Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10119
標題: 一個馬可夫鏈的特徵值問題及其應用
An Eigenvalue Problem for Markov Chains
With Applications
作者: Shiu-Tang Li
李旭唐
指導教授: 許順吉(Shuenn-Jyi Sheu)
共同指導教授: 張志中(Chih-Chung Chang)
關鍵字: 馬可夫鏈,隨機漫步,平賭序列,暫態,再生態,調和函數,局部中央極限定理,Choquet定理,Martin 邊界,
Markov chain,random walk,martingale,transient,recurrent,harmonic functions,local central limit theorem,Martin boundary,
出版年 : 2011
學位: 碩士
摘要: 在這篇論文中我們探討一個具有兩個變量 $lambda,w$ 的方程組 $sum_{y in
S}p(x,y)exp ig(h(y)-lambda+w(y) ig) = exp(w(x))$, 其中 $p$ 是一個狀態空間為 $mathbb Z^d$ 的馬可夫鏈的轉移機率, 且不論從任何狀態出發, $p$ 只會轉移至有限多個狀態. 當 $h equiv 0$, $lambda =0$ 之情況下所解出的 $exp(w(x))$ 即是此轉移機率 $p$ 的調和函數. 本論文的目標旨在探討 $lambda$ 之範圍, 以及當 $lambda$ 給定時其對應之 $w$ 為何. 當 $h equiv 0$ , 且 $p$ 為一隨機漫步之轉移機率時, 我們將更進一步給出 $(lambda,w)$ 之明確表現形式.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10119
全文授權: 同意授權(全球公開)
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf944.45 kBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved