Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10119
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許順吉(Shuenn-Jyi Sheu)
dc.contributor.authorShiu-Tang Lien
dc.contributor.author李旭唐zh_TW
dc.date.accessioned2021-05-20T21:03:22Z-
dc.date.available2011-08-09
dc.date.available2021-05-20T21:03:22Z-
dc.date.copyright2011-08-09
dc.date.issued2011
dc.date.submitted2011-07-14
dc.identifier.citation[1] P. Ney, F. Spitzer: The Martin Boundary for Random Walk. Transactions of the American Mathematical Society Vol. 121, No. 1 (Jan., 1966), pp. 116-132.
[2] F. Spitzer: Principles of random walk. 2nd Edition. Graduate texts in mathematics, Springer-Verlag, New York, 1976.
[3] S. A. Sawyer: Martin boundaries and random walks. In Adam Koranyi (Ed.), Harmonic functions on trees and buildings. Contemporary Mathematics 206, American Mathematical Society, Providence, pp17-44, 1997.
[4] W. Woess: Random walks on in nite graphs and groups. Cambridge University Press, New York, 2000.
[5] R. R. Phelps: Lectures on Choquet's theorem. 2nd Edition. Springer-Verlag, New York, 2001.
[6] J. Munkres: Topology. 2nd Edition. Prentice Hall, Inc., Upper Saddle River, NJ, 2000.
[7] John G. Kemeny, J. Laurie Snell, Anthony W. Knapp: Denumerable Markov chains. 2nd Edition. Graduate texts in mathematics, Springer-Verlag, New York, 1976.
[8] E.B. Dynkin: Markov processes and related problems of analysis. Cambridge
University Press, New York, 1982.
[9] K. L. Chung: A Course in probability theory. 3rd Edition. Academic Press, San Diego, 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10119-
dc.description.abstract在這篇論文中我們探討一個具有兩個變量 $lambda,w$ 的方程組 $sum_{y in
S}p(x,y)exp ig(h(y)-lambda+w(y) ig) = exp(w(x))$, 其中 $p$ 是一個狀態空間為 $mathbb Z^d$ 的馬可夫鏈的轉移機率, 且不論從任何狀態出發, $p$ 只會轉移至有限多個狀態. 當 $h equiv 0$, $lambda =0$ 之情況下所解出的 $exp(w(x))$ 即是此轉移機率 $p$ 的調和函數. 本論文的目標旨在探討 $lambda$ 之範圍, 以及當 $lambda$ 給定時其對應之 $w$ 為何. 當 $h equiv 0$ , 且 $p$ 為一隨機漫步之轉移機率時, 我們將更進一步給出 $(lambda,w)$ 之明確表現形式.
zh_TW
dc.description.provenanceMade available in DSpace on 2021-05-20T21:03:22Z (GMT). No. of bitstreams: 1
ntu-100-R98221016-1.pdf: 967113 bytes, checksum: 1a51d3c6c5797fad66a5bb1f7f6d31bf (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目 錄
Contents
口試委員會審定書
誌謝……………………………………………………………………………… ii
中文摘要……………………………………………………………………… iv
英文摘要………………………………………………………………………… v
1. Introduction…………………………………………………………………… 1
2. The structure of all solutions (lambda,w) …………………………… 4
2.1 Proof of theorem 2.1.…………………………………………………… 5
2.2 The greatest lower bound of all possible lambda 's is finite………………… 9
2.3 The greatest lower bound of all possible lambda 's is a solution ……… 10
2.4 Restrictions on h such that (1) has solutions ………… 12
2.5 Some properties of w(x) when certain restrictions on h(x)
are imposed ………………………………………………………… 13
3. The pˆlambda,w transformations …………………………………… 15
3.1 The transience, recurrence, and positive recurrence of pˆlambda,w … 15
3.2 Criteria for when all harmonic functions are constants ……………… 23
4. Estimates for some lower bound for all l 's such that (l,w) is a solution of (1)
under some conditions …………………………………………… 26
4.1 Local central limit theorem …………………………………… 26
4.2 Lower bound for all lambda 's such that (lambda,w) is a solution of (1) ……………… 34
5. One step further about the solution structure ……………………………… 38
5.1 The solution structure: general case ……………………… 38
5.2 The solution structure when h(x) o 0………………………………… 41
6. Miscellaneous examples ………………………………………………… 46
6.1 An example: h(y) − lambda 0 < −d for all |y|> M………………………… 46
6.2 An example: h(y) − lambda 0 > d for all |y|> M………………………… 46
6.3 An example: Both 0 {y : h( y) − l > d} and #{y : h( y) − l < −d} are infinite……………………………………………………………… 47
參考文獻 (References)…………………………………………………… 48
附錄 (Appendix) ……………………………………………………… 49
A.1 Introduction …………………………………………………… 49
A.2 Construction of Martin boundary ………………………………… 50
A.3 Harmonic measure ……………………………………………… 52
A.4 h-process transform ………………………………………… 60
A.5 Regular boundary and minimal boundary………………………… 61
dc.language.isoen
dc.title一個馬可夫鏈的特徵值問題及其應用zh_TW
dc.titleAn Eigenvalue Problem for Markov Chains
With Applications
en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor張志中(Chih-Chung Chang)
dc.contributor.oralexamcommittee姜祖恕(Tzuu-Shuh Chiang),陳冠宇(Guan-Yu Chen)
dc.subject.keyword馬可夫鏈,隨機漫步,平賭序列,暫態,再生態,調和函數,局部中央極限定理,Choquet定理,Martin 邊界,zh_TW
dc.subject.keywordMarkov chain,random walk,martingale,transient,recurrent,harmonic functions,local central limit theorem,Martin boundary,en
dc.relation.page68
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-07-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf944.45 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved