rens, J. Desmet, and L. Vandevelde, “DC-bus voltage balancing controllers for split DC-link four-wire inverters and their impact on the quality of the injected currents,” in Proc. Open Access Proc. J., 2017, pp. 564–568. [18]. Z. Shuai, M. Xiao, J. Ge, and Z. J. Shen, “Overcurrent and its restraining method of PQ-controlled three-phase four-wire converter under asymmetrical grid fault,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 7, no. 3, pp. 2057–2069, Sep. 2019. [19]. Z. Li, K. W. Chan, J. Hu, and S. W. Or, “An adaptive fault ride-through scheme for grid-forming inverters under asymmetrical grid faults,” IEEE Trans. Ind. Electron., vol. 69, no. 12, pp. 12912–12923, Dec. 2022. [20]. S.-P. Kim, S.-G. Song, S.-J. Park, and F.-S. Kang, “Imbalance compensation of the grid current using effective and reactive power for split DC-link capacitor 3-leg inverter,” IEEE Access, vol. 9, pp. 81189–81201, 2021. [21]. D. G. Holmes, T. A. Lipo, B. P. McGrath, and W. Y. Kong, “Optimized design of stationary frame three-phase AC current regulators,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2417–2426, Nov. 2009. [22]. M. Crescentini, S. F. Syeda, and G. P. Gibiino, “Hall-effect current sensors: Principles of operation and implementation techniques,” IEEE Sensors J., vol. 22, no. 11, pp. 10137–10151, Jun. 2022. [23]. D. Ying and D. A. Hall, “Current sensing front-ends: A review and design guidance,” IEEE Sensors J., vol. 21, no. 20, pp. 22329–22346, Oct. 2021. [24]. Q. N. Trinh, P. Wang, Y. Tang, L. H. Koh, and F. H. Choo, “Compensation of DC offset and scaling errors in voltage and current measurements of three-phase AC/DC converters,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 5401–5414, Jun. 2018. [25]. C.-W. Chang, T.-W. Tsai, and Y.-M. Chen, “Split-capacitor self-balancing of single-phase half-bridge inverters,” in Proc. 2019 10th Int. Conf. Power Electron. ECCE Asia (ICPE-ECCE Asia), Busan, South Korea, 2019, pp. 1–6. [26]. I. Fadlika, W.-Y. Li, and Y.-M. Chen, “Influence of current measurement error to split capacitor voltage in single-phase half-bridge grid-connected inverter,” in Proc. 2023 11th Int. Conf. Power Electron. ECCE Asia (ICPE-ECCE Asia), Jeju, South Korea, 2023, pp. 717–722. [27]. T. Hornik and Q.-C. Zhong, “Parallel PI voltage–H∞ current controller for the neutral point of a three-phase inverter,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1335–1343, Apr. 2013. [28]. Y. Fu et al., “Imbalanced load regulation based on virtual resistance of a three-phase four-wire inverter for EV vehicle-to-home applications,” IEEE Trans. Transp. Electrific., vol. 5, no. 1, pp. 162–173, Mar. 2019. [29]. T. Caldognetto, H. Abedini, and P. Mattavelli, “A per-phase power controller for smooth transitions to islanded operation,” IEEE Open J. Power Electron., vol. 2, pp. 636–646, 2021. [30]. M. Passalacqua et al., “A state-space approach to the modelling and control of the neutral leg of a four-legs, three-phase inverter,” IEEE Trans. Ind. Electron., vol. 69, no. 4, pp. 4056–4064, Apr. 2022. [31]. D. Ma et al., “Dual-predictive control with adaptive error correction strategy for AC microgrids,” IEEE Trans. Power Del., vol. 37, no. 3, pp. 1930–1940, Jun. 2022. [32]. T. Ye, N. Dai, C.-S. Lam, M.-C. Wong, and J. M. Guerrero, “Analysis, design, and implementation of a quasi-proportional-resonant controller for a multifunctional capacitive-coupling grid-connected inverter,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 4269–4280, Sep.–Oct. 2016. [33]. E. Afshari et al., “Control strategy for three-phase grid-connected PV inverters enabling current limitation under unbalanced faults,” IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 8908–8918, Nov. 2017. [34]. J. Ge, Z. Shuai, C. Tu, A. Luo, and Z. J. Shen, “Flexible control strategy for enhancing power injection capability of three-phase four-wire inverter during asymmetrical grid faults,” IEEE Trans. Power Electron., vol. 36, no. 8, pp. 9592–9608, Aug. 2021. [35]. L. Hassaine, E. Olías, J. Quintero, and V. Salas, “Overview of power inverter topologies and control structures for grid connected photovoltaic systems,” Renew. Sustain. Energy Rev., vol. 30, pp. 796–807, Feb. 2014. [36]. Z. Zeng, H. Yang, R. Zhao, and C. Cheng, “Topologies and control strategies of multi-functional grid-connected inverters for power quality enhancement: A comprehensive review,” Renew. Sustain. Energy Rev., vol. 24, pp. 223–270, Aug. 2013. [37]. R. Teodorescu, F. Blaabjerg, M. Liserre, and P. C. Loh, “Proportional-resonant controllers and filters for grid-connected voltage-source converters,” IEE Proc. – Electr. Power Appl., vol. 153, no. 5, p. 750, 2006. [38]. S. Zhou, Y. Zhang, Z. Liu, J. Liu, and L. Zhou, “Implementation of cross-coupling terms in proportional-resonant current control schemes for improving current tracking performance,” IEEE Trans. Power Electron., vol. 36, no. 11, pp. 13248–13260, Nov. 2021. [39]. O. Husev et al., “Optimization and implementation of the proportional-resonant controller for grid-connected inverter with significant computation delay,” IEEE Trans. Ind. Electron., vol. 67, no. 2, pp. 1201–1211, Feb. 2020. [40]. A. Vidal et al., “Assessment and optimization of the transient response of proportional-resonant current controllers for distributed power generation systems,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1367–1383, Apr. 2013. [41]. M. Chen et al., “A novel DC current injection suppression method for three-phase grid-connected inverter without the isolation transformer,” IEEE Trans. Ind. Electron., vol. 65, no. 11, pp. 8656–8666, Nov. 2018. [42]. C.-Y. Tang and J.-H. Jheng, “An active power ripple mitigation strategy for three-phase grid-tied inverters under unbalanced grid voltages,” IEEE Trans. Power Electron., vol. 38, no. 1, pp. 27–33, Jan. 2023. [43]. N. F. Ibrahim, K. Mahmoud, M. Lehtonen, and M. M. F. Darwish, “Comparative analysis of three-phase PV grid connected inverter current control schemes in unbalanced grid conditions,” IEEE Access, vol. 11, pp. 42204–42221, 2023. [44]. T.-F. Wu, A. Kumari, and C.-C. Hung, “Comparison of direct digital control and dq-based control for a three-phase three-wire inverter with LCL filter,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 12, no. 5, pp. 5139–5151, Oct. 2024. [45]. M. Alqatamin, J. Latham, Z. T. Smith, B. M. Grainger, and M. L. McIntyre, “Current control of a three-phase, grid-connected inverter in the presence of unknown grid parameters without a phase-locked loop,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 9, no. 3, pp. 3127–3136, Jun. 2021. [46]. Y. Cai, C. Hou, M. Zhu, A. Liu, and Y. Wen, “DC-link zero power fluctuation of grid-tied inverters: Implementation with two-phase virtual phase-current regulation,” IEEE Trans. Ind. Electron., vol. 72, no. 3, pp. 2690–2699, Mar. 2025. [47]. L. B. Larumbe, Z. Qin, L. Wang, and P. Bauer, “Impedance modeling for three-phase inverters with double synchronous reference frame current controller in the presence of imbalance,” IEEE Trans. Power Electron., vol. 37, no. 2, pp. 1461–1475, Feb. 2022. [48]. M. Li et al., “The control strategy for the grid-connected inverter through impedance reshaping in q-axis and its stability analysis under a weak grid,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 9, no. 3, pp. 3229–3242, Jun. 2021. [49]. D. Pal, B. K. Panigrahi, B. Johnson, D. Venkatramanan, and S. Dhople, “Large-signal stability analysis of three-phase grid-following inverters,” IEEE Trans. Energy Convers., early access, 2023, doi: 10.1109/TEC.2023.3323446. [50]. X. Guo, W. Liu, and Z. Lu, “Flexible power regulation and current-limited control of the grid-connected inverter under unbalanced grid voltage faults,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 7425–7432, Sep. 2017. [51]. P. H. I. Hayashi and L. Matakas, “Decoupled stationary ABC frame current control of three-phase four-leg four-wire converters,” in Proc. 2017 Brazilian Power Electron. Conf. (COBEP), Juiz de Fora, Brazil, 2017, pp. 1–6. [52]. D. Yousri, H. E. Z. Farag, H. Zeineldin, A. Al-Durra, and E. El-Saadany, “Per-phase unsymmetrical adaptive derivative optimized droop for mitigating voltage quality issues of unbalanced islanded microgrids,” IEEE Trans. Sustain. Energy, vol. 15, no. 4, pp. 2518–2533, Oct. 2024. [53]. D. Yousri, H. E. Z. Farag, H. Zeineldin, and E. El-Saadany, “Optimized unsymmetrical per-phase droop for soft line switching of reconfigurable unbalanced inverter-based islanded microgrid,” IEEE Trans. Power Syst., vol. 39, no. 2, pp. 3851–3866, Mar. 2024. [54]. D. I. Brandao, F. E. G. Mendes, R. V. Ferreira, S. M. Silva, and I. A. Pires, “Active and reactive power injection strategies for three-phase four-wire inverters during symmetrical/asymmetrical voltage sags,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2347–2355, May–Jun. 2019. [55]. C. J. O’Rourke, M. M. Qasim, M. R. Overlin, and J. L. Kirtley, “A geometric interpretation of reference frames and transformations: dq0, Clarke, and Park,” IEEE Trans. Energy Convers., vol. 34, no. 4, pp. 2070–2083, Dec. 2019. [56]. H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning. Hoboken, NJ, USA: Wiley, 2017. [57]. A. Yazdani and R. Iravani, Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications. Hoboken, NJ, USA: IEEE Press/Wiley, 2010. [58]. S. Golestan, J. M. Guerrero, and J. C. Vasquez, “Three-phase PLLs: A review of recent advances,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1894–1907, Mar. 2017. [59]. Z. Dai et al., “A complex-type voltage normalization method for three-phase synchronous reference frame phase-locked loop,” IEEE Trans. Power Electron., vol. 39, no. 5, pp. 5873–5882, May 2024. [60]. A. A. Nanda, V. Narayanan, and B. Singh, “An ESOCVF-FLL-based frequency adaptive two loop control scheme for seamless transition of microgrid under weak grid conditions,” IEEE Trans. Consum. Electron., vol. 71, no. 1, pp. 1877–1888, Feb. 2025. [61]. K.-H. Kim, S. Cui, and J.-J. Jung, “Current-oriented phase-locked loop method for robust control of grid-connected converter in extremely weak grid,” IEEE Trans. Power Electron., vol. 39, no. 10, pp. 11963–11968, Oct. 2024. [62]. S. Golestan et al., “Control design of grid synchronization systems for grid-tied power converters using symmetrical optimum method: A comprehensive reference,” IEEE Trans. Power Electron., vol. 38, no. 11, pp. 13650–13673, Nov. 2023. [63]. M. Eskandari and A. V. Savkin, “Robust PLL synchronization unit for grid-feeding converters in micro/weak grids,” IEEE Trans. Ind. Inform., vol. 19, no. 4, pp. 5400–5411, Apr. 2023. [64]. M. Z. Islam, M. S. Reza, M. M. Hossain, and M. Ciobotaru, “Three-phase PLL based on adaptive Clarke transform under unbalanced condition,” IEEE J. Emerg. Sel. Topics Ind. Electron., vol. 3, no. 2, pp. 382–387, Apr. 2022. [65]. M. N. Ashraf, M. S. E. Moursi, K. Al Hosani, and A. Al Durra, “Andronov–Hopf oscillator-based phase-locked loop for three-phase grid connected inverters,” IEEE Trans. Power Electron., vol. 40, no. 6, pp. 7634–7639, Jun. 2025. [66]. M. Karimi-Ghartemani, H. Karimi, S. A. Khajehoddin, and S. M. Hoseinizadeh, “Efficient modeling and systematic design of enhanced phase-locked loop structures,” IEEE Trans. Power Electron., vol. 37, no. 8, pp. 9061–9072, Aug. 2022. [67]. S. Golestan, J. M. Guerrero, and J. C. Vasquez, “Single-phase PLLs: A review of recent advances,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9013–9030, Dec. 2017. [68]. J. Xu, H. Qian, Y. Hu, S. Bian, and S. Xie, “Overview of SOGI-based single-phase phase-locked loops for grid synchronization under complex grid conditions,” IEEE Access, vol. 9, pp. 39275–39291, 2021. [69]. S. Prakash, J. K. Singh, R. K. Behera, and A. Mondal, “A type-3 modified SOGI-PLL with grid disturbance rejection capability for single-phase grid-tied converters,” IEEE Trans. Ind. Appl., vol. 57, no. 4, pp. 4242–4252, Jul.–Aug. 2021. [70]. S. Gautam, W. Xiao, D. D.-C. Lu, H. Ahmed, and J. M. Guerrero, “Development of frequency-fixed all-pass filter-based single-phase phase-locked loop,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 10, no. 1, pp. 506–517, Feb. 2022. [71]. S. Golestan, J. Matas, A. M. Abusorrah, and J. M. Guerrero, “More-stable EPLL,” IEEE Trans. Power Electron., vol. 37, no. 1, pp. 1003–1011, Jan. 2022. [72]. A. M. Abusorrah and H. Sepahvand, “Enhancing stability in single-phase PLLs: Incorporation of RoCoF signal in virtual orthogonal signal construction,” IEEE Trans. Ind. Electron., vol. 71, no. 8, pp. 8669–8678, Aug. 2024. [73]. F. R. Gantmakher, The Theory of Matrices. Providence, RI, USA: AMS Chelsea, 2000. [74]. LEM International SA, Current Transducer HX 03 … 50-P Series Datasheet, ver. 16, Apr. 6, 2023. [Online]. Available: https://www.lem.com/en/product-list/hx-15p. [75]. Texas Instruments, MC3303, MC3403 Quadruple Low-Power Operational Amplifiers Datasheet (Rev. C), SLOS101C, Feb. 2002. [Online]. Available: https://www.ti.com/product/MC3303. [76]. Texas Instruments, TMS320F2837xD Dual-Core Real-Time Microcontrollers Technical Reference Manual, SPRUHM8K, Rev. K, Dec. 2013, revised May 2024. [Online]. Available: https://www.ti.com/lit/pdf/spruhm8. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101318 | - |
| dc.description.abstract | 併網型換流器主要控制對象為輸出電流,因此電流的控制效果為衡量其品質的重要依據,而電流控制效果通常與所使用的電流感測器及周邊處理電路高度相關,然而完美無誤差的量測一般是不可能達到的,並且在三相四線換流器架構的操作下,電流量測誤差(CME)將會導致串聯分離電容盤的電壓產生偏移。除了需要定期進行校正外,還需要額外的分離電容盤電壓控制及其所需的元件,這些元件增加的成本、重量、以及額外控制皆會使此換流器架構的經濟效益受到影響。
本論文旨在abc參考坐標下,對多種線性電流控制方式之電流量測誤差問題進行全面的數學分析。為抑制電流量測誤差,本論文提出一種偏移抑制(OS)的通用解決方法,此偏移抑制方法可與不同的線性控制進行結合,將串聯分離電容電壓穩定在直流電壓中點附近。本論文更進一步提出分相「比例-諧振偏移抑制」(PROS)電流控制方法,除了在無需新增額外感測電路及電壓控制迴路下,能維持良好的交流輸出電流控制,更同時能將兩串連分離電容電壓皆收斂至直流電壓中點。本論文之分析及提出之方法均由電腦模擬進行驗證,並以3.75kW的實驗室原型機進行實作驗證。實驗結果顯示,在所提出的「比例-諧振偏移抑制」方法下,無論電流量測誤差為正負值皆能完全消除中性線直流電流誤差以及串連分離電容電壓偏移。除此之外,本論文所提出的「比例-諧振偏移抑制」同時展現了快速的響應特性,在具有電流量測誤差的情境下進行平衡與不平衡之間的三相功率切換,其直流電壓偏差衰減及三相電流進入穩態時間約為200ms及2.5ms。此一結果證實了本論文所提出的「比例-諧振偏移抑制」方法之有效性及其強健性。 | zh_TW |
| dc.description.abstract | Grid-connected inverters heavily depend on the grade of current detection and processing devices since their performance are assessed by the quality of the controlled currents. However, achieving perfect accuracy is not feasible. Moreover, in the case of three-phase four-wire inverters with split dc-link capacitors, current measurement error (CME) can result in the deviation of the split capacitor voltages. Despite periodic calibration, the economic advantage of the inverter topology is compromised due to the requirement of the split capacitor voltage control unit, which imposes more cost, weight, and control efforts.
The objective of this dissertation is to develop comprehensive mathematical analysis to reveal the CME issues in the operation of various linear current control methods, constructed in the abc reference frame. A generalized solution based on the Offset Suppression (OS) function is proposed to mitigate the CME effects. The OS function can be combined with different linear controllers to inherently stabilize the capacitor voltages around the dc link midpoint value. Further advanced proposal is obtained through the architecture of the proposed per-phase Proportional Resonant Offset Suppression (PROS) current controller which can simultaneously achieve not only satisfactory ac performance but it can maintain both split capacitor voltages at their midpoint value, without extra sensors and controls. The theoretical analysis and the proposed solutions developed in this dissertation are verified by computer simulations and are validated through 3.75 kW laboratory prototype experiments. The experiments have shown that in the proposed PROS controller operation, zero dc neutral current error and zero dc split capacitor voltage deviation are achieved irrespective of the CME polarity. Moreover, the proposed PROS controller demonstrates fast transient responses: the decay time of the dc voltage deviation and the settling time of the three-phase grid currents are within approximately 200 ms and 2.5 ms, respectively, even in the presence of CME and during step transitions between balanced and unbalanced three-phase power exchanges. These findings validate the effectiveness of the proposed PROS controller and confirm the robustness of the controller design methodology developed in this dissertation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-01-14T16:14:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-01-14T16:14:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Doctoral Dissertation Acceptance Certificate i
Acknowledgements ii 中文摘要 v Abstract vi Table of Content viii List of Figures xii List of Tables xviii Abbreviations xix Chapter 1. Introduction 1 1.1 Background 1 1.2 Literature Review and Motivation 3 1.3 Dissertation Outline 10 Chapter 2. Current Controllers for Three-Phase Four-Wire Grid Connected Inverters 12 2.1 Stationary αβ0 Frame Controller 14 2.2 Synchronous dqz Frame Controller 20 2.3 Natural abc Frame Controller 25 2.4 Split Capacitor Voltage Control 28 2.5 Comparison between Current Control Schemes 30 Chapter 3. Analysis of the Impacts of CME 32 3.1 The Origin of CME 32 3.2 General Mathematical Model Involving CME 34 3.3 Impact of CME in the Traditional P and PR Control Schemes 42 3.4 Impact of CME in the Traditional PI Control Scheme 43 3.5 Performance of Different Linear Controllers under Unbalanced Power Transfers 45 3.6 Summary 47 Chapter 4. Elimination of CME Effects Based on Offset Suppression Function 51 4.1 General vdev Stability Condition 51 4.2 Derivation of the OS Function 54 4.3 Derivation of Optimum Per-Phase Current Controller 59 4.4 Stability Analysis and Design of the Proposed PROS Controller Parameters 65 4.5 Summary 78 Chapter 5. Simulation Results 82 5.1 Conventional P and PR Controllers 83 5.1.1 Balanced Three-Phase Power Operation 83 5.1.2 Unbalanced Three-Phase Power Operation 86 5.2 Conventional PI and the Proposed PI-EOS Controllers 90 5.2.1 Balanced Three-Phase Power Operation 90 5.2.2 Unbalanced Three-Phase Power Operation 96 5.3 Proposed PROS Controller 101 5.3.1 Balanced Three-Phase Power Operation 101 5.3.2 Unbalanced Three-Phase Power Operation 103 5.3.3 Per-Phase Steady-State and Transient AC performance 105 5.4 Consideration of Other Circuit Nonidealities 110 5.4.1 Effects of Split Capacitors ESR 110 5.4.2 Effects of Capacitance Mismatch 115 5.5 Summary 119 Chapter 6. Experimental Verification 124 6.1 Experiment Setup 124 6.2 Conventional P and PR Controllers 129 6.2.1 Balanced Three-Phase Power Operation 129 6.2.2 Unbalanced Three-Phase Power Operation 132 6.3 Conventional PI and the proposed PI-EOS Controllers 136 6.3.1 Balanced Three-Phase Power Operation 137 6.3.2 Unbalanced Three-Phase Power Operation 144 6.4 Proposed PROS Controller 150 6.4.1 Balanced Three-Phase Power Operation 151 6.4.2 Unbalanced Three-Phase Power Operation 155 6.4.3 Per-Phase Steady-State and Transient AC Performance 157 6.5 Summary 163 Chapter 7. Conclusion and Future Works 168 7.1 Summary and Major Contributions 168 7.2 Suggestions for Future Works 169 References 171 Publications 184 | - |
| dc.language.iso | en | - |
| dc.subject | 併網型逆變器 | - |
| dc.subject | 三相四線 | - |
| dc.subject | 電流控制 | - |
| dc.subject | 電流量測誤差(CME) | - |
| dc.subject | 分裂電容 | - |
| dc.subject | 偏移抑制(OS)函數 | - |
| dc.subject | 比例–諧振偏移抑制(PROS)控制器 | - |
| dc.subject | 電壓偏移 | - |
| dc.subject | Grid Connected Inverters | - |
| dc.subject | Three-Phase Four-wire | - |
| dc.subject | Current Control | - |
| dc.subject | Current Measurement Error (CME) | - |
| dc.subject | Split Capacitor | - |
| dc.subject | Offset Suppression (OS) Function | - |
| dc.subject | Proportional Resonant Offset Suppression (PROS) Controller | - |
| dc.subject | Voltage Deviation | - |
| dc.title | 三相四線併網換流器電流測量誤差影響之分析與消除 | zh_TW |
| dc.title | Analysis and Elimination of the Impact of Current Measurement Error in Three-Phase Four-Wire Grid Connected Inverters | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 梁從主;賴炎生;邱煌仁;金藝璘;陳景然 | zh_TW |
| dc.contributor.oralexamcommittee | Tsorng-Juu Liang;Yen-Shin Lai;Huang-Jen Chiu;Katherine A. Kim;Ching-Jan Chen | en |
| dc.subject.keyword | 併網型逆變器,三相四線電流控制電流量測誤差(CME)分裂電容偏移抑制(OS)函數比例–諧振偏移抑制(PROS)控制器電壓偏移 | zh_TW |
| dc.subject.keyword | Grid Connected Inverters,Three-Phase Four-wireCurrent ControlCurrent Measurement Error (CME)Split CapacitorOffset Suppression (OS) FunctionProportional Resonant Offset Suppression (PROS) ControllerVoltage Deviation | en |
| dc.relation.page | 185 | - |
| dc.identifier.doi | 10.6342/NTU202504851 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2026-01-05 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| dc.date.embargo-lift | 2026-12-31 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 此日期後於網路公開 2026-12-31 | 21.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
